LIST OF FIGURES

Figure No	Caption	Page No
Figure 2.1	Flow regimes in bubble columns	12
Figure 2.2	Flow regime map	12
Figure 2.3	Dependence of flow regimes on gas velocity	13
Figure 2.4	Variation of gas holdup for air-water system estimated using various	27
	correlations	
Figure 2.5	Variation of interfacial area for air-water system estimated using	42
	various correlations	
Figure 3.1: (a)	Experimental Set-up for bubble column	58
Figure 3.1: (b)	Experimental Set-up for Single bubble study	58
Figure 3.2	Photograph of experimental setup	61
Figure 3.3	Calibration of Syringe Pump	63
Figure 4.1(a)	A couple of bubbles moving up	68
Figure 4.1(b)	Position of bubbles after a lapse of 0.00833 s.	68
Figure 4.2	Bubbles don't move vertically during Continuous bubbling.	68
Figure 4.3	Acoustic signal for about 0.5 s from the start of signal captured	70
Figure 4.4	Acoustic signal for about 0.01 s from the start of signal captured	70
Figure 4.5	Fast Fourier transform of Acoustic signal presented in Figure 4.4	71
Figure 4.6	A typical cropped acoustic signal in bubble column at U_g =	74
	0.00833 m s ⁻¹ , $Z = 0.05$ m, $H_s = 0.24$ m.	

Figure 4.7	Fourier transform of cropped acoustic sample for $U_g = 0.0083$	75
	m s ⁻¹ , $Z = 0.05$ m, $H_s = 0.24$ m.	
Figure 4.8	BSD for distilled water at $U_g = 0.00833 \text{ m s}^{-1}$, $H_s = 0.24 \text{ m}$,	76
	Z = 0.10 m.	
Figure 4.9	Effect of U_g on BSD for distilled water at $H_s = 0.22$ m, $Z = 0.00$ m.	77
Figure 4.10	Effect of U_g on BSD for distilled water at $H_s = 0.22$ m, $Z = 0.10$ m.	78
Figure 4.11	Effect of H_s on BSD for distilled water at $Z = 0.00$ m, $U_g = 0.033$	79
	ms^{-1} .	
Figure 4.12	Effect of H_s on BSD for distilled water at $Z = 0.20$ m, $U_g = 0.017$	80
	ms^{-1} .	
Figure 4.13	Effect of Z on BSD for distilled water at $H_s = 0.20$ m, $U_g = 0.042$	81
	ms^{-1} .	
Figure 4.14	BSD for 0.5%(w/w) ethylene glycol solution at $U_g = 0.0083 \text{ ms}^{-1}$,	82
	$H_s=0.15$ m and Z=0.00 m.	
Figure 4.15	Effect of U_g on BSD for 0.5% EG solution at $H_s = 0.10$ m, $Z =$	84
	0.00 m.	
Figure 4.16	Effect of H_s on BSD for 0.5% EG solution at $U_g = 0.111 \text{ ms}^{-1}$, $Z =$	84
	0.05 m.	
Figure 4.17	Effect of Z on BSD for 0.5% EG solution at $H_s = 0.10$ m, $U_g =$	85
	0.139 ms^{-1} .	
Figure 4.18	BSD for 0.1%(w/w) CMC solution at $U_g = 0.0417 \text{ ms}^{-1}$, $H_s = 0.15$	86
	m and Z=0.00 m.	
Figure 4.19	Effect of U_g on BSD for 0.1 % (w/w) CMC solution at $H_s = 0.15$ m	88
	and Z=0.05 m.	
Figure 4.20	Effect of Z on BSD for 0.1 % (w/w) CMC soln. at $U_g=0.083 \text{ ms}^{-1}$	88

and *H*_s=0.15 m.

Figure 4.21	Effect of H_s on BSD for 0.1 % (w/w) CMC soln. at $U_g=0.104 \text{ ms}^{-1}$	89
	and Z=0.05 m.	
Figure 4.22	Effect of conc. on BSD for air/aq. CMC soln. at $U_g=0.063$ ms ⁻¹ ,	89
	$H_s=0.20 \text{ m} \text{ and } Z=0.05 \text{ m}.$	
Figure 4.23	BSD for 0.1%(w/w) NaOH solution at $U_g = 0.0625 \text{ ms}^{-1}$, $H_s = 0.15$	90
	m and Z=0.00 m.	
Figure 4.24	Effect of U_g on BSD for 0.1 % (w/w) NaOH solution at $H_s = 0.10$	92
	m and $Z=0.05$ m.	
Figure 4.25	Effect of Z on BSD for 0.1 % (w/w) NaOH soln. at $U_g=0.0833$ ms ⁻	92
	¹ and $H_{s}=0.20$ m.	
Figure 4.26	Effect of H_s on BSD for 1.0 % (w/w) NaOH soln. at U_g =0.0625	93
	ms ⁻¹ and $Z=0.05$ m.	
Figure 4.27	Effect of conc. on BSD for air/NaOH soln. at $U_g=0.0083$ ms ⁻¹ ,	94
	$H_s=0.20 \text{ m} \text{ and } Z=0.05 \text{ m}.$	
Figure 4.28	Value of σ for air-water system as a function of U_g , H_s , Z=0.15 m.	96
Figure 4.29	Value of σ for air-EG solution system as a function of U_g , H_s ,	97
	<i>Z</i> =0.15 m.	
Figure 4.30	Value of s_1 for air-EG solution system as a function of U_g , H_s ,	98
	<i>Z</i> =0.15 m.	
Figure 4.31	Value of k_1 for air-EG solution as a function of U_g , H_s , Z=0.15 m.	99
Figure 4.32	Value of σ for air-NaOH solution as a function of U_g , H_s , Z=0.15 m.	99
Figure 4.33	Value of σ for air-CMC solution as a function of U_g , H_s , Z=0.05 m.	100

Figure 4.34	Effect of U_g and H_s on d_{32} for air/water system at Z=0.10 m.	101
Figure 4.35	Effect of U_g and Z on d_{32} for air/water system at $H_s = 0.24$ m.	103
Figure 4.36	Sauter-mean diameter as a function of U_g and Z for air-water and	105
	air-ethylene glycol solutions	
Figure 4.37	Effect of H_s and U_g on d_{32} for 5%(w/w) ethylene glycol solution at	105
	Z=0.05 m.	
Figure 4.38	Effect of U_g and H_s on d_{32} for air/ aq. CMC soln. at Z=0.10 m.	106
Figure 4.39	Effect of U_g and Z on d_{32} for air/ 0.1%(w/w) CMC at $H_s=0.15$ m.	107
Figure 4.40	Effect of CMC conc. on d_{32} at $H_s=0.20$ m and $Z=0.05$ m.	108
Figure 4.41	Variation of d_{32} with U_g and Z for 0.1%(w/w) NaOH soln. at H_s	109
	=0.00 m.	
Figure 4.42	Variation of d_{32} with U_g and H_s for 0.1%(w/w) NaOH soln. at Z	110
	=0.05 m.	
Figure 4.43	Variation of d_{32} with U_g and 0.1%(w/w) NaOH soln. at Z =0.05 m	111
	and $H_{s} = 0.15$ m.	
Figure 4.44	Gas holdup as a function of U_g and H_s for air-water and air-CMC	112
	solutions.	
Figure 4.45	: Gas holdup as a function of U_g and H_s for air-water and air-	113
	ethylene glycol solutions	
Figure 4.46	Values of a_i for air-water system as a function of U_g and Z at	114
	<i>H_s</i> =0.24 m.	
Figure 4.47	Values of \mathbf{a}_i for air-water system as a function of U_g and H_s at Z	115
	=0.15 m.	

Figure 4.48	Effect of U_g and H_s on a_i for air/0.5 %(w/w) CMC soln. at $Z = 0.05$	116
	m.	
Figure 4.49	: Effect of U_g and Z on a_i for air/0.1% (w/w) CMC soln. at $H_s=0.15$	117
	m.	
Figure 4.50	Effect of U_g and CMC soln. on a_i for air/0.1% (w/w) at Z=0.05 m	118
	and $H_s=0.20$ m.	
Figure 4.51	Specific interfacial area as a function of U_g and Z for air-water and	119
	air-ethylene glycol solutions at $H_s = 0.20$ m.	
Figure 4.52	Variation of a_i with U_g and H_s for 0.1 %(w/w) NaOH soln. at Z	120
	=0.05 m.	
Figure 4.53	Variation of a_i with U_g and Z for 0.1%(w/w) NaOH soln. at H_s	120
	=0.10 m.	
Figure 4.54	Variation of a_i with U_g and H_s for 0.1%(w/w) NaOH soln. at Z	121
	=0.05 m.	
Figure 4.55	Variation of a_i with U_g and 0.1%(w/w) NaOH soln. at Z =0.05 m	122
	and $H_s = 0.15$ m.	
Figure 4.56	Variation of C as a function of time.	125
Figure 4.57	Plot of $\ln(C^*-C)/(C^*-C_0)$ vs $(k_La_i)t$.	125
Figure 4.58	Plot of $(k_L a_i)$ vs U_g .	126
Figure 4.59	Plot of $k_L a_i$ (cal)vs . $k_L a_i$ (exp)	128