
Chapter 6

DRACoR: A Multi-level Fusion

Based Collaborator Recommender

System

“In nature we never see anything isolated, but everything in connection with

something else [· · · ]”

-Jahann wolfgang von Goethe (1749-1832)

6.1 Introduction

In academia, researchers collaborate with their peers to improve the quality of research

and thereby enhance academic profiles. However, information overload in big scholarly

data poses a challenge in identifying potential researchers for fruitful collaboration. In this

article, we introduce a multi-level fusion based model for collaborator recommendation,

DRACoR (Deep learning and Random walk based Academic Collaborator Recommender).

DRACoR fuses deep learning and biased random walk model to provide the rec-

ommendation for potential collaborators that share similar research interests at the peer

level. We run a topic model on abstracts and Doc2Vec on titles on year-wise publications

to capture dynamic research interests of researchers. Author-author cosine similarity is

computed from the feature vectors extracted from abstracts and titles and is then used

to weigh edges in the author-author graph (AAG). We also aggregate various meta-path

features with profile-aware features in order to bias the random walk behavior. Finally,
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Figure 6.1: Graphical representation of SIN graph. P main paper is the paper written

by either of the disparate researchers under study and latent metapaths between P main

papers may be formed via various vertices types: cited by P main (P ref), cites a P main

(P cite), researcher (R), term (T), and venue (V).

we employ a random walk with restart(RWR) to recommend top N collaborators where

the edge weights are used to bias the random walker’s behavior.

6.2 Problem Statement and Other Definitions

Academic collaboration recommendation is different from traditional social recommenda-

tion. In addition to similar research interests, academic collaboration is also governed

by the accessibility of the collaborator and other scholarly influence-aware features. In

this segment, we exhibited the problem description and discussed various notations and

terminology. A heterogeneous network is a special kind of information network, which

either contains multiple types of objects or multiple types of links.

Definition 10 Heterogeneous Information Network (HIN) [173, 174]. It is defined as a

graph G = (V , E) with a node type mapping function δ : V → A and a link type mapping
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function µ : E → R. Each node v ∈ V belongs to one particular node type in the node

type set A: δ(v) ∈ A, and each link e ∈ E belongs to a particular link type in the link type

set R: µ(e) ∈ R. Here both type of nodes A and type of edges R depend on the domain

in question. Note that both |A| > 1 and |R| > 1.

Due to the complexity of HIN and also to understand the node types and link types

clearly in the network, meta level (schema-level) description is provided. So the concept

of network schema is proposed to describe the meta structure of a network [175].

Definition 11 (HIN Schema) [173]. The HIN schema denoted as S = (A,R), is a

meta template for an information network G = (V , E) with a node type mapping function

δ : V → A and a link type mapping function µ : E → R, which is a directed graph defined

over node types A and type of edges R.

Definition 12 Scholarly Information Network (SIN) [176]. SIN graph is an instance of

HIN. Here both type of nodes A and type of edges R are related to a scholarly network

(academia).

Example. In a SIN, A can be either authors, papers, publication venues, terms etc.

Similarly, type of links R can be any type of relations between a pair of members in A

like paper-paper, author-author, paper-author, paper-venue, author-venue, paper-terms,

author-terms, venue-terms etc. In Fig. 6.1, we show graphical representation of a SIN

with all of its vertices types and their relationship. Here we have six type of nodes A,

such that A = P main∪P ref ∪P cite∪R∪T ∪V and seven type of links R (Table 6.2).

The meaning of each type of node is defined in Table 6.1. P main paper is the paper

written by either of the disparate researchers under study. In Fig. 6.1, P main papers are

those papers written by either researcher ri or researcher rj or both. P ref denotes the

set of papers cited by a P main paper whereas P cite indicates to a set of papers that

cite at least a P main paper.

Definition 13 Co-authorship Networks (CN) [83]. Let Ga = (Va, Ea) be the original

co-authorship bibliographic network, with l authors. V = {r1, r2, · · · , rl}. Each edge

e = (ri, rj) ∈ E represents a co-authorship of ri with rj in one or more papers.

Definition 14 Author-Author Graph (AAG). Let G′ = (V ′, E ′) be the newly generated

author-author graph (AAG) from SIN based on the similarity score of abstract and title.
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Table 6.1: Type of vertices used in SIN

No. Vertices Type

1 P main={set of papers written by a researcher}

2 P ref= {set of papers cited by a P main paper}

3 P cite= {set of papers that cites a P main paper}

4 R (researcher)= {authors of P main, P cite, P ref}

5 T (term)={terms appearing in P main papers}

6 V (venue) = { Venues of P main papers}

Table 6.2: Type of edges used in SIN

No. Edges Type

1 n1
written by−−−−−−−−→ n2 : δ(n1) ∈ {P main, P ref, P cite} , δ(n2) = R,n1, n2 ∈ N

2 n1
published by−−−−−−−−−→ n2 : δ(n1) ∈ {P main, P ref, P cite} , δ(n2) = V, n1, n2 ∈ N

3 n1
contains−−−−−−→ n2 : δ(n1) ∈ {P main, P ref, P cite} , δ(n2) = T, n1, n2 ∈ N

4 n1
cites−−−→ n2 : δ(n1) ∈ {P main} , δ(n2) =P ref, n1, n2 ∈ N

5 n1
cited by−−−−−−→ n2 : δ(n1) ∈ {P main} , δ(n2) =P cite, n1, n2 ∈ N

6 n1
cites−−−→ n2 : δ(n1) ∈ {P main} , δ(n2) =P main, n1, n2 ∈ N

7 n1
cited by−−−−−−→ n2 : δ(n1) ∈ {P main} , δ(n2) =P main, n1, n2 ∈ N

V ′ = {r1, r2, · · · , rl}. Each edge e = (ri, rj) ∈ E ′ represents a currently similar research

interest of ri with rj based on their past publications. There is an edge e = (ri, rj) ∈ E ′

exists if the similarity score among researcher ri and rj is greater than average similarity

score. We weight the edges of the network AAG using content similarity (linear combi-

nation of abstract and title) in order to provide a single score as explained in Sec. 6.5.

Example. In Fig. 6.1, there will be an edge (ri,rj) that exists between researcher ri and

researcher rj if their similarity score will be greater than the average similarity score. In

AAG there will be only one type of nodes A researcher (researcher associated with only

P main).

In AAG, two researchers can be connected via different semantic paths, which are

called meta-paths.

Definition 15 Meta-path [201]. A meta-path M is a path defined on the SIN graph

introduced in Sec. 12 . It joins two or more vertices using one or more edges such that

M = n1
l1→ n2

l2→ ...
lt→ nt+1, where the starting and ending vertices are of same vertex

type P main, δ(n1) = δ(nt+1) and both belong to P main, P main ∈ A, µ(l1, l2, ..., lt) ∈

R.
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Example. In Fig. 6.1, There will be a meta path between researcher ri and researcher rj

via the meta path ri
writes→ P main

citedby→ P cite
cites→ P main

writtenby→ rj.

Definition 16 Random Walk [178]. A random walk is defined as a node sequence Sr =

{r1, r2, r3, · · · , rl} wherein the i-th node ri in the walk is randomly selected from the neigh-

bors of its predecessor ri−1.

Definition 17 Collaborator Recommendation. Given a set M of m target researchers M

= {r1, r2,· · · , rm},(m << l), the collaborator recommendation task is to recommend a list

of potential collaborators Ki = {ri1, ri2, ..., rin}, (rij ∈ V ′) related to each target researcher

ri where the list is in decreasing order of relevance (Ki ⊂ V ′).

A collaborator recommendation problem is essentially a link prediction problem. In an

author-author graph (AAG) for a pair of researchers (ri, rj), predict whether the node pair

can collaborate in the near future (irrespective of the fact whether the pair collaborated

earlier or not). However, we are more interested in predicting new collaborators (co-

authors) in addition to the existing ones, to the target researcher.

6.3 The Functional Architecture of DRACoR

We propose DRACoR comprised of two blocks: Block-I and Block-II as depicted in

Fig. 6.2. To reduce computational overhead and to make it independent and autonomous

target researchers, particularly Block-I is developed once for the entire dataset. Later

on, we will utilize the target researcher as an input to interact with Block-II to extract

meaningful recommendations from both the MRCR model and DBCR model. We present

a layered architecture where each layer realizes a specialized task. The system contains

four essential layers, where Layer-1 to Layer-3 associated with Block-I and the rest Layer-

4 goes under the classification of Block-II. Four essential layers are portrayed as given

underneath:

(i) Data Preprocessing (Layer-1): This step aims to structure the dataset into a formal

model for processing. Mainly it is used for faster extraction of researcher-year wise,

relevant papers for further use (BLOCK I).

(ii) F eature Representation Layer (Layer-2): This layer is mainly introduced to extract

current research interest by computing Author2Vec approach and also to transform
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Figure 6.2: Functional architecture of DRACoR
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raw data (words in abstract) to a meaningful alignment of word vectors in the

embedding space of each researcher by Word2Vec approach (BLOCK I).

(iii) M RCR Model (Layer-3): This model improves the performance of basic random

walk based approach by exploiting meta-path features such as previous publication

content, citations, co-citations and other similarity (venue, co-author and term)

and scholarly influence-aware features such as percentage of collaboration and level

similarity in order to recommend MPC collaborators (BLOCK I).

(iv) DBCR Model (Layer-3): To reflect the semantics such as interesting topics shared

by two researchers and furthermore to capture hidden relationship among them,

LSTM model based deep learning architecture is incorporated. It utilized previous

publications content as word embedding layer and meta-path features are exploited

to set dense layer labeling among researchers to recommend highly personalized

MVC collaborators (BLOCK I).

(v) F usion Model (Layer-4): To provide a diversified personalized recommendation,

the MRCR model and DBCR are utilized to firstly make predictions individually

and later on a fusion model is applied to integrate the strengths of both the models

and to reduce their weaknesses. The outcome acquired from these two models is

fused by the standardized Borda count method. We propose this fusion model as

DRACoR (BLOCK II).

6.4 Data Preprocessing Layer (Layer-1)

This step plans to structure the dataset into a formal model for preprocessing. Fundamen-

tally, it is utilized for faster extraction of relevant papers. In the DBLP-citation-network

V10 1 dataset, there were 3,079,007 rows and 7 columns. After dropping all the Nan (not

a number) values, we left with 2,408,010 rows. We drop all the rows which were left blank

in the references column as it will create unnecessary hindrance during training. Similarly,

we preprocessed the hep-th (Theoretical High Energy Particle Physics) dataset provided

by KDD Cup 2003 2. After data preprocessing as above, we get 1,922 concurrent authors

1https://aminer.org/citation
2https://www.cs.cornell.edu/projects/kddcup/datasets.html
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from 20,961 publications. We have split the authors into different columns with the paper

information, and we now have a separate row for authors of every paper. Finally, we

removed all the noise in abstracts to get the experimental dataset. The detail statistics

and data collection of DBLP and hep-th are described in Sec. 2.7.2.

6.5 Feature Representation Layer (Layer-2)

Generally, the abstract provides a summary containing the main idea of a paper. We use

the LDA model on the abstract to generate the feature description [132]. LDA is used for

automatically identifying topics and to derive hidden patterns exhibited by a text corpus.

We have chosen LDA over other methods to discover coherent topics and their distribution

in the abstract. Doc2Vec is used to extract the feature description from the title of a paper

as Doc2Vec captures contextual information of words occurring in titles [179]. It is mainly

used to generate sentence/document embeddings [180]. It is chosen over other methods

due to its potential to overcome the weaknesses such as the ordering of words, semantic

of the words, data sparsity, and high dimensionality in bag-of-words models.

The feature extraction for DBCR model is based on a trained Word2Vec skip-gram

model with negative sampling, which uses the dataset made using abstracts as the training

dataset. The core idea behind Word2Vec is this, a model that is able to predict a given

word, given neighboring words, or vice versa, predict neighboring words for a given word

is likely to capture the contextual meanings of words very well. The reason to adopt skip

gram model are:

(i) Skip-gram model can capture the semantics for a single word.

(ii) Generally skip-gram with negative sub-sampling outperforms every other methods.

6.5.1 Topic Distribution of Research Interest

We cluster the abstract of publications for each researcher. To measure a researcher’s

dynamic research interest, we first build academic documents for each researcher by joining

the abstract of the researcher’s publication in each year by space. Therefore, for each

researcher, we get a set of documents corresponding to each year. Then, we run the LDA

model with a special parameter k on the generated documents set which contains the

193



documents from all researchers. The parameter k represents the clustered topic number

in LDA. The LDA gives the probability distribution of a researcher’s interest over k topics

in each year. We treat this as a feature vector of length k.

We follow a similar procedure with publication titles as well. Doc2Vec is used to

extract feature vectors from titles in this work [202]. In this work, vector length for

Doc2Vec and LDA have been kept the same to reduce the number of parameters in

preliminary experimentation and can be tuned separately in future works.

6.5.2 Researcher’s Interest Variation with Time

Topic distribution of abstract and title embeddings in recent years can describe the current

research interest of a researcher more accurately. Hence, to capture the dynamic research

interest, we propose a weighted addition of vectors that we get after LDA and Doc2Vec.

The vectors in recent years are given more weight, and the weight decays in the decreasing

order of the years. For each author, we have two sets of vectors: one from LDA on year-

wise abstracts and the other from Doc2Vec on year-wise titles.

The results from LDA and Doc2Vec can be considered as two sets of vectors. Lri

represents the vector of year-wise topic distribution vectors and Dr
i represents the vector

of year-wise title embeddings vectors as depicted in Eqn. 6.1 and Eqn. 6.2. The years

considered are 2000, 2001, ..., 2012. Each year-wise vector is again a vector of k different

topics as given in Eqn. 6.6 and Eqn. 6.7.

Lr
i = [Lr2000i, L

r
2001i, · · · , Lr2012i] (6.1)

Dr
i = [Dr

2000i, D
r
2001i, · · · , Dr

2012i] (6.2)

Now, we employ a weighted addition of vectors from each set to get one vector for

abstract similarity and one vector for title similarity. We use inverse log-weighting to give

more weight to the current year vectors, and the weight reduces in the decreasing order

of the years. For each researcher ri, we get a vector Ari for abstract similarity and vector

T ri for title similarity.

Ar
i =

∑
yi∈Y

Lryi
log2(yo − yi + 2)

, and (6.3)

T r
i =

∑
yi∈Y

Dr
yi

log2(yo − yi + 2)
where (6.4)
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Table 6.3: Research topic distribution of researcher ri

Year Topic1 Topic2 Topic3 Topic4 Topic5

2008 0.1 0.2 0.5 0 0.2

2009 0.4 0.2 0.3 0.1 0

2010 0.3 0.1 0.2 0.2 0.2

2011 0.1 0.3 0.1 0.3 0.2

2012 0 0.1 0.3 0.3 0.3

Table 6.4: Weighted score of topic distribution of researcher ri

Year Topic1 Topic2 Topic3 Topic4 Topic5

2008 0.03 0.07 0.19 0 0.07

2009 0.17 0.08 0.12 0.04 0

2010 0.15 0.05 0.1 0.1 0.1

2011 0.06 0.18 0.06 0.18 0.12

2012 0 0.1 0.3 0.3 0.3

Y = {2000, · · · , 2012} and yo is the latest year in Y. (6.5)

Lryi = [a1i, a2i, . . . , aki] (6.6)

Dr
yi

= [a1i, a2i, . . . , aki] (6.7)

Using Ari and T ri for a researcher ri, we compute cosine similarity with their counterpart

from the seed paper (rj) as discussed in next section Author2Vec edge weighting.

Example: Table 6.3 shows the topic distributions for five topics of researcher ri and

Table 6.4 shows the topic distribution after the log weighting scheme has been applied to

each year. Eqn. 6.8 shows the topic distribution vector of researcher ri in year 2009. The

vector after inverse log-weight has been applied is depicted in Eqn. 6.9.

Ar2009k = [0.4, 0.2, 0.3, 0.1, 0] (6.8)

Ar2009k

log2(5)
= [0.17, 0.08, 0.12, 0.04, 0] (6.9)

Furthermore, we adopt a weighted addition of vectors to obtain the final vector as men-

tioned in Table 6.4. The final vector Ai for researcher ri after weighted addition will

be:

Ari = [0.41, 0.48, 0.77, 0.62, 0.59] (6.10)
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If we had applied a simple vector addition without any weights, we would have got a

vector Ari
′ as:

Ari
′ = [0.9, 0.9, 1.4, 0.9, 0.9] (6.11)

We can clearly see the difference between Ari and Ari
′. It clearly indicates the influence of

topic distribution vector of recent year 2012 in the calculation of Ari where as in Ari
′, all

the year wise vectors contribute equally. Furthermore, researcher-researcher similarity is

done among venues exploiting their corresponding weighted vector Ari and T ri respectively.

6.5.3 Author2Vec Edge Weighting

Using Ai and Ti for a researcher ri, we compute cosine similarity between any two re-

searchers. We get two cosine similarities, Sima(ri, rj) and Simt(ri, rj), for a pair of

researchers, ri and rj, using (Ai, Aj) and (Ti, Tj) respectively.

Sima(ri, rj) =
Ar

i .A
r
j

|Ar
i ||Ar

j |
=

∑k
b=1(ab,i ∗ ab,j)√∑k

b=1 a
2
b,i ∗

√∑k
b=1 a

2
b,j

(6.12)

Simt(ri, rj) =
T r
i .T

r
j

|T r
i ||T r

j |
=

∑k
b=1(tb,i ∗ tb,j)√∑k

b=1 t
2
b,i ∗

√∑k
b=1 t

2
b,j

(6.13)

Now we utilize these two similarity metrics to get one final metric, Sim(ri, rj) with the

help of an adjustment parameter m as:

Sim(ri, rj) = m ∗ Sima(ri, rj) + (1−m) ∗ Simt(ri, rj) (6.14)

where m ∈ [0, 1]. We consider these similarity scores as contextual similarity features

(CSF). The influence of m is discussed in Sec. 6.9.5. Note that, we can use the above

similarity score Sim(ri, rj) to create the AAG and also to compute the edge-weight among

researchers.

6.6 The Architecture of MRCR Model (Layer-3)

The process of MRCR model mainly consists of four steps.

(i) Generation of Author-Author Graph (AAG)

(ii) Meta-path Features Aggregation (MPF)
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(iii) Scholarly Influence-aware Features (SIF)

(iv) Recommendation of biased RWR model

We are attempting to discover inherent community structures in an Author-Author

Graph (AAG) to understand the network more profoundly and reveal interesting concept

shared among researchers.

Table 6.5: Meta-paths used in DRACoR model

No. Meta-path Description

1. common author Core researcher’s share an author (R)

2. common venue Core researcher’s share a venue (V)

3. common term Core researcher’s share a term (T)

4. direct cites Core researcher cites a paper written by core researcher (Pmain)

5. direct cited by Paper written by a core researcher cited by a core researcher (Pmain)

6. citation paper Core researcher’s share a reference (Pref )

7. co citation paper Papers written by core researcher’s co-cited together (Pcite)

6.6.1 Generation of Author-Author Graph (AAG)

In this section, we will create a homogeneous undirected Author-Author Graph (AAG)

from SIN graph in order to recommend relevant collaborators for a target researcher.

We define this graph as an undirected graph G′ = (V ′, E ′) as defined in Definition 14.

AAG is a type of SIN with a node type mapping function δ and an link type mapping

function µ as defined in Definition 10. Here, we have one types of vertex V ′ for each

researcher. V ′={set of researchers associated with P main papers}. The type of edge E ′

is defined as: v′1
connects−−−−−→ v′2 : δ(v′1), δ(v′2) ∈ {P main} , v′1, v′2 ∈ V ′. It joins two researchers

using only one type of link edge such that v′1
e′1→ v′2, where µ(e′1) ∈ E ′.

Computation of Edge-weight of AAG

After creating the Author-Author Graph (AAG), we need to compute the edge-weight

among researchers in AAG. Initially, CSF score Sim(ri, rj) as computed in Sec. 6.5.3

among researchers (pairwise) is used to create the AAG graph. The average CSF score is

used as a threshold to create an edge between researchers. There is no edge that exists

with less than average CSF score found among researchers. Initially, this score is used to
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recommend top N collaborators for a target researcher. This approach is purely content-

based so-called TBRec model, and we will use it as a baseline in Sec. 6.9. Further, we

have calculated the combined weighted score CWS(ri, rj) between any two researchers

ri and rj by integrating both Meta-path features (MPF) and Scholarly Influence-Aware

features (SIF).

Combining Different Meta-path Features into AAG

Since meta-paths are mostly composite relations of various links type in a SIN graph,

they can capture the various relationship between SIN nodes [177]. We assume that a

meta-path connects two different P main papers x, y, which are written by two disjoint

core researchers ri, and rj, respectively.

We observe that meta-path features with more than two degrees are not much mean-

ingful in our work and are not able to create much difference to compute the similarity

among researchers. To reduce the time complexity and to obtain a tightly coupled re-

lationship among researchers, only one-degree3, and two-degree meta-path features are

incorporated into this MRCR model.

6.6.2 Meta-path Features (MPF)

Table 6.5 lists all types of meta-paths defined in our model. We are extracting the

researcher of P main and considering as a core researcher in order to maintain a homo-

geneous AAG graph. The following kinds of similarity scores are exploited in order to

compute the meta-path features (MPF).

(i) Co-author Similarity (CS)

(ii) Term Similarity (TS)

(iii) Venue Similarity (VS)

(iv) Direct Citation Based Similarity (DCS)

(v) Co-citation Based similarity (CCS)

3The degree of a meta-path indicates its length and the distance between two main papers (P main).
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The calculation of these above scores is elucidated in the later sections. We use this

cumulative score of the sim(ri, rj) to bias the behavior of the random walk such that it

will more easily traverse to positive collaborators in the AAG graph. Finally, we generated

a list of recommended potential collaborators after the random walk converges.

Computing Meta-path Edge Weights as Features

In order to discover the latent association between researchers, we have divided the above

seven meta-paths as depicted in Table 6.5, into the following categories of edge weighting.

(i) Co-author Similarity (CS): We observe that if two researchers have a similar co-

authors profile, it makes it easy for researchers to connect. We consider the co-

authors profile Ci of a researcher ri as a vector of length L, equal to the total

number of authors. Each dimension of the vector represents an author. The value

of Ci at jth index will be 1 if ri and rj have worked in the past where rj represents

the author at dimension j and zero if they haven’t. Index i represents author ri,

and the value at index i for Ci is kept 1.

We calculate the co-author similarity between two authors ri and rj by calculating

the cosine of the angle between Ci and Cj. Therefore, we can write the co-author

similarity simCS
(ri, rj), between ri and rj as:

simCS
(ri, rj) =

∑L
l=1(Ci,l ∗ Cj,l)√∑L

l=1 C
2
i,l ∗

√∑L
l=1C

2
j,l

(6.15)

In reality, none of the similarity scores among two researchers will get a perfect

score of 1 and also random walk is sensitive to higher probability score. To avoid

such issue, normalization of data within a uniform range (e.g., (0-1)) is essential

to prevent larger applies to the output variables. One way is to scale input and

output variables (z) in the interval [ρ1, ρ1] corresponding to the range of the transfer

function [186]. Before adding any individual meta-path score into the model, we are

individually applying the normalization to be in the range of [0.1-0.95] as shown in

Eqn. 6.16.

zi = ρ1 + (ρ2 − ρ1)
(xi − xmini )

(xmaxi − xmini )
(6.16)

where zi is the normalized value of xi, and xmaxi and xmini are the maximum and

minimum values of xi in the database.
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Algorithm 8: Pseudo-code of MRCR model
Input: The AAG Graph with V ′ = {r1, r2, · · · , rl}; a given target reseacher ri

Output: Top N recommended list of collaborators

Initialize Q based on a given target researcher ri

R0 ← Q

Initialize NumIteration

Initialize MinDelta for break

Sim(ri, rj), Avg Similarity=0

for i ← 0 to |rl| − 1 do

for j ← 0 to |rl| − 1 do

if (i==j) then

Sim(ri, rj) ← 0

else

Compute Sim(ri, rj) by using Eqn. 6.14

Avg Similarity ← Avg Similarity+Sim(ri, rj)

end

end

end

Avg Similarity ← Avg Similarity
|rl|∗(|rl|−1)

for i ← 0 to |rl| − 1 do

for j ← 0 to |rl| − 1 do

if Sim(ri, rj) > Avg Similarity then

Create an edge (ri, rj) among ri and rj in AAG

else

Discard the edge (ri, rj) from AAG

end

end

end

foreach edge (ri, rj) in AAG do

Compute CWSMPF (ri, rj) by using Eqn. 6.23

Compute CWSSIF (ri, rj) by using Eqn. 6.27

Compute CWS(ri, rj) by using Eqn. 6.28

end

foreach neighbor N(ri) of target researcher ri do

Compute wri,rj (edge weight) by using Eqn. 6.30

Si,j=wri,rj

end

for k ← 0 to NumIteration− 1 do

difference=0

for i ← 0 to len(Q)− 1 do

Rki
= α

∑len(Q)−1
j=o Si,jRj+(1-α)Qi

difference=difference+(Rki
-Rk−1i )

end

if (difference < MinDelta) then

break

end

end

Sort collaborators in the decreasing order of their ranking scores

Prepare the final list of top N collaborators for ri
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After applying this normalization, we will get a normalized simCS
(ri, rj) score

sim′CS
(ri, rj) among two researchers ri and rj.

(ii) Venue Similarity (VS): Venue plays a crucial role in the collaboration of two re-

searchers. When the researchers publish at the same venue, it implies that the

research areas are the same. Also, there is a chance that they met at the venue

and this might result in their future collaboration with each other. To calculate

the venue similarity, we followed a similar approach as Eqn. 6.15. After applying

the normalization defined in Eqn. 4.27, we will get a normalized simVS(ri, rj) score

sim′VS(ri, rj) among two researchers ri and rj.

(iii) Term Similarity (TS): Term appearing in titles or abstracts of a P main paper after

stop word removal and stemming are taken into consideration for this similarity

computation. We use snowball stemmer to get the root words [151]. Jaccard simi-

larity coefficient [159] is used to calculate simTS(ri, rj)(Eqn. 6.17). Here set E and

F denote sample terms occur in all abstracts and titles published by researchers ri

and rj respectively.

simTS(ri, rj) =
|E ∩ F |
|E ∪ F |

(6.17)

where 0 ≤ J(E,F ) ≤ 1. After applying the normalization defined in Eqn. 4.27, we

will get a normalized simTS(ri, rj) score sim′TS(ri, rj) among two researchers ri and

rj.

(iv) Direct citation based similarity (DCS): It is experimentally observed that, if two

researchers are citing each other very frequently then there is a very high probability

that they will work together again. So, we are calculating the number of times

they co-cited each other and give the weight-age to the researcher-researcher links.

We have used meta-paths such as direct cites and direct cited-by to compute the

similarity among researchers. The computation of edge weighting of DCS is defined

below:

simDCS
(ri, rj) = Count1(ri → rj) + Count2(rj → ri) (6.18)

where Count1(ri → rj) is the number of times author ri cites a set of papers written

by author rj and vice versa. After applying the normalization defined in Eqn. 4.27,

we will get a normalized simDCS
(ri, rj) score sim′DCS

(ri, rj) among two researchers

ri and rj.
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(v) Co-citation based similarity (CCS): It is experimentally observed that, if two re-

searchers get co-cited by some other paper then there is a very high probability that

they can work in the future as their research area might be the same. Similarly, if

two researchers are frequently citing common papers, they may work in the future

as their research area might be the same. We have used meta-paths features such as

co-cites and co-cited-by to compute the similarity among authors. The computation

of edge weighting of CCS is defined below:

simCCS
(ri, rj) = Sum1(ri, rj → pi) + Sum2(pj → ri, rj) (6.19)

where Sum1(vi → vj) is the number of times set of papers belongs to a particular

venue, vi cites a set of papers which are also cited by the set of papers belongs to

venue vj and vice versa. After applying the normalization defined in Eqn. 4.27, we

will get a normalized simCCS
(ri, rj) score sim′CCS

(ri, rj) among two researchers ri

and rj.

The link weight between any two researchers will be computed through the addition

of link weighting scores discussed above. We add each meta-path features into the model

and will analyze their effect on the recommendation quality. We already have initial

edge weighting score CSF, which is computed by log-weighting based abstract and title

similarity as computed in Eqn. 6.14. It was purely based on the contextual similarity.

After applying the normalization defined in Eqn. 6.16, we will get a normalized CSF

score CSF
′
(ri, rj) among two researchers ri and rj. Initially the recommendation will be

provided on the basis of this normalized score.

CWS(ri, rj) = CSF ′(ri, rj) (6.20)

MPF-based Combined Weighted Score CWSMPF (ri, rj)

We need to combine individual meta-path scores into the model, and we call it as the

combined weighted score (CWS) as depicted in Eqn. 6.23 to use it as a probability score

between researchers in AAG graph as computed using Eqn. 6.30 to apply random walk

with restart.

CWSCF (ri, rj) = sim′CS
(ri, rj) + sim′TS(ri, rj) + sim′VS(ri, rj) (6.21)

CWSOF (ri, rj) = sim′DCS
(ri, rj) + sim′CCS

(ri, rj) (6.22)
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CWSMPF (ri, rj) = CWSCF (ri, rj) + CWSOF (ri, rj) (6.23)

In addition to normalized CSF score obtained in Eqn. 6.20, all normalized scores ob-

tained from Eqn. 6.15, score obtained from normalized venue similarity (VS), Eqn. 6.17,

Eqn. 6.18, and Eqn. 6.19 are added to obtain the meta-path based combined weighted

score CWSMPF (ri, rj).

6.6.3 Scholarly Influence-aware Features (SIF)

To discover the patterns in researcher association over time and to get the latent associ-

ation between researchers. Specifically, we have explored a few scholarly influence-aware

features. The following scholarly influence-aware features are taken into consideration.

(i) Percentage of collaboration (PCS)

(ii) H-Index based level similarity (LS)

Percentage of Collaboration

How frequently a researcher collaborates with another researcher can also indicate the

likelihood of collaboration shortly. Moreover, a researcher with whom an author has

frequently collaborated can lead to collaboration with other researchers as well. Our idea

is that a researcher’s frequently collaborated co-authors can play a role in his/her future

collaborations.

Let the total number of publications of author ri be m and the total number of

publications of author rj be n. The number of publications they have in common be p.

Then, we define the percentage of collaboration simp(ri, rj) between ri and rj as:

simPCS
(ri, rj) =

p

m
+
p

n
(6.24)

= p
( 1

m
+

1

n

)
(6.25)

Observe that the first term in Eqn. 6.24, represents the fraction of the publications that ri

shares with rj .i.e., p out of all the publications of ri .i.e., m and analogously, the second

term represents the fraction of the publications that rj shares with ri .i.e., p out of all the

publications of rj .i.e., n. After applying the normalization defined in Eqn. 4.27, we will

get a normalized simPCS
(ri, rj) score sim′PCS

(ri, rj) among two researchers ri and rj.
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H-Index Based Level Similarity (LS)

Normally, researchers having the same academic level imply future collaboration. We

have calculated the level similarity among two researchers by using two parameters:

(i) Number of citations

(ii) H-index with individual citations

The level similarity is calculated using the formula:

simLS
(ri, rj) =

min(hi, hj)∑min(hi,hj)
k=1 log2 (|Cik − Cjk |+ 2)

(6.26)

Here LS represents Level similarity between two authors ri and rj having h-index hi and

hj respectively. The Cik and Cjk are the citations of Author ri and Author rj of kth paper

when papers are sorted in decreasing order of their citations. After applying the nor-

malization defined in Eqn. 4.27, we will get a normalized simLS
(ri, rj) score sim′LS

(ri, rj)

among two researchers ri and rj.

SIF-based Combined Weighted Score CWSSIF (ri, rj)

We need to combine cholarly influence-aware features (SIF) based similarity scores into

the model, and we call it as combined weighted score CWSSIF (ri, rj) as depicted in

Eqn. 6.27 to use it as a probability score between researchers in AAG graph as computed

using Eqn. 6.30 to apply random walk with restart.

CWSSIF (ri, rj) = sim′PCS
(ri, rj) + sim′LS

(ri, rj) (6.27)

As we mentioned earlier, individual scores mentioned above are normalized before com-

puting the combined weighted score as described in Eqn. 4.27.

Cumulative Combined Weighted Score CWS(ri, rj)

In addition to CWSMPF (ri, rj) score CWSSIF (ri, rj) scores are added to obtain the final

CWS(ri, rj) in order to enhance the probability of recommending relevant collaborators

during recommendation.

CWS(ri, rj) = CWSMPF (ri, rj) + CWSSIF (ri, rj) (6.28)
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6.6.4 Recommendation of MRCR Model

To exploit both collaboration network information along with publication content, we

employ a popular network-based approach known as a random walk with restart (RWR).

The pseudo-code of the MRCR model is given in Algo. 8.

Random Walk with Restart (RWR)

RWR provides a good way to measure how closely related two nodes are in a graph [187].

The core equation of the RWR model is shown in Eqn. 6.29.

R(t+1) = αSR(t) + (1− α)Q (6.29)

where S is the transfer matrix, representing the probability for each node to jump to

other nodes. R(t) is the rank score vector at step t and Q is the initial vector of the form

(0, , · · · , 1, · · · , 0).

We use the weighted combined score (CWS) found after aggregating various meta-

path features and scholarly influence-aware features in Eqn. 6.28, to bias the walker

towards researchers with higher content as well as semantic similarity. Each entries Si,j in

S is the transition probability for each researcher ri in AAG skipping to next researcher

rj. It can be computed as edge weight wri,rj as shown in the equation below:

wri,rj =
CWS(ri, rj)∑

rx∈N(ri)
CWS(ri, rx)

(6.30)

where N(ri) is set of neighbors who have incoming links from ri.

Initially, the rank score of the target node is 1, while others are 0. Initially, the

vector Q is initialized to R(0), α is the damping coefficient. With probability (1 − α),

walker restarts from the start node. RWR is an iterative process. After certain iterations,

R(t) converges to a steady-state probability vector. We use R(t+1) researcher-rank score

vector to give our final top N recommendation.

6.7 The Architecture of DBCR Model (Layer-3)

In this section, we introduce the basics of RNNs and LSTMs and provide the details of our

proposed model based on deep learning to provide a diversified personalized collaborator

recommendation.
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6.7.1 Basics of RNNs and LSTMs

Recurrent Neural Networks are the state of the art algorithm for sequential data. In RNN,

the information cycles through a loop. It decides by considering the current input and

also what it has learned from the inputs it received before. Mathematically, Recurrent

Neural networks can be expressed as:

L(t) = g(L(t−1), c(t), α) (6.31)

where L(t) represents the state of the RNN at timestep t which equals the application of

transformation g applied considering the state of RNN at timestep (t − 1), the current

input c(t) and the network parameter α which are shared through each timestep t =

1,2,· · · ,T. As a result, RNNs takes into account the current input and also what it has

learned from the inputs it received earlier, as well.

LSTMs enable RNNs to memorize their inputs over a long interval of time. This is

because LSTMs contain their information in a memory, that is much like the computers

memory because the LSTM can read, write and delete information from its memory.

Fig. 2.3 describes the computational graph of LSTM at time step t. In this article, we

will show how LSTMs will be used to learn embeddings for the textual content describing

the items recommended by the content based recommender system. The optimization

objective of the skip-gram model is to maximize the following log-likelihood function:

L =
∑
wεC

logP (context(w)|w) (6.32)

The key point is to construct and calculate the conditional probability function P (context(w)|w).

For skip-gram model, given the central word w, we need to predict the words in context(w).

Most of the parameter for Word2Vec is taken as default value except for the vector size

which is set to be a relatively larger value so that the proposed model can take the entire

sentence as context while training a word of the sentence.

6.7.2 Label Selection

In the case of a collaborator recommender system, there are no user ratings, unlike other

content-based recommender systems. In a supervised deep learning-based recommender

system, we have to give the label so that the model can learn the training parameters.
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To achieve this, we have taken various parameters by history among researchers. The

features used here are similar to the features adopted in the MRCR model except for

content similarity, which is as follows:

(i) Venue similarity (VS)

(ii) Direct citation based similarity (DCS)

(iii) Co-citation based similarity (CCS)

(iv) Percentage of collaboration(PCS)

(v) H-Index based level similarity(LS)

Calculation of these above mentioned features has been shown in the Sec. 6.6.2. Indi-

vidual scores mentioned above are normalized before computing the S(ri, rj) by Eqn. 4.27.

So this normalized S(ri, rj) is considered as the label for the DBCR model.

S(ri, rj) = VS +DCS + CCS + PCS + LS (6.33)

6.7.3 Proposed Architecture

The architecture of DBCR model is shown in Fig. 6.3. This architecture can predict a

score S(ri,rj) to define the probability that the pair of authors ri and rj will collaborate

in the future. Briefly, this approach is based on two different word embeddings for two

different authors.

This word embeddings can jointly learn continuous vector representations for a pair

of authors ri ∈ R and rj ∈ R that are used to feed a classifier which generates the score

which is a probability of their future collaboration. Overall, the proposed architecture

consisting of the following six layers:

(i) Embedding Layer: Generates the matrix associated with author’s content from

trained Word2Vec model.

(ii) LSTM Layer: An RNN network with LSTM units.

(iii) Mean Pooling Layer: Calculates the mean of the input vectors.

(iv) Concatenation Layer: Concatenates the input vectors.
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Logistic	regression
layer	S(ri	,	rj)

Figure 6.3: The architecture of DBCR model

(v) Dense Layer: Deep Neural network with hidden layers.

(vi) Logistic Regression Layer: Exploits logistic regression to calculate the score for

the pair of authors.

Embedding Layer

An important component of DBCR model is the embedding layer, which generates the

dense representations of its input. This is our input layer through which abstracts

w1, w2, w3, · · · , wm of the papers written by authors are passed. It will generate the matrix

associated with the author’s content from the trained Word2Vec model. Word-embedding

techniques help extract information from the pattern and occurrence of words to decode

the context of the words, thereby providing more relevant and important features to the
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model. Given a set of elements R, each of them can be represented as an x-dimensional

vector contained in a E ∈ R|R|×x embedding matrix generated using Word2Vec. Each

pair of authors is given in input to an embedding layer, which generates an x-dimensional

author embedding E.

LSTM Layer

This layer contains a RNN network with a few LSTM units. After getting the word

embedding matrix, each word representations are sequentially passed through a Long

Short Term Memory(LSTM) network with t hidden units which generate for each of

them a t-dimensional latent representation L using a LSTM cell. The objective of LSTM

mode is to capture the word sequence information and semantic information of each word

representation that are useful to generate the latent representation. Here, LSTM model

is used to capture the long-term temporal dependencies and the positional relation of

features along with significant global features from each obtained word representation.

As stated in the introduction, several works already showed that LSTM could overcome

shallow models. Moreover, we chose LSTM since such networks are very effective when

sequences of input have to be shaped.

Given that the textual description of the input can be easily viewed as a sequence of

words, it was straightforward for us to investigate the adoption of LSTMs in a content-

based recommendation scenario. We have used tanh as activation function in LSTM. The

tanh activation function is defined as:

f(x) = tanh(x) =
ex − e−x

ex + e−x
(6.34)

We have used sigmoid as recurrent activation in LSTM. The sigmoid activation function

is defined as:

f(x) =
1

1 + e−x
(6.35)

Mean Pooling Layer

In recurrent-neural-network-based models, pooling is often used to aggregate hidden states

at different time steps (i.e., words in a sentence) to obtain sentence embedding. It is used

to compress our features to lower fidelity. A mean-pool layer compresses by taking the

mean activation in a block. It calculates the mean of the input vectors. After the latent
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representation are computed by the LSTM network, the item embedding E(i) is obtained

by a mean pooling layer which averages the latent representations l(wk) for all the words

in the textual description of the item. M ∈ RL∗S is the input matrix for mean pooling

layer.

The pooling layer has two hyperparameters, the spatial extent of the filter f and the

stride s. It takes M, an input volume of size mx (x is the size of the vector generated by

Word2Vec) and provides an output volume of size m̄x̄ (where m̄ = m−f
s+1

, and x̄ = x−f
s+1

).

The pooling layer operates by defining a window of size f*f and reducing the data within

this window to a single value which is the average of all values in case of mean pooling

layer. The window is moved by s positions after each operation, and the reduction is

repeated at each position of the window until the entire activation volume is spatially

reduced.

Concatenation Layer

This layer mainly concatenates the input vectors resulting after mean pooling layer. We

have specifically used this layer to compare them using a deep neural network. The

resulting vectors v(i) and v(j) of the pair of authors respectively are then concatenated

through a concatenation layer [here v(i) stands for v(ri) and vice versa].

Dense Layer

Dense layer is used to compare the feature vectors after Concatenation. Also, the di-

mensionality of this output until now does not equal to the dimensionality of the desired

target. This layer consists of deep neural network with hidden layers. The resulting

(ti + tj)-dimensional feature vector is given as input to the dense layers to generate the

functions to find the relation between them. We have used sigmoid as activation in the

dense layer.

Logistic Regression Layer

Exploits logistic regression to calculate the score for the pair of authors. Finally, it is

passed through the logistic regression layer to predict the score S(ri, rj). Mathematically

this can be expressed as:

S(ri, rj) = sigmoid(Wih[v(i), v(j)] + bih) (6.36)
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Algorithm 9: Fusion of MRCR and DBCR models
Input: Given target reseacher ri for the recommendation

Output: Top N recommended list of collaborators

Initialization

let R= r1, r2...,rN be the set of target researchers

Perform MRCR model at target author ri in order to Compute top N similar collaborators

Ui = Ordered list of unique collaborators found by MRCR model (Sec. 6.6)

= {a1, a2, . . . , aN}

Perform DBCR in order to Compute top N similar collaborators

Vi = Ordered list of unique collaborators found by MRCR model (Sec. 6.7)

= {b1, b2, . . . , bN}

for i← 0 to |aN | − 1 do

Borda Count Bc(ai) ← N − i+ 1

end

for j ← 0 to |bN | − 1 do

Borda Count Bc(bj) ← N − j + 1

end

k=0, counter(ai)=false, counter(bj)=false

for i← 0 to |Ui|-1 do

for j ← 0 to |Vi|-1 do

if (ai == bj) then

Boda Count Bc(vk)← Bc(ai) +Bc(bj) /* same collaborator so add their Borda Count */

k=k+1

counter(bj)=true

else

Bc(vk+1) ← Bc(ai) /*individually consider Borda Count of ai*/

k=k+1

end

end

end

for j ← 0 to |Vi|-1 do

if (counter(bj)! = true) then

Bc(vk+1) ← Bc(bj) /*individually consider Borda Count of bj*/

k=k+1

end

end

Sort collaborators in the decreasing order of Boda count Bc(vk)

Prepare the final list of top N collaborators recommendation
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where Wih ∈ R(di+dj)×1 is a weight matrix, bih ∈ R is a bias term and the sqaure

bracket denotes the concatenation operation between two vectors.

The logistic regression layer can learn its parameters Wih and bih according to the

relationship between the authors ri and, rj. To generate the top-N recommendations for

author ri, the recommender system generates a list for an author with all other authors

sorted in descending order of score S(ri, rj). We have used mean squared error as loss

function. The mean squared error is defined as:

Mean squared error(MSE) =
1

n

n∑
i=1

(Yi − Ȳi)2 (6.37)

where Yi is the observed value and Ȳi is the predicted value.

6.8 Fusion Model: DRACoR (Layer-4)

The main assumption of fusion-based approach can be stated that “hybrid recommenda-

tion approaches can provide more accurate recommendation than a single approach and

the disadvantages of one approach can be overcome by the other approach” [27,203]. On

the other hand, hybrid approach is a promising alternative to traditional approach. It has

shown excellent performance in the field of recommendation [27, 204–206]. Data combi-

nation has also been widely investigated in the recommendation community. They were

often divided into two categories: score-based and ranking-based [169, 189]. Ranking-

based combination methods require rank or position information to integrate different

candidates ranking lists, such as Borda fusion, Condorcet fusion, and MAPFuse.

The MRCR and DBCR models which have been improved with previous publication

content, meta-paths features aggregation, random walk with restart, LSTM based deep

learning method are integrated into a fusion model based collaborator recommendation

approach, i.e., DRACoR. We employed a rank-based fusion technique Borda Count to

integrate the existing prediction lists generated by the MRCR model and DBCR model

respectively. To be more specific, the predictions resulting from the MRCR and DBCR

are firstly produced separately with the purpose of allowing us to leverage the individual

strengths of both approaches since there is no interdependency between them, then we

are fusing the results with standardized Borda Count technique as mentioned in Algo. 9.
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6.9 Experiments

In this section, we present the experiments of the proposed fusion model DRACoR, where

initial two sections present the experimental datasets and evaluation metrics. Then the

baseline methods, experimental setting, performance comparison and study of the pro-

posed approach are described in further section. The following experiments are performed

on a laptop with 64-bit windows 10 operating system, Intel i7-3540M CPU@3.00 GHz,

and 32 GB memory. All the programs are implemented in Python.

6.9.1 Data Collection

We use two real-world datasets such as DBLP-citation-network V10 4 (Sec. 2.7.2) and

hep-th (Theoretical High Energy Particle Physics) (Sec. 2.7.3) provided by KDD Cup

2003 5 to demonstrate the effectiveness of our proposed method.

6.9.2 Evaluation Metrics

We employed various evaluation metrics such as Precision, Recall, F1-score, nDCG, and

MRR, which are quite popular in recommender systems to demonstrate the effectiveness

of DRACoR (Sec. 2.6). For clarity, we further explained Precision, Recall, F1-score as

follows.

(i) Precision, Recall and F1-score: We can divide all nodes(researchers) into four groups

according to the following four cases:

• A: collaborating with the target node and recommended;

• B: collaborating with the target node but not recommended;

• C: not collaborating with the target node but recommended;

• D: not collaborating with the target node and not recommended.

Precision =
|A|
|A+ C|

(6.38)

Recall =
|A|

|A+B|
(6.39)

F1 =
2(Precision ∗Recall)
Precision+Recall

(6.40)

4https://aminer.org/citation
5https://www.cs.cornell.edu/projects/kddcup/datasets.html
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6.9.3 Baseline Methods

To measure effectiveness of the proposed system DRACoR, we compare our results with

various state-of-the-art methods such as CNRec, RWR, TBRec, MVCWalker, CCRec,

BCR, and RWR-CR (Sec. 2.8.2).

6.9.4 Experimental Setting

While preparing the test dataset, we considered two scenarios: firstly, due to operational

constraints, 14 sub-domains of computer science: information retrieval, image processing,

security, wireless sensor network, machine learning, software engineering, computer vision,

artificial intelligence, data mining, algorithms and theory, databases, natural language

processing, parallel and distributed systems, and multimedia were selected as the testing

dataset in our experiment.

Secondly, while identifying the target researchers, the following conditions are taken

into consideration to measure the effectiveness of DRACoR to handle cold start issues

like a new researcher or researcher with less number of publications or collaborations. To

validate the effectiveness of DRACoR against new researcher or researchers with fewer

collaborations, primarily the below two categories are taken into consideration. There are

two major categories, i.e., (a) number of citations (nc), and (b) target nodes degree (nd).

Generally, nc denotes the number of citations of individual researchers and nd denotes the

number of collaborators or degree of target researchers. The following two categories are

discussed below.

(a) T arget researcher’s academic level (Number of citations)

(i) Primary Level (2 ≤ nc < 6)

(ii) Intermediate Level (6 ≤ nc < 26)

(iii) Advanced Level (26 ≤ nc)

(b) T arget researcher’s degree (Number of collaborations)

(i) Group I (1 ≤ nd < 10)

(ii) Group II ( 10 ≤ nd < 19)

(iii) Group III (20 ≤ nd < 29)
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(iv) Group IV (30 ≤ nd)
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Figure 6.4: Influence of vector dimensions on: (a) Precision (hep-th) (b) Recall (hep-th)
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Figure 6.5: Influence of vector dimensions on: (a) F1 (hep-th) (b) Precision (DBLP)

In this experiment the relevance value r is binary, i.e., r ∈ {0 or 1}. It is set to 1 if

the recommended collaborators are matching with the ground truth data and set to 0 if

the recommended collaborators are not collaborating with the target node in reality.

To comprehensively evaluate our proposed method and more specifically, to address

the broad research questions (RQs) discussed in Sec. 1.5, we prefer to examine the fol-

lowing sub-queries (SQs):

SQ1: How does different parameter selection affect the performance of DRACoR?
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Figure 6.6: Influence of vector dimensions on: (a) Recall (DBLP) (b) F1 (DBLP)

Table 6.6: Experimental parameter settings

Parameter Range Default

Vector dimension (Ai and Ti) (10-200) 100

Adjustment parameter (m) (0.1-0.95) 0.7

Damping constant (α) (0.1-0.95) 0.8

Target researcher’s academic level (nc) ≥ 0 (6-24)

Target researcher’s degree (nd) ≥ 0 ≥ 30

Number of iteration (10-100) 25

Number of recommended nodes (5-150) 120

SQ2: How does DRACoR handle cold-start issue for new researcher and other issue like

diversity ?

SQ3: How effective is DRACoR in comparison to other state-of-the-art methods ?

6.9.5 Parameter Tuning and Optimization

In this section, we demonstrate the impact of various experimental parameter settings,

including vector dimension (Ai and Ti), adjustment parameter (m), damping constant

(α), target researcher’s academic level (nc), target researcher’s degree (nd), and number

of iteration. The ranges and default values of the parameters are depicted in Table 6.6.

When the effect of the parameter is under examination, the other parameters are set to

default values. During the assessment, best results and the second-best are marked by

‘bold-face’ and ‘+’ symbol respectively.
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Influence of Vector Dimension

In order to find the ideal dimension for vectors Ai and Ti, we conduct experiments on four

values for vector dimension , i.e. {10,50,100,200}. The value of the adjustment parameter

is set to be 0.7, and α is set to be 0.8.

We choose 140 researchers randomly as the target nodes and run DRACoR model

for both the datasets of DBLP and hep-th. This is done to calculate the average pre-

cision, recall, and F1 over these recommended collaborators. We conducted extensive

experiments with different recommendation lists in length to evaluate the influence of the

vector dimension on the result. Fig. 6.4a and Fig. 6.5b show the performance of our model

in terms of precision for different vector dimensions. Similarly Fig. 6.4b, Fig. 6.6a and

Fig. 6.5a, Fig. 6.6b, demonstrate the effectiveness of DRACoR in terms of both recall and

F1 respectively.

During the experiments on DBLP and hep-th datasets, it can be seen that the model

performs best, in terms of precision, when the value of the vector dimension is 100 and

performs a downtrend with the recommendation list increasing. In the case of recall

evaluation, the overall results show an upward trend and then slightly flattens out at the

end of the recommendation list. The best performance of recall is achieved with a vector

dimension of 100. The F1 score performs the upper convex curve, rapidly rising and

then shows a slight decline. The best performance of F1 score is achieved with a vector

dimension of 100. So considering the above performance, in this experiment, the value of

the vector dimension has been taken as 100.

Table 6.7: Influence of adjustment parameter on MRR

Adjustment MRR

prob.(1-m) 2<=nc<6 6<=nc<25 26<=nc 2<=nd<10 10<=nd<20 20<=nd<30 30<=nd

0.5 0.0793 0.0849 0.0853 0.0854 0.0861 0.0864 0.0895

0.45 0.0798 0.0879 0.0851 0.0853 0.0893 0.0847 0.0853

0.4 0.0867 0.0905 0.0893 0.0915 0.0841 0.0859 0.0874

0.35 0.0972 0.0895 0.0949 0.0858 0.0903 0.0885 0.0896

0.3 0.1093 0.1197 0.1267 0.1134 0.1127 0.1185 0.1189

0.25 0.0976+ 0.1014+ 0.1258+ 0.1016+ 0.1039+ 0.1073+ 0.1052+

0.2 0.0668 0.0848 0.1132 0.0894 0.0917 0.0995 0.0987

0.15 0.0526 0.0773 0.0866 0.0739 0.0877 0.0914 0.0923

0.1 0.0473 0.0637 0.0725 0.0683 0.0746 0.0828 0.0848

0.05 0.0437 0.0591 0.0683 0.0565 0.0677 0.0769 0.0787
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Influence of an Adjustment Parameter (m)

This parameter has a realistic significance as it controls how an abstract and a title of

research papers published by a researcher determines the area of interest of a researcher.

In this section, we analyze how the adjustment parameter (m) influences the performance

of the algorithm concerning nDCG and MRR. In order to find the ideal value of m to

get the efficient combined score of vectors Ai and Ti, we conducted experiments on 10

possible values for adjustment parameter, i.e. {0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15,

0.1, 0.05 }. The value of vector dimension (Ai and Ti) is set to be 100 and α is set to be

0.8.

From Table 6.7, we can observe that the variation tendency of MRR score performs

roughly consistent. We can see that the MRR shows an overall upward trend with the

increasing value of adjustment parameter m of value 0.7. The model performs the best

while the value of the adjustment parameter (m) is 0.7 as marked in bold text. This is

because, in most of the cases, the abstract is giving a better clarity of topic similarity

while in a few cases the title is resulting better. So considering this experiment in a similar

nature, the value of (1-m) has been taken as 0.3.

Influence of Damping Constant (α)

This parameter has a realistic significance as it controls how far the random walker reaches.

In this section, we analyze how the damping coefficient influences the performance of the

algorithm concerning nDCG and MRR. With higher values of α, the probability of random

walker reaching far away nodes increases. Hence, the number of new collaborators, i.e.,

researchers who have not collaborated with the target researcher in training set but have

done so in the test set, increases. It is evident from Table 6.8, that as the damping

constant increases there is a drastic increase in MRR and nDCG for new collaborators

and a negligible decrease in MRR and nDCG for overall (new+old) collaborators.

The table displays the influence of restart probability (1 − α) on the algorithm.

This parameter setting gives the highest nDCG of 0.162 and 0.419 for both new and old

collaborators. Similarly, while evaluating MRR, we can see that the overall results of

MRR for both new and old collaborators are 0.179 and 0.494 respectively. The second-

best performer is indicated with a + marks sign. Considering the above results of both

nDCG and MRR for new and old collaborators, in this experiment, the value of (1-α) has
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Table 6.8: Influence of restart probability on nDCG and MRR

Restart prob. (1-α) nDCG (New) nDCG (O) MRR(N) MRR(O)

0.5 0.009 0.338 0.005 0.419

0.45 0.010 0.337 0.023 0.407

0.4 0.017 0.339 0.046 0.418

0.35 0.026 0.339 0.051 0.418

0.3 0.036 0.343 0.078 0.426

0.25 0.104 0.348+ 0.084 0.428+

0.2 0.162 0.419 0.179 0.494

0.15 0.107+ 0.297 0.127+ 0.417

0.1 0.089 0.254 0.123 0.329

0.05 0.061 0.226 0.119 0.121

been taken as 0.2.
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Figure 6.7: Influence of academic level on: (a) Precision (hep-th) (b) Recall (hep-th)

Influence of Target Researcher’s Academic Level

In this section, we demonstrate the overall performance of the DRACoR model against

varying academic levels of target researchers. The experimental settings are the same as

other groups of experiments. The vector dimension is 100, the adjustment parameter is

0.7, and the damping constant was 0.8 during the experiment.

DRACoR performs better in terms of precision on recommending potential collabora-

tors for intermediate and advanced level researchers on both hep-th and DBLP datasets

(Fig. 6.7a, and Fig. 6.8b). For the primary level researchers, it shows a relatively low
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Figure 6.8: Influence of academic level on: (a) F1 (hep-th) (b) Precision (DBLP)
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Figure 6.9: Influence of vector dimensions on: (a) Recall (DBLP) (b) F1 (DBLP)

precision value. However, according to Fig. 6.7b; and Fig. 6.9a, DRACoR is good at

recommending for those primary level researchers in terms of recall. However, the perfor-

mance of DRACoR shows the worse for advanced-level researchers.

DRACoR shows higher F1 score on recommending for the intermediate level re-

searchers compared to the primary and advanced-level researchers (Figs. 6.8a, and 6.9b).

After seeing all the analysis of the results, we observe that the academic level of target

researchers has a great impact on the performance of DRACoR. If we focus more on the

overall metric F1 rating, the DRACoR is higher at recommending potential collaborators

for the one’s intermediate level researchers.
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Influence of Target Researcher’s Degree
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Figure 6.10: Influence of target researcher’s degree on: (a) Precision (hep-th) (b) Recall

(hep-th)
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Figure 6.11: Influence of target researcher’s degree on: (a) F1 (hep-th) (b) Precision

(DBLP)

In terms of precision, the larger the target node’s degree, the better the model’s

performance (Figs. 6.10a; and 6.11b). Besides, we can see that DRACoR has relatively

higher precision with group IV than all other groups. At the range from 0 to 10, DRACoR

performs the worst. But when the target node’s degree gets larger than 30, the precision

performs better as compared to other groups of target researchers. Thus we can conclude
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Figure 6.12: Influence of target researcher’s degree on: (a) Recall (DBLP) (b) F1 (DBLP)

that DRACoR has higher precision for strong nodes but performs almost the same for

weak nodes.

Fig. 6.10b, and Fig. 6.12a show the comparison of recall rate with the changing de-

gree. Similar to the results of precision, when the degree becomes larger than 30, the

corresponding recall rate of DRACoR increases. Besides, we can see that DRACoR has

a relatively higher recall with group IV than all other groups. Fig. 6.11a, and Fig. 6.12b

show the comparison of F1 with the changing degree. But when the target node’s de-

gree gets larger than 30, the F1 performs better as compared to other groups of target

researchers. Thus we can conclude that DRACoR has a higher recall for strong nodes but

performs almost the same for weak nodes.

Impact of Number of Iteration on Overall Results

In this work, the higher the number of iterations, the higher the number of matrix multi-

plication operations done by RWR before getting the recommended list. While evaluating

the overall performance of DRACoR, it has been observed that, there is no significant

changes occurring when iteration times get bigger. As shown in Fig. 6.13a, and Fig. 6.14b,

the model achieves a maximum precision of 16% and 11% at iteration 21 and 23 in both

hep-th and DBLP respectively. There are similar behavior observed by the model in case

of recall and F1 until 23 iterations as shown in Fig. 6.13b, Fig. 6.15a, Fig. 6.14a, and

Fig. 6.15b. Afterward, the model becomes convergent. So there is no need to execute the
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Figure 6.13: Influence of iteration on: (a) Precision (hep-th) (b) Recall (hep-th)
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Figure 6.14: Influence of iteration on: (a) F1 (hep-th) (b) Precision (DBLP)

model with many iterations. Based on the above experiments, we have set the iteration

time as 25.

6.9.6 Parameter Tuning of DBCR Model

The model is trained using RMSProp as an optimizer. The parameter α is set to be

0.9, and the learning rate is set to 0.0001. Models are trained for 50 epochs, by setting

batch sizes to 512. As for cost function, we choose the mean squared error, which is

typically used for regression tasks since it tries to minimize the mean squared error in the

regression. Due to the computational costs requested by the models, the dimension of the
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Figure 6.15: Influence of iteration on: (a) Recall (DBLP) (b) F1 (DBLP)

learned embeddings ri and rj are fixed to 50.
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Figure 6.16: MRCR performance in terms of: (a) Precision (hep-th) (b) Recall (hep-th)

6.10 Results and Discussions

In this section, we evaluated the effectiveness of DRACoR against existing state-of-the-

art methods. Before evaluating the performance of the fusion model, DRACoR individual

performance analysis of MRCR and DBCR models are estimated.
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Figure 6.17: MRCR performance in terms of: (a) F1 (hep-th) (b) Precision (DBLP)

6.10.1 Results Analysis of MRCR Model

The detailed results are shown in Fig. 6.16, Fig. 6.17 and Fig. 6.18 respectively. While

evaluating on the hep-th dataset, the MRCR model achieves the highest precision of 0.304

at first recommendation, and slowly, it shows a downward trend and reaches a precision

value of 0.055 at position 120 as shown in Fig. 6.16a. Similarly, the MRCR model achieves

the highest precision of 0.224 at first recommendation, and slowly it shows a downward

trend and reaches a precision value of 0.028 at position 120 on DBLP dataset, as shown

in Fig. 6.17b.

In the case of recall evaluation on hep-th, the MRCR model performs an upward

trend and reaches the highest recall of 0.098 at position 54, and afterward again it shows

a downward trend and reaches a recall of 0.075 at position 78. Then it slowly increases

and achieves the highest recall of 0.098 at position 120, as shown in Fig. 6.16b. It pro-

vides a similar nature of performance on DBLP dataset too. As shown in Fig. 6.18a, it

recommends with a higher recall of 0.098 at position 56, and afterward, it seems very like

a trend of decline on recall to a certain degree and reaches a recall of 0.096 at position

120.

Similarly, while evaluating the performance on hep-th, the MRCR model performs

an upward trend from the beginning and achieves the highest F1 of 0.113 at position 50.

It shows a downward trend and reaches a F1 of 0.078 at position 80. Then it shows a

steady performance over the recommendation list and finally reaches a F1 of 0.079 at
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position 120 as shown in Fig. 6.17a. But in case of DBLP dataset the model shows an

upward trend from the beginning and reaches a F1 of 0.091 at position 50, and slowly

it shows a downward trend and finally achieves a F1 of 0.054 at position 120 as shown

in Fig. 6.18b. During the initial recommendation, the MRCR model made a significant

improvement on evaluation metrics, such as precision, recall and F1 over the standard

approaches.
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Figure 6.18: MRCR performance in terms of: (a) Recall (DBLP) (b) F1 (DBLP)
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Figure 6.19: DBCR performance in terms of: (a) Precision (hep-th) (b) Recall (hep-th)
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Figure 6.20: DBCR performance in terms of: (a) F1 (hep-th) (b) Precision (DBLP)
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Figure 6.21: DBCR performance in terms of: (a) Recall (DBLP) (b) F1 (DBLP)

6.10.2 Results Analysis of DBCR Model

The detailed results are shown in Fig. 6.19, Fig. 6.20 and Fig. 6.21 respectively. We

have experimented on the hep-th dataset, and observed that DBCR model, achieves the

highest precision of 0.098 at first recommendation and slowly shows a downward trend

and reaches a precision value of 0.084 at position 120 as shown in Fig. 6.19a. Similarly,

it achieves the highest precision of 0.073 at first recommendation and shows a downward

trend and reaches a value of 0.047 at position 120 on DBLP dataset as shown in Fig. 6.20b.

In the case of recall evaluation on hep-th, the DBCR model performs an upward trend

and reaches a recall of 0.101 at position 56 and then slowly increases and achieves a recall

227



of 0.114 at position 120 as shown in Fig. 6.19b. The DBCR model shows a similar nature of

performance on DBLP dataset too. As shown in Fig. 6.21a, it recommends with a higher

recall of 0.099 at position 56, and afterward, it seems like a trend of decline on recall to

a certain degree and reaches a recall of 0.105 while recommending 120 collaborators.

Similarly, while evaluating the performance on hep-th, the DBCR model performs

an upward trend from the beginning and achieves the highest F1 of 0.111 at position 50.

Then it shows a downward trend and reaches a F1 of 0.098 at position 120 as shown in

Fig. 6.20a. But in case of DBLP dataset, the model shows an upward trend from the

beginning and reaches a F1 of 0.106 at position 50, and it shows a downward trend slowly

and finally achieves a F1 of 0.068 at position 120 as shown in Fig. 6.21b.

We observed that during the mid-end stages of the recommendation, DBCR model

made a significant improvement on evaluation metrics like precision, recall and F1 over

the standard approaches.
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Figure 6.22: DRACoR performance in terms of: (a) Precision (hep-th) (b) Recall (hep-th)

6.10.3 Results Analysis of DRACoR Model

The detailed results are shown in Fig. 6.22, Fig. 6.23 and Fig. 6.24 respectively. We have

experimented on hep-th dataset and observed that proposed model DRACoR exhibits the

highest precision of 0.287 after recommending the top 10 potential collaborators and then

slowly it shows a downward trend and reaches a precision value of 0.095 at position 120

as shown in Fig. 6.22a. Similarly, it achieves the highest precision of 0.207 at position
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Figure 6.23: DRACoR performance in terms of: (a) F1 (hep-th) (b) Precision (DBLP)
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Figure 6.24: DRACoR performance in terms of: (a) Recall (DBLP) (b) F1 (DBLP)

10 and then slowly shows a downward trend and reaches a precision value of 0.051 at

position 120 on DBLP dataset as shown in Fig. 6.23b.

In case of recall evaluation on hep-th, the proposed model DRACoR performs an

upward trend and reaches a recall of 0.098 at position 54 and then slowly increases and

achieves a recall of 0.117 at position 120 as shown in Fig. 6.22b. The DRACoR model

shows a similar nature of performance on DBLP dataset too. As shown in Fig. 6.24a,

it recommends with a higher recall of 0.098 at position 60 and finally reaches a recall of

0.113 while recommending 120 collaborators.

Similarly, while evaluating F1 on hep-th the DRACoR model performs an upward
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trend from the beginning and achieves a F1 of 0.127 at position 50. Then it shows a

downward trend and reaches a F1 of 0.107 at position 120 as shown in Fig. 6.23a. But in

case of DBLP dataset the model shows an upward trend from the beginning and reaches

a F1 of 0.109 at position 50, and slowly it shows a downward trend and finally achieves

a F1 of 0.089 at position 120 as shown in Fig. 6.24b.

Table 6.9: F1-score results of DRACoR and other approaches (hep-th)

Methods F1@10 F1@20 F1@30 F1@40 F1@50 F1@60 F1@80 F1@100 F1@120

CNRec 0.0024 0.0040 0.0059 0.0064 0.0071 0.0071 0.0058 0.0061 0.0042

RWR 0.0034 0.0053 0.0048 0.0082 0.0092 0.0102 0.0083 0.0080 0.0081

MVCWalker 0.0020 0.0061 0.0087 0.0096 0.0084 0.0112 0.0101 0.0090 0.0072

TBRec 0.0260 0.0248 0.0234 0.0219 0.0190 0.0175 0.0159 0.0165 0.0149

CCRec 0.0192 0.0331 0.0367 0.0322 0.0319 0.0296 0.0245 0.0244 0.0202

BCR 0.0351 0.0439 0.0418 0.0398 0.0477 0.0448 0.0390 0.0320 0.0260

RWR-CR 0.0487+ 0.0729+ 0.0706+ 0.0647+ 0.0714+ 0.0848+ 0.0793+ 0.0833+ 0.0877+

MRCR 0.0612 0.0997 0.1077 0.1086 0.1131 0.1037 0.0783 0.0795 0.0793

DBCR 0.0390 0.0548 0.0639 0.0806 0.1109 0.1023 0.1053 0.1077 0.0984

DRACoR 0.0753* 0.1120* 0.1194* 0.1238* 0.1278* 0.1163* 0.1026* 0.1147* 0.1075*

‘*’ denotes statistical significance (α=0.05) over the best among state-of-the-art (‘+’)

The complete results of MRR and nDCG are depicted in Table 6.11 and Table 6.12.

It is evident from Table 6.11 that, proposed approach shows a consistent nDCG and MRR

over all other standard approaches on hep-th dataset. The proposed approach shows an

MRR of 0.457 indicates the effectiveness of correctly predicting the first collaborators

within top 2 recommendations. While evaluating the performance analysis in terms of

nDCG, DRACoR shows the highest nDCG of 0.299 at position 10 then slowly it decreases

and achieves an nDCG of 0.1509 at position 120 as shown in Table 6.11.

In the case of MRR evaluation on the DBLP dataset, DRACoR shows an MRR

of 0.410, which indicates the effectiveness of correctly predicting the first collaborators

within the top 2 recommendations. Similarly, for nDCG evaluation on DBLP, it is visible

that the proposed model DRACoR exhibits a significant improvement of nDCG over all

other state-of-the-art methods. It is clearly shown in Table 6.12 that the nDCG results of

DRACoR are consistent and show the highest nDCG of 0.279 at position 10 and display

the worst nDCG of 0.140 at position 120.

We also conduct pairwise t-tests on overall F1, MRR, and nDCG for both hep-
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Table 6.10: F1-score results of DRACoR and other approaches (DBLP)

Methods F1@10 F1@20 F1@30 F1@40 F1@50 F1@60 F1@80 F1@100 F1@120

CNRec 0.0021 0.0038 0.0057 0.0061 0.0074 0.0066 0.0061 0.0062 0.0040

RWR 0.0032 0.0051 0.0045 0.0079 0.0089 0.0100 0.0081 0.0077 0.0076

MVCWalker 0.0018 0.0058 0.0084 0.0093 0.0082 0.0109 0.0098 0.0087 0.0069

TBRec 0.0257 0.0246 0.0231 0.0215 0.0186 0.0172 0.0157 0.0161 0.0145

CCRec 0.0188 0.0326 0.0363 0.0318 0.0314 0.0291 0.0242 0.0239 0.0201

BCR 0.0348 0.0433 0.0413 0.0393 0.0472 0.0443 0.0384 0.0315 0.0256

RWR-CR 0.0352+ 0.0453+ 0.0610+ 0.0561+ 0.0744+ 0.0741+ 0.0665+ 0.0745+ 0.0804+

MRCR 0.0656 0.0891 0.0918 0.0969 0.0911 0.0822 0.0664 0.0629 0.0546

DBCR 0.0312 0.0455 0.0513 0.0736 0.1073 0.0991 0.0831 0.0704 0.0686

DRACoR 0.0744* 0.0966* 0.0990* 0.1046* 0.1090* 0.1031* 0.0878* 0.0795* 0.0894*

‘*’ denotes statistical significance (α=0.05) over the best among state-of-the-art (‘+’)

Table 6.11: MRR and nDCG results of DRACoR and other approaches (hep-th)

Methods MRR nDCG@10 nDCG@20 nDCG@30 nDCG@40 nDCG@60 nDCG@80 nDCG@100 nDCG@120

CNRec 0.1615 0.0055 0.0054 0.0049 0.0056 0.0049 0.0045 0.0041 0.0039

RWR 0.1798 0.0228 0.0219 0.0174 0.0156 0.0127 0.0119 0.0096 0.0082

MVCWalker 0.1974 0.0239 0.0248 0.0277 0.0269 0.0268 0.0258 0.0226 0.0197

TBRec 0.2208 0.0508 0.0487 0.0452 0.0406 0.0392 0.0332 0.0249 0.0231

CCRec 0.0679 0.0673 0.0548 0.0477 0.0429 0.0358 0.0341 0.0324 0.0319

BCR 0.1971 0.0775 0.0746 0.0668 0.0644 0.0697+ 0.0473 0.0597+ 0.0496+

RWR-CR 0.2247+ 0.1703+ 0.1687+ 0.1459+ 0.1002+ 0.0695 0.0639+ 0.0591 0.0492

MRCR 0.4292 0.2576 0.2663 0.2669 0.2108 0.1749 0.1386 0.1252 0.1196

DBCR 0.2038 0.1645 0.1856 0.1747 0.1793 0.1966 0.1686 0.1593 0.1478

DRACoR 0.4578* 0.2993* 0.2892* 0.2886* 0.2372* 0.2019* 0.1837* 0.1693* 0.1509*

‘*’ denotes statistical significance (α=0.05) over the best among state-of-the-art (‘+’)

th and DBLP datasets between DRACoR and the third-best performers at 5% level of

significance. This is because for most of the cases, the second best was either proposed

DBCR or MRCR models. The complete results are shown in Tables 6.9, 6.10, 6.11, and

6.12 respectively.

6.10.4 Study of the Proposed Approach

The main findings concerning our various SQs are summarized below.
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Table 6.12: MRR and nDCG results of DRACoR and other approaches (DBLP)

Methods MRR nDCG@10 nDCG@20 nDCG@30 nDCG@40 nDCG@60 nDCG@80 nDCG@100 nDCG@120

CNRec 0.1536 0.0042 0.0049 0.0052 0.0055 0.0047 0.0041 0.0039 0.0035

RWR 0.1589 0.0215 0.0219 0.0169 0.0149 0.0121 0.0115 0.0089 0.0079

MVCWalker 0.1878 0.0219 0.0235 0.0265 0.0251 0.0255 0.0247 0.0219 0.0189

TBRec 0.2338+ 0.0497 0.0469 0.0431 0.0389 0.0392 0.0319 0.0225 0.0218

CCRec 0.0643 0.0652 0.0519 0.0439 0.0407 0.0348 0.0331 0.0309 0.0298

BCR 0.1877 0.0691 0.0729 0.0615 0.0598 0.0654 0.0435 0.0516 0.0448

RWR-CR 0.1975 0.1694+ 0.1589+ 0.1424+ 0.0984+ 0.0583+ 0.0616+ 0.0536+ 0.0467+

MRCR 0.4005 0.2449 0.2573 0.2557 0.2012 0.1674 0.1211 0.1226 0.1098

DBCR 0.1985 0.1544 0.1769 0.1693 0.1671 0.1849 0.1537 0.1493 0.1368

DRACoR 0.4109* 0.2793* 0.2787* 0.2804* 0.2295* 0.1982* 0.1768* 0.1578* 0.1406*

‘*’ denotes statistical significance (α=0.05) over the best among state-of-the-art (‘+’)

SQ1: How Does Different Parameter Selection Affect the Performance of

DRACoR?

We have evaluated the impact of various experimental parameter settings, including vec-

tor dimension (Ai and Ti), adjustment parameter (m), damping constant (α), target re-

searcher’s academic level (nc), target researcher’s degree (nd), number of iteration, and

partitioning time point on DRACoR. The overall results are shown in Sec. 6.9.5.

SQ2: How Does DRACoR Handle the Cold-start Issue for the New Re-

searcher?

We conducted an extensive experiment to prove the efficacy of the proposed model DRA-

CoR against new collaborators. Our model recommends collaborators, including new and

old irrespective of target researchers’ degree and academic level. To validate the effective-

ness of DRACoR, we experimented with varying academic level (nc) of a target researcher

as explained in Sec. 6.9.5. We also evaluated with varying target researcher’s degree (nd)

as described in Sec. 6.9.5.

SQ3: How Effective is DRACoR in Comparison to Other State-Of-The-Art

methods ?

The complete results of F1 are depicted in Table 6.9 and Table 6.10. It is evident that the

proposed approach DRACoR shows a consistent F1 over all other standard approaches
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on the hep-th dataset and DBLP dataset. The complete results of MRR and nDCG are

depicted in Table 6.11 and Table 6.12. It is evident that, proposed approach shows a

consistent nDCG and MRR over all other standard approaches on hep-th dataset and

DBLP dataset.

6.10.5 Some Insights

The overall performance results obtained showcase the efficacy of the proposed DRACoR.

The good overall precision, recall, F1, MRR, and nDCG verify that the models can

effectively recommend the relevant collaborators. However, there are a few limitations to

our work.

(i) As we have considered only top 100 topics for each researcher. As a result, it may

fail to recommend relevant collaborators where a target researcher is associated with

multiple research areas.

(ii) We do not consider the affiliation data, due to which in few cases both MRCR

model and DBCR models exhibit the worst performance in a few positions over

state-of-the-art methods.

(iii) We have considered multiple factors to enhance the link importance among re-

searchers but the individual MRCR or DBCR model is not stable throughout the

recommendation. We also notice that the model MRCR can give better results to

position 60. But afterward, it exhibits the worst performance over other standard

methods.

(iv) As we adopted RWR model to recommend collaborators in MRCR Model which

can jump with a probability of α, and restart probability of 1-α. We have set the

value of α as 0.8 due to which after recommending 60 collaborators, the chances of

getting relevant researchers are quite rare. The chances of getting other researchers

(researcher with other research areas) will be more, and this might be the reason

for obtaining the worst results after position 60 in MRCR model.

(v) Although we have used deep learning in DBCR model to capture hidden relation-

ships mostly, the model performs worst till position 30, and afterward, it displays

effective results over state-of-the-art methods.
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6.11 Conclusions

In this work, we focus on recommending MICs (MPCs+MVCs), which can help researchers

benefit more from collaboration based on the big scholarly data. We mainly focused on

recommending potential collaborators based on similar research interests and social ac-

cessibility. We propose a multi-level fusion-based academic collaborator recommender

system DRACoR (Deep learning and Random walk based Academic Collaborator Rec-

ommender). Mainly, it fuses Meta-path aggregated Random walk based Collaborator

Recommendation (MRCR) that finds out MPCs with Deep learning-Boosted Collabora-

tor Recommendation (DBCR) models that find MVCs so that their combination (MICs)

can be recommended.

The proposed model DRACoR works irrespective of researchers’ past publication

records and is entirely biased towards the current works. Isolated researchers, researchers

with less number of co-authors, or researchers with fewer publication records are also

getting an equal chance of inclusion in the final recommendation. Individually, we have

considered a few factors, namely meta-path features, dynamic interest, research content,

scholarly influence-aware features, and hidden relationship to determine the similarity

between two researchers.

We conducted extensive experiments on a subset of hep-th and DBLP dataset to

evaluate the performance of DRACoR against various state-of-the-art methods. The

proposed system DRACoR outperforms other state-of-the-art models when compared in

terms of precision, recall, F1, MRR, and nDCG, respectively. The proposed model reveals

that the combination of topic distribution and co-authorship networks based models can

significantly improve the effectiveness of the academic collaborations.

Nonetheless, there is still room for future studies in this direction. Besides, there can

be many latent reasons behind the collaboration of two researchers. They might have met

at a meeting or are from the same institution. Additionally, many other features such

as researcher age, education, institution, acknowledgment details, the personal profile

should be explored to improve upon our model. Collaboration can also be for cross-

domain research. The relationship among co-authors of a paper is far more complicated

than what we have imagined.
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