
Chapter 5

DeepRec: A Deep Learning-based

Journal Recommender System

“The essence of trust building is to emphasize the similarities between you and

the customer.”

-Thomas watson (1874-1956)

5.1 Introduction

We employed two kinds of analysis: citation analysis and contextual similarity analysis

in both DISCOVER, and CNAVER. These processes require good amount both space

and time to store and organize shortlisted papers properly (by storing title, abstract,

and citations relationship among papers). CNAVER is also sensitive to the structure

of bibliographic citation network and may result in some irrelevant recommendations.

Both DISCOVER and CNAVER approaches addresses cold start issues, diversity, and

scalability issues to some great extent. However, relevance (accuracy in recommending

relevant venues), stability, and sparsity issues are not adequately addressed.

Recently due to the ability to discover intricate structure and deep semantics in

high dimensional data, deep-learning approaches have succeeded in many areas of recom-

mender system such as cross-domain recommendation [191], web recommendation [192],

query recommendation [193], tag recommendation [194], e-learning recommendation [195],

recommender system for medical diagnosis [196], recommender system for researcher [197].

Besides, due to multiple processing layers, deep learning models can able to learn multiple-
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abstract representations of data to capture both syntactic and semantic information [135].

One of the primary usages of deep learning techniques in the recommender system is to

enhance the accuracy of the overall recommendations. Since deep learning techniques are

mainly used to extract hidden features, researchers utilize them to obtain latent factors.

Therefore, we propose DeepRec: a stacked generalized ensemble learning-based schol-

arly venue recommender system to address this challenging task. Our ensemble learning-

based model is elaborately designed based on a Convolution Neural Network (CNN), and

Long Short-Term Memory (LSTM). CNN is mainly adopted to extract local structure of

the data, while LSTM can capture the temporal correlation and dependencies in the text

snippet.

To enhance the recommendation quality in terms of relevance we extract latent fea-

tures from abstract and title with CNN and LSTM model and combined them into the

proposed model DeepRec. To address data sparsity issue, we transformed high dimen-

sional and sparse embedding matrix into a lower-dimensional and dense set using CNN

based deep learning technique. CNN is specifically designed to process temporal, latent

contextual aspects of high dimensional and sparse input. The stacked generalized ensem-

ble learning model also helps to maintain a stability by capturing the relevance of papers.

Here for contextual similarity, both abstract and title are considered.

5.2 Problem Descriptions

Definition 9 Modular Structure of Research Paper. Generally, a paper pm is divided into

various modules such as Abstract, Title, and so on. Let R1 denotes the abstract and R2

denotes the title of the source paper pm. The module R1 is consists of a few sentences,

and each sentence is composed of few words. Similarly, a R2 is composed of few words.

5.3 Functional Architecture of DeepRec

We present a systematized framework of the proposed ensemble model DeepRec alongside

its operational strategies. We first describe the functional architecture of our model

and then introduce various layers to provide a detail description. DeepRec is comprised

of majorly three blocks, namely Data Preprocessing (Block-1), Computational Learning
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Figure 5.1: Functional architecture of DeepRec

(Block-2), and Ensemble Learning (Block-3) as depicted in Fig. 5.1. These three primary

blocks are portrayed as given underneath:

A. Data Preprocessing (Block-1): This step aims to structure, arrange, and orga-

nize the dataset suitable for further processing. This layer is also called the feature

extraction layer as it is mainly introduced to extract abstract and title as relevant

features for further use.

B. Computational Learning (Block-2): This block is introduced to apply a deep

learning model to identify relevant venues for a given seed paper. This layer com-

prises of two distinct models, for example:

(i) Convolution Neural Network (CNN) model: The CNN model consists

of various components that can transform the input volume into an output
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volume, namely embedding layer, convolution layers, dense layer, and a soft-

max layer. These layers are stacked to form a deep convolution neural network

(CNN) and can be utilized multiple times to provide optimum recommenda-

tions.

(ii) Long Short-Term Memory (LSTM) model: The LSTM network has the

capability to resolve the issues of long time dependencies and gradient vanish-

ing. It makes use of various gates to manipulate the data flow in the recurrent

neural unit. Gates are layers that are carried out multiplicatively and there-

fore, can either preserve the value from the gated layer if the gates are 1 or 0

this value if the gate is 0. It essentially makes use of three varieties of gates,

namely forget gate, input gate, and output gate.

C. Ensemble Learning (Block-3): The stacking ensemble model takes the output

of both the sub-models such as CNN and LSTM as inputs and attempts to learn

how to combine inputs best to get better output results. The concept of stacking is

to examine the individual learners, which includes CNN and LSTM, and integrate

them with the aid of training a meta-version to output predictions primarily based on

multiple predictions returned via those weak models. The final ranking of scholarly

venues is done based on the trained results of stacked generalization to leverage the

advantages of both the models.

5.3.1 Data Preprocessing (Block-1)

We collected the data from DataBase systems and Logic Programming(DBLP). Dataset

originally contained 2,236,968 research papers from 4,565 Journals and Conferences after

removing rows containing missing values. Dataset contains ’abstract’, ’authors’, ’id’,

’references’, ’title’, ’venue’, and ’year’ columns. We used ’abstract’, ’title’, and ’venue’

for our experiments. Dataset was filtered by removing venues having less than 5 number

papers. The final dataset was left with 2,234,771 paper and 3,216 venues.

Text (titles+abstracts) were first concatenated and then cleaned. Cleaning of text

involved converting this text to lower case, removing stopwords, punctuation, and lem-

matizing the verbs in the text. Once the text has cleaned, this text was converted to

sequence by Keras-Tokenizer setting maximum words to 5,000. Then this sequence was
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padded to a maximum length of 300. Output (venue) was processed by first encoding the

venue names to labels by sklearn-LabelEncoder, and then these labels were converted to

one-hot vectors by sklearn-OneHotEncoder to feed into algorithm.

5.3.2 Computational Learning (Block-2)

This block is introduced to apply a deep learning model to identify appropriate venues for

a given seed paper. In this step, both CNN model and LSTM model are used individually

for the same given input, and results are stored in order to prepare the final lists of venues.

We have discussed the CNN model, followed by the LSTM model.

Architecture of CNN Model

Fig. 5.2 represents the functional architecture of the CNN model. CNN model consists

of various components that can reduce the high dimensional input data into a lower-

dimensional output data via Embedding layer, Feature extraction layer, and Dense layer.

These layers are stacked to form a deep CNN and can be utilized multiple times to provide

optimum recommendations. In our model, there are three convolution and max-pooling

layers, one flattened layer, two hidden layers, and one softmax layer for classification.

The reason behind adopting such CNN model in DeepRec lies in the state-of-the-art

literature [79].

Embedding Operation Layer (Layer 1)

A few of the major problems in traditional word representations, such as one-hot vectors,

are mainly losing word order, and oversize of dimensionality. To resolve the issues men-

tioned above, in this work, we adopted a distributed representation of word embedding.

The inputs of our model are the word sequences of the abstract text in Atext and the title

text in Ttext. The texts Atext contains n sentences, and each sentence is composed of sev-

eral words. Similarly, the texts Ttext is written of several words. We trained our dataset

with the Keras word embeddings technique, which can represent each word wi ∈ Rd as a

fixed-size vector, where d is the dimension of the word vector.

In this work, we have considered the size of the dimension d as 300. Due to different

sizes of abstract and title, we set L as the maximum number of words appear in both Atext
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and Ttext. Let S denotes the original representation of length L (padded where necessary)

appear in the texts Atext, and the texts of Ttext of a given paper is represented as

S1:L = w1 ⊕ w2 ⊕ · · · ⊕ wL, S ∈ RL∗d, (5.1)

Where ⊕ is the concatenation operator, L as the maximum number of words, which is a

scalar, and S1:i+j refers to the vector of the concatenation of the words w1, w2 · · ·wi+j.

Word vectors are initialized by zeros if they are not in the pre-trained vocabulary.

We obtain the representation of an abstract is matrix S with a dimensionality of L ∗ d.

Thus we use the representation of an abstract matrix S to represent the text (words)

appear in both Atext and Ttext, respectively.

Feature Extraction Layer (Layer 2)

After getting the word embedding vectors, we need to apply the convolution layer to get

high-level representations of the input texts in S. In this work, the convolutional layer is

used to capture the sequence information and to reduce the dimensions of the input data.

To extract more abstract and semantic features, we adopted CNN in this work.

The CNN model consists of various operations, namely convolution operation, non-

linearity, and pooling. These layers are stacked to form a deep convolution neural network

(CNN) and can be utilized to get a high-level representation of the input texts.

(i) Convolution Operation: This layer is introduced to get high-level representations

of the sentences in the input text. It is mainly used to extract features from the

input. Feature maps are obtained by applying convolution filters with a set of

mathematical operations.

(ii) Pooling Operation: This layer is also called the feature extraction layer and

mainly introduced to extract word-wise relevant features by applying pooling op-

eration for further use. Pooling mainly reduces the dimensionality of the feature

maps to decrease processing time.

Convolution Operation

The convolutional layer coupled with max-pooling extracts rich feature representations

from each convolved word window of length l (i.e., 3 for the first convolutional layer) over
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the text and performs a convolution within each sliding window and the output of the

k-th sliding window is computed as

fk = ReLU(Wc.Wk−l+1:k + bc) (5.2)

Where ReLU is the non-linear activation function, Wk−l+1:k denotes the concatenation of

l word embeddings within the k-th window in word sequences in S (text appear in both

Atext and Ttext), Wc is the convolution matrix and bc ∈ R is the bias.

In this work, we adopted ReLU (Rectified Linear Unit) as a nonlinear activation

function because it can improve the learning dynamics of the networks and significantly

reduce the number of iterations required for convergence in deep networks.

We use multiple filters, and for the q-th filter, it is applied to each possible window

of words in S {W1:l,W2:l+1, · · · ,WL−l+1:L} to produce a feature map

fq = [fq1, fq2, · · · , fq,L−l+1] (5.3)

with fq ∈ RL−l+1.

There can be m different number of filters which can be used to extract multiple

features maps f1, f2, · · · fm. We get new feature representations F ∈ RL−l+1∗m as the

column concatenation of feature maps F=[f1, f2, · · · fm]. The i-th row f (i) of F is the new

feature representation generated at position i.

So, the result of first convolution operation on S will be

f (1) = [f
(1)
1 , f

(1)
2 , · · · , f (1)

m ] (5.4)

As shown in Fig. 5.2, after applying the window size of 3 in the first convolutional

layer, we obtain 256 number of feature vectors (convolutional kernel) each having a di-

mension 298 ∗ 1. Similarly, after the second convolution, the output dimension will be

146 ∗ 1 having 128 number of features map.

Pooling Operation (Feature Maps)

The objective of the pooling operation is to successively reduce the spatial size of the

representation to extract the key-features and reduce the number of dimensions in the

network. We need to apply a max-pooling operation to get the most salient feature

in every two-unit window for each f
(1)
q of the input texts of S. j1

q is the result of the

max-pooling operation.
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j(1)
q = [j

(1)
q1 , j

(1)
q2 , · · · , j

(1)
q,(L−l+1)/2] (5.5)

Where q is the q-th filter of the convolution operation.

j
(1)
qi = max{f (1)

q,2i−1, f
(1)
q,2i} (5.6)

Similarly, the second and third convolution and pooling layers will be executed as

the first layer. Generally, the convolutional layer is an effective way for dimensionality

reduction. As shown in Fig. 5.2, in the convolutional layer, 256 filters with window size 3

move on the textual representation to extract the features. As the filters move on, many

sequences that capture the syntactic and semantic features are generated.

In this work, we have considered the dimension of input data is 300 ∗ 300, and

the dimension of the first layer output data is 149 ∗ 1. Similarly, the dimension of the

third layer is 34 ∗ 1. Hence the convolutional layer is an effective way for dimensionality

reduction.

Classification Layer (Layer 3)

After getting the pooling results of third layer, we need to apply a flattening step to make

use of fully connected layers after getting the paper-level representation. As the name

flattened implies, we need to flatten our pooled feature map obtained after third pooling

into a column vector. The primary reason of emplying such layer is to reshapes the pooled

feature map to one single column vector to apply artificial neural network. After that,

the dense layer is used to obtain new high-level representations of sentences in the review

text by incorporating a hidden layer with a drop out rate to map the input vector to the

desired output vector.

Given the training sample R1 and R2, where T is the number of possible labels and

the estimated probabilities Sj ∈ [0, 1] for each label j ∈ [1, 2, · · · , T], the softmax is

defined as:

Sj =
ezj∑T
k=1 e

z
k

(5.7)

Note that in the training dataset, we only have the gold-standard original venue of

each source papers. Therefore, we use the categorical cross-entropy loss to minimize the
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prediction error between the predicted venues and the gold-standard original venues:

L(θ) =
T∑
j=1

YjlogSj (5.8)

Where Y is the gold-standard output. We have adopted a one-hot encoding of size L,

where all elements except one are 0, and one element is 1. This element marks the correct

class for the data being classified. We use Adam with minibatch to learn the model

parameter θ.

Architecture of LSTM Model

The functional architecture of the LSTM model is shown in Fig. 5.3. LSTM model

consists of various components that can basically capture the sequential information and

also reduce the high dimensional input data into a lower-dimensional output data via

Word Embedding Layer, Feature Extraction Layer, and a Classification Layer.

Word Embedding Layer (Layer 1)

We followed a similar word embedding technique, as described in Sec. 5.3.2. We adopted

a distributed representation of word embedding. The inputs of our model are the word

sequences of the abstract text in Atext and the title text in Ttext. The texts Atext contains

n sentences, and each sentence is composed of several words. Similarly, the texts Ttext

is written of several words. We trained our dataset with the Keras word embeddings

technique, which can represent each word wi ∈ Rd as a fixed-size vector, where d is the

dimension of the word vector.

Feature Extraction Layer (Layer 2)

Training conventional RNNs with gradient descent based backpropagation is difficult due

to vanishing gradient and exploding gradients. To address this problem Long Short Term

Memory (LSTM) [136] has been designed. The LSTM contains special units called mem-

ory blocks in the recurrent hidden layer [137]. The memory blocks contain memory cells

with self-connections storing the temporal state of the network in addition to special mul-

tiplicative units called gates to control the flow of information, as displayed in Fig. 2.3

(Sec. 2.4.3).

159



Classification Layer (Layer 3)

After getting the final representation of the LSTM cell (hn), we need to apply the dense

layer is used to obtain new high-level representations of words in the input matrix S by

incorporating a hidden layer with drop out rate to map the input vector to the desired

output vector.

Algorithm 7: Stacking Ensemble Algorithm

1: Input: training data D= {xi, yi}mi=1

2: Output: Ensemble classifier H

3: Step 1: Learn base level classifiers

4: for t=1 to T do:

5: learn ht based on dataset D

6: end for

7: Step 2: Construct new dataset of predictions

8: for i=1 to m do:

9: Dh= {x′i, yi}, where x′i = {h1(xi), h2(xi), ..., hT (xi)}

10: end for

11: Step 2: Learn a meta classifier

12: learn H based on Dh

13: return H

Given the training sample R1 and R2, where T is the number of possible labels and

the estimated probabilities Sj ∈ [0, 1] for each label j ∈ [1, 2, · · · , T], the softmax is

defined as:

Sj =
ezj∑T
k=1 e

z
k

(5.9)

Note that in the training dataset, we only have the gold-standard original venue of

each source papers. Therefore, we use the categorical cross-entropy loss to minimize the

prediction error between the predicted venues and the gold-standard original venues:

L(θ) =
T∑
j=1

YjlogSj (5.10)

Where Y is the gold-standard output. We have adopted one-hot encoding of size L, where

all elements except one are 0, and one element is 1. This element marks the correct class

for the data being classified. We use Adam with minibatch to learn the model parameter

θ.
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5.3.3 Ensemble Learning (Block-3)

Ensemble methods are popular research directions in machine learning and pattern recog-

nition [198]. The primary objective of ensemble methods is to combine decisions from a

set of weak learning algorithms in order to enhance the accuracy and the robustness of

the overall results. The generalization ability of ensemble methods is better compared to

single base learners. There are statistical, computational, and representational reasons to

build multiple classifier systems [199].

A stacking ensemble model is used for training RNN and CNN based architecture

together in our model. In stacking, the algorithm takes the output of sub-models as inputs

and attempts to learn how to combine data best to get better output results. The idea

of stacking is to learn several weak learners and combine them by training a meta-model

to output predictions based on multiple predictions returned by these weak models [200].

The complete algorithm is depicted in Algo. 7.

5.4 Experiments

First, we outline the experimental dataset, evaluation strategy, and evaluation metrics

that were used for the assessment of the proposed system. Then the experimental set-

ting, parameter tuning, and baseline methods are explained in further sub-sections. All

experiments were conducted on a 64-bit and 2.4GHz Intel Core i5, 32-GB memory sys-

tem. All the programs are implemented with python. We implement our model based on

Tensorflow and use a TITAN XP graphic card for learning.

5.4.1 Dataset Description

We use real-world dataset DBLP-citation-network V10 1 (Sec. 2.7.2) to demonstrate the

effectiveness of our proposed method. The tenth version contains 3,079,007 papers and

25,166,994 citations. Each paper is associated with abstract, authors, title, publishing

year, venue, and references list. After removing duplicate papers, papers with missing

fields, inconsistent entries in the database, journals having more than 5 numbers of papers

etc., we are left with 2,234,771 papers. We also ignore non-textual content from the

1https://aminer.org/citation
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abstracts of the papers. We have divided the dataset into three parts, including 81%

of preprocessed dataset as the training set, 9% of as validation set, and the rest 10%

considered as test set, respectively.

5.4.2 Evaluation Strategy

We adopt two kinds of evaluations, such as Coarse-level or offline evaluation and Fine-

level or online evaluation, to measure the performances of DISCOVER against other

state-of-the-art methods (Sec. 2.5).

5.4.3 Evaluation Metrics

We employed various metrics such as precision@k, nDCG@k, accuracy, MRR, and Average

venue-quality (Ave-quality), to evaluate the performance of DeepRec (see Sec. 2.6).

5.4.4 Experimental Setting

In this section, we present the experimental dataset for offline and online evaluations.

Then the procedure of online assessment is described in further sub-section. Due to the

vast amount of data, the number of labels also increases. Due to which there is a difficulty

to be trained and learned the proposed model.

In order to resolve these above-mentioned issues along with other operational con-

straints (resource and time), the experiment is performed in two stages to demonstrates

the efficacy of DeepRec.

(i) Preparation of dataset for offline evaluation

(ii) Preparation of dataset for online evaluation

Preparation of Dataset for Offine Evaluation

Initially, we identified only those venues whose number of papers were less than 500 and

removed such venues having a number of papers more than 500. Dataset contains total

of 342, 258 research papers after preprocessing and is split into three parts training set=

81%, validation set=9%, and test set=10%. The complete statistics of the overall dataset

is depicted in Table 5.1.
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Table 5.1: Statistics of offline dataset

Types Training Dataset Validation Dataset Testing Dataset

No. of papers 277,229 30,803 34,226

No. of venues 2,208 2,208 2,208

Seed papers are chosen from the testing dataset, keeping in mind the cold-start issues

for new venues and new researchers. We consider 3 categories of venues and 3 categories

of researchers based on venue count (vc) (number of papers published at a given venue)

and publication count (pc) (the number of publications of a researcher) [31, 74] on the

following six categories.

(i) Category 1 : 5 ≤ vc < 20

(ii) Category 2 : 20 ≤ vc < 50

(iii) Category 3 : 50 ≤ vc

(iv) Category 4 : 5 ≤ pc < 20

(v) Category 5 : 20 ≤ pc < 50

(vi) Category 6 : 50 ≤ pc

It is ensured that each category is well represented in the seed papers.

Preparation of Dataset for Onine Evaluation

Initially we remove such venues having less than 500 papers to prepare the dataset for

online evaluation. The final dataset was left with 1, 892, 513 paper and 1, 008 venues. We

have divided the dataset into three parts including 81% of preprocessed dataset as the

training set, 9% of as validation set, and the rest 10% considered as test set respectively.

The venue-wise papers statistics and complete statistics of the overall dataset are depicted

in Table 5.2 and Table 5.3 respectively. Due to operational constraints (difficult to incor-

porate user study for all testing papers), only 20 sub-domains of computer science were

selected as a testing dataset in our experiment. A total of 160 seed papers (8 from each

sub-domains) are chosen manually from 20 sub-domains: information retrieval (IR), image

processing (IP), security (SC), wireless sensor network (WSN), machine learning (ML),
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Table 5.2: Statistics of online evaluation dataset

Range of papers Number of papers Number of journals

5 ≤ X ≤ 100 240,667 1,009

100 ≤ X ≤ 400 229,547 1,027

400 ≤ X ≤ 2000 825,940 934

2000 ≤ X ≤ 10,000 915,876 232

X ≥ 10,000 22,741 14

Max. class size 121,328 1

Min. class size 5 67

Avg. class size 694

All 22,34,771 3,216

Table 5.3: Statistics of online dataset

Types Training Dataset Validation Dataset Testing Dataset

No. of papers 1,532,935 170,327 189,251

No. of venues 1,008 1,008 1,008

software engineering (SE), computer vision (CV), artificial intelligence (AI), data mining

(DM), theory of computation (TC), databases (DB), human-computer interaction (HCI),

algorithms and theory (AT), natural language processing (NLP), parallel and distributed

systems (PDS), worldwide web (WWW), web semantics (WS), computer architecture

(CO), compiler design (CD) and multimedia (MM).

Procedure of Online Evaluation

For this evaluation, we did not have the ready annotation, but we need one. The an-

notation or relevance assessment is collected from the volunteers through crowdsourcing

in the best effort basis. There are 85 researchers with expertise in the mentioned sub-

domains are provided with input and output of our recommender system where for each

paper, 15 venues are recommended. Out of 85 researchers, 23 evaluated 3 papers each,

29 researchers evaluated 2 each, and the rest 33 were evaluated by 33 researchers.

All the experts were identified from academia with a minimum of 3 years of research

experience. Most were having a Ph.D. except few research students and research assistants

who were pursuing Ph.D. with bachelor’s or masters’ degrees in science or technology.

The experts or researchers were so chosen that their active areas of research perfectly
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match with the topics of seed papers. Among 85 researchers, there were 19 professors, 18

associate professors, 26 assistant professors, 14 senior research students, and the remaining

8 were research assistants.

All experts were from a reputed institution like Indian Institute of Technology

Kharagpur, Indian Institute of Technology Roorkee, Indian Institute of Technology Kan-

pur, Indian Institute of Technology (BHU) Varanasi, Central University Hyderabad, Ma-

nipal University, and Banaras Hindu University (BHU). The age range of all professors are

in the range of [48-55], age range of associate professors are in between [43-47], assistant

professors are having an age of [36-41], senior research students are in the age range of

[28-31], and remaining research assistants are having an age range of [29-33]. The overall

gender distribution of male and female experts were 53 and 32, respectively.

The experts check the titles, abstracts, authors, year of publication, and recom-

mended venues of the papers. An expert assigns an appropriate relevance value (r) to

each recommended venue as she deems the quality of the match between the scope of the

recommended venue and the topic of the seed paper as below.

Relevance (r) =


2 perfectly matching

1 partial matching

0 otherwise

(5.11)

However, as precision is defined for binary relevance only, during precision score

computation, relevance grade 2 is only considered relevant, and both relevance grade 1

and 0 non-relevant.

To comprehensively evaluate our proposed method and more specifically, to address

the broad research questions (RQs) discussed in Sec. 1.5, we prefer to examine the fol-

lowing sub-queries (SQs):

SQ1: How effective is DeepRec in comparison to other state-of-the-art methods?

SQ2: How is the quality of venues recommended by DeepRec as compared to state-of-the-

art methods?

SQ3: How does DeepRec handle cold-start issues and other issues like data sparsity, di-

versity, and stability?
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5.4.5 Parameter Tuning and Optimization

In this section, we outline various experimental parameter settings of DeepRec. DeepRec

has a few essential parameters during its process pipeline as follows.

(i) Parameter tuning in CNN

(ii) Parameter tuning in LSTM

(iii) Parameter tuning in DeepRec

Parameter Tuning in CNN

The same dataset (DBLP) was used to train CNN as in the LSTM model. Dataset was

split into three parts training set= 81%, validation set= 9%, and test set=10%. We

trained data using CNN model with three convolution layers having filter sizes of (3,4,

and 5), respectively, three max-pooling layers with the filter size of 2 and stride of 2, dense

layers of size 4,096 and 2,048 with the Dropout rate of 0.2. The dense layer is connected

to the softmax layer of size 1,008, i.e., the number of total venues.

Figure 5.4: Statistics of word count of abstracts

.

The model is trained on categorical cross-entropy loss function, Adam optimizer, and

metrics as accuracy, top-3, top-5, top-10, and top-15 accuracy. The title and abstract of
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paper are concatenated as (text) to pass through the embedding layer of Keras. Size of

text is fixed at L=300 (95% of texts have length below 300), each word is embedded to

d=300 length vectors. Text having a length less than 300 words are padded, and text has

more than 300 words are truncated. We have taken the maximum size of the abstract as

300 because it is the maximum number of the words that most of the abstracts contain,

as depicted in Fig. 5.4.

Parameter Tuning in LSTM

Dataset contains total of 1,892,513 research papers after preprocessing and is split into

three parts training set= 81%, validation set=9%, and test set=10%. For the Recurrent

Neural Network based model, we have used a single LSTM layer and four dense layers with

Dropout (dropout rate = 0.3) and BatchNormalization. The final layer is the softmax

layer having 1,008 labels representing a total number of Journals for training.

The model is trained on categorical cross-entropy loss function, Adam optimizer,

and metrics as accuracy, top-3-accuracy, top-5-accuracy, top-10-accuracy, and top-15-

accuracy. The title and abstract of paper are concatenated as (text) to pass through the

embedding layer of Keras. Size of text is fixed at L=300 (95% of texts have length below

300), each word is embedded to d=300 length vectors. Text having a length less than 300

words are padded, and text has more than 300 words are truncated.

Parameter Tuning in DeepRec

In our experiment, we adopted top-N accuracy to measure overall classification perfor-

mance, which is defined as the expected label for top N predicted classes where N={1, 3,

5, 10, 15}. DBLP dataset contains a total of 1, 892, 513 research papers after preprocess-

ing and is split into three parts training set= 81%, validation set=9%, and test set=10%.

For the training Stacked Ensemble Model, we combined CNN and LSTM architectures,

which are trained separately. Outputs from both the models are concatenated together

and passed through a Dense layer of size 2, 048 with a Dropout rate of 0.2; this output is

then batch normalized and passed to a softmax layer.

The model is trained with a categorical cross-entropy loss function and Adam Opti-

mizer. Title and abstract of paper are concatenated as (text) and passed to embedding

layers of CNN and LSTM. The model is trained for 10 epochs, and it is validated after
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every epoch with a validation set of 10% of training data. A batch size of 1, 024 was used

during training. Early stopping with a delta of 0.00001 and patience of 2 was applied on

validation loss for a call back during training. Once the model is trained, we evaluate our

model on test data.

5.4.6 Baseline Methods

To measure the effectiveness of DeepRec we, compare our results with various state-of-the-

art methods such as FB, CF, CN, CBF, RWR, PRS, PVR, PRS, and PAVE (Sec. 2.8.1).

In addition to the above state-of-the-art methods, we also validated our proposed

model DeepRec against a few more deep learnig based methods, including CNN, LSTM,

Bi-LSTM, CNN+Bi-LSTM, RNN+CNN. Among these discussed methods CF and PVR

are based on collaborative filtering approach, PAVE and RWR are based on random walk

with restart algorithm exploiting co-authorship networks, CN and FB are based on co-

authorship network, CBF, PRS are based on content-based filtering method, and LSTM,

CNN, RNN, Bi-LSTM are based on deep learning methods.

5.5 Results and Discussion

In this section, the performance of DeepRec against the existing state-of-the-art methods

is reported. For clarity and easy understanding, we provide the results and discussion in

two steps (offline and online) as given below. During the assessment, best results and the

Table 5.4: Accuracy and MRR results for CNN and other approaches

Approach Acc@3 Acc@6 Acc@9 Acc@12 Acc@15 MRR

FB 0.0396 0.0784 0.1005 0.1397 0.1685 0.0279

CF 0.0743 0.0994 0.1317 0.1596 0.2016 0.0316

CN 0.0957 0.1256 0.1648 0.2006 0.2325 0.0412

CBF 0.1362 0.1673 0.1988 0.2005 0.2648 0.0414

RWR 0.1718 0.2005 0.2386 0.2719 0.2867 0.0579

PVR 0.1894 0.2037 0.2124 0.2756 0.2948 0.0671

PRS 0.2267 0.2652 0.2884 0.3659+ 0.4732 0.1059+

PAVE 0.2274+ 0.2695+ 0.2997+ 0.3244 0.3991 0.0878

CNN 0.2593 0.3007 0.3906 0.4275 0.4529+ 0.1287

Best results are highlighted in bold, and 2ND best are marked by (‘+’)

second-best performer are marked by the ‘bolf-face’ and ‘+’ symbol in each position.
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5.5.1 Offline Evaluation of CNN Model

The complete results of accuracy and MRR are depicted in Table 5.4 at position 3, 6,

9, 12, and 15 respectively. We can see that the CNN model shows a consistent accuracy

over all other state-of-the-art methods. More than 25% time (Acc@3=0.2593), it could

predict the original venue of the seed paper within top 3 recommendations. Even if the

original venues of seed papers are having less number of papers (less than 500 papers),

but still more than 45% time (Acc@15=0.4529), CNN model can predict it within top

15 recommendations. As far as accuracy concerns, PSR performs the second-best and

best (Acc@15=0.4732) at positions 15 and 12 respectively. FB method exhibits the worst

performance with an accuracy of 0.1685 while recommending 15 recommendation.

Table 5.5: Precision results for CNN and other approaches

Methods P@3 P@6 P@9 P@12 P@15

FB 0.6052 0.5899 0.5753 0.5522 0.5798

CF 0.6125 0.6354 0.6357 0.6466 0.6354

CN 0.6801 0.6681 0.6715 0.6690 0.6592

CBF 0.7125 0.7121 0.7116 0.7016 0.7009

RWR 0.7460 0.7226 0.7159 0.7179 0.7208

PVR 0.8159 0.7848 0.7529 0.7618 0.7601

PRS 0.8079 0.8380+ 0.7654 0.7609 0.7639

PAVE 0.8219+ 0.8049 0.8395+ 0.8393 0.8412

CNN 0.8574 0.8579 0.8564 0.8271+ 0.8376+

Best results are highlighted in bold, and 2ND best are marked by (‘+’)

During the evaluation of MRR results, we can see that the CNN model performs

excellent behavior and shows a MRR result of 0.1287. The proposed approach could

predict the original venue at early recommendations as compared to all other methods.

In the case of MRR also, the least performance of MRR 0.0279 is shown by the FB method.

As far as MRR concerns, PSR performs the second-best among all other state-of-the-art

methods.

5.5.2 Online Evaluation of CNN Model

In this section, we examine the performance of the CNN model against other state-of-

the-art methods. The evaluation metrics, including precision, nDCG, and average venue

quality (H5-Index) are taken into consideration during this evaluation.

169



Table 5.6: nDCG results for CNN and other approaches

Methods nDCG@3 nDCG@6 nDCG@9 nDCG@12 nDCG@15

FB 0.6409 0.6229 0.6238 0.6244 0.6281

CF 0.6678 0.6767 0.6782 0.6800 0.6786

CN 0.6944 0.7028 0.6985 0.7009 0.7014

CBF 0.7562 0.7402 0.7408 0.7478 0.7530

RWR 0.7499 0.7494 0.7437 0.7502 0.7562

PVR 0.7847 0.7908 0.7867 0.7872 0.7778

PRS 0.7794 0.7830 0.7936 0.7849 0.7940

PAVE 0.8356+ 0.8288+ 0.8298+ 0.8446+ 0.8368+

CNN 0.8689 0.8657 0.8686 0.8581 0.8571

Best results are highlighted in bold, and 2ND best are marked by (‘+’)

Precision@k

The results evaluation of precision@k as shown in Table 5.5 indicates the significance of

the CNN model in terms of precision@k over all other standard approaches. It is seen that

the CNN model achieves a precision of 0.8768 while recommending the initial 8 venues

as shown in Fig. 5.5a. But later on, the precision keeps on decreasing and reaching the

value of 0.8281 at position 14.
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Figure 5.5: (a) Precision analysis for CNN (b) nDCG analysis for CNN

The proposed CNN model exhibits the highest precision of 0.8376 after recommend-

ing 15 recommendations. The least value of precision 0.8271 occurs at a position 12.

PAVE method shows a higher performance than the CNN model at position 12, 13, 14,
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and 15, respectively. The method PSR shows the second-best performance at position 6

with a precision of 0.8380. The worst performance with a precision of 0.5798 at position

15 is shown by the FB method among all other standard methods.

nDCG@k

The overall nDCG@k of all methods are shown in Table 5.6. During nDCG@k evalu-

ation, it is observable that the proposed CNN model shows a significant improvement

of nDCG over all other state-of-the-art methods. The CNN model performs an upward

trend and reaches the highest nDCG of 0.8751 at position 5, and afterward again, it

shows a downward trend and finally shows a nDCG of 0.8571 at position 15 as depicted

in Fig. 5.5b.

It is seen that PAVE method shows the second-best performance than other state-

of-the-art methods. The worst performance with a nDCG of 0.6281 is shown by the FB

method after recommending 15 venues among all other standard methods.

Average venue Quality (H5-Index) Analysis

We considered the dataset prepared for online evaluation (journals having atleast 500

papers) to measure the venue quality. Due to this biasing, chances of capturing better

quality journals in terms of H5-Index are relatively higher. The CNN model outperforms

other methods in terms of average H5-Index of recommended venues, as displayed in

Fig. 5.6a. While evaluating average venue quality, the CNN model performs an upward

trend from the beginning and shows an overall average H5-Index of 87.

The top-quality venues recommended by CNN model are at position 7 with the

highest H5-Index of 95. Then it shows a downward trend and reaches an H5-Index of value

85 at position 15. The lowest quality of venues recommended by the FB method with

an average H5-Index of 56. Similarly, the second-highest quality venues recommended by

PAVE model with an average H5-Index of 81.

5.5.3 Offline Evaluation of LSTM Model

During the evaluation of accuracy and MRR, we can see from Table 5.7 that LSTM model

shows a consistent accuracy over all other standard approaches. More than 39% time it
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Figure 5.6: (a) Venue quality of CNN (b) Venue quality of LSTM

Table 5.7: Accuracy and MRR results for LSTM and other approaches

Approach Acc@3 Acc@6 Acc@9 Acc@12 Acc@15 MRR

FB 0.0396 0.0784 0.1005 0.1397 0.1685 0.0279

CF 0.0743 0.0994 0.1317 0.1596 0.2016 0.0316

CN 0.0957 0.1256 0.1648 0.2006 0.2325 0.0412

CBF 0.1362 0.1673 0.1988 0.2005 0.2648 0.0414

RWR 0.1718 0.2005 0.2386 0.2719 0.2867 0.0579

PVR 0.1894 0.2037 0.2124 0.2756 0.2948 0.0671

PRS 0.2267 0.2652 0.2884 0.3659+ 0.4732+ 0.1059+

PAVE 0.2274+ 0.2695+ 0.2997+ 0.3244 0.3991 0.0878

LSTM 0.3932 0.4963 0.5865 0.6294 0.6549 0.1593

Best results are highlighted in bold, and 2ND best are marked by (‘+’)

could predict the original venue of the seed paper within the top 3 recommendations.

Initially, the LSTM model shows an accuracy of 0.4963 at position 6. Then slowly it

shows an upward trend and exhibits an excellent performance with an accuracy of 0.6549

at position 15.

In the case of MRR evaluation, it is visible that, LSTM model shows an excellent

performance over other standard approaches. We have experimented on DBLP dataset

and observed that the LSTM model exhibits the overall MRR of 0.1593. The second-best

performance is shown by the PRS model with an MRR of 0.1059. The CNN model could

predict the original venue at early recommendations as compared to all other methods.

In the case of MRR also, the least performance is exhibited by the FB method.
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Table 5.8: Precision results for LSTM and other approaches

Methods P@3 P@6 P@9 P@12 P@15

FB 0.6052 0.5899 0.5753 0.5522 0.5798

CF 0.6125 0.6354 0.6357 0.6466 0.6354

CN 0.6801 0.6681 0.6715 0.6690 0.6592

CBF 0.7125 0.7121 0.7116 0.7016 0.7009

RWR 0.7460 0.7226 0.7159 0.7179 0.7208

PVR 0.8159 0.7848 0.7529 0.7618 0.7601

PRS 0.8079 0.8380+ 0.7654 0.7609 0.7639

PAVE 0.8219+ 0.8049 0.8395+ 0.8393+ 0.8412+

LSTM 0.8803 0.8867 0.8786 0.8654 0.8537

Best results are highlighted in bold, and 2ND best are marked by (‘+’)

Table 5.9: nDCG results for LSTM and other approaches

Methods nDCG@3 nDCG@6 nDCG@9 nDCG@12 nDCG@15

FB 0.6409 0.6229 0.6238 0.6244 0.6281

CF 0.6678 0.6767 0.6782 0.6800 0.6786

CN 0.6944 0.7028 0.6985 0.7009 0.7014

CBF 0.7562 0.7402 0.7408 0.7478 0.7530

RWR 0.7499 0.7494 0.7437 0.7502 0.7562

PVR 0.7847 0.7908 0.7867 0.7872 0.7778

PRS 0.7794 0.7830 0.7936 0.7849 0.7940

PAVE 0.8356+ 0.8288+ 0.8298+ 0.8496 0.8368

LSTM 0.8879 0.8705 0.8554 0.8492+ 0.8356+

Best results are highlighted in bold, and 2ND best are marked by (‘+’)

5.5.4 Online Evaluation of LSTM Model

In this section, we examine the performance of the LSTM model against other state-of-

the-art methods. The evaluation metrics, including precision, nDCG, and average venue

quality (H5-Index) are taken into consideration during this evaluation.

Precision@k

The overall results of precision are shown in Table 5.8. We can see the significance of

LSTM model in terms of precision over all other standard approaches. Initially, the

proposed LSTM exhibits a precision of 0.8803 at position 3, and after that, it slightly

behaves a downward trend and shows a precision of 0.8786 at position 9 as depicted in

Fig. 5.7a.

The proposed model LSTM exhibits the highest precision of 0.8537 after recommend-
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Figure 5.7: (a) Precision of LSTM (b) nDCG of LSTM

Table 5.10: Accuracy and MRR results of DeepRec and other compared approaches

Approach Acc@3 Acc@6 Acc@9 Acc@12 Acc@15 MRR

FB 0.0396 0.0784 0.1005 0.1397 0.1685 0.0279

CF 0.0743 0.0994 0.1317 0.1596 0.2016 0.0316

CN 0.0957 0.1256 0.1648 0.2006 0.2325 0.0412

CBF 0.1362 0.1673 0.1988 0.2005 0.2648 0.0414

RWR 0.1718 0.2005 0.2386 0.2719 0.2867 0.0579

PVR 0.1894 0.2037 0.2124 0.2756 0.2948 0.0671

PRS 0.2267 0.2652 0.2884 0.3659+ 0.4732+ 0.1059

PAVE 0.2274+ 0.2695+ 0.2997+ 0.3244 0.3991 0.0878+

CNN 0.2593 0.3007 0.3906 0.4275+ 0.4529 0.1287

LSTM 0.3932 0.4963 0.5865 0.6294+ 0.6549 0.1593

Bi-LSTM 0.4076 0.5037 0.5479 0.6173 0.6482 0.1589

CNN+Bi-LSTM 0.4182 0.5096 0.5845 0.6362 0.6547 0.1873

RNN+CNN 0.3887 0.4779 0.4867 0.5343 0.5532 0.1562

DeepRec (Stacking Ensemble) 0.4393* 0.5237* 0.6393* 0.6525* 0.6992* 0.2195*

‘*’ denote statistically significant results over the second best (‘+’)

ing 15 recommendations. Similarly, the PAVE method performs the second-best among

all other standard approaches except position 6. The method PSR shows an excellent per-

formance with higher precision than PAVE at position 6. The worst performance among

all methods is shown by the FB method.

174



nDCG@k

The overall results of nDCG@k of all methods are shown in Table 5.9. It is clearly seen

that the proposed LSTM shows a significant improvement of nDCG over all other state-

of-the-art methods. Initially, the LSTM model achieves a nDCG of 0.8789 at position

2. Then the LSTM model performs a downward trend and reaches a nDCG of 0.8356 at

position 15 as displayed in Fig. 5.7b.

It is seen that the overall nDCG results of LSTM model are consistent until position

9. The PAVE model shows an excellent performance with higher nDCG than the LSTM

model at position 12, 13, 14, and 15, respectively. The LSTM shows the highest nDCG

of 0.8879 at position 3. The second-best performance is shown by the PAVE model. The

FB model shows the worst performance over all other standard approaches.

Average Venue Quality (H5-Index) Analysis

We investigate the performance of venues quality recommended by LSTM model as com-

pared to other existing approaches. LSTM model outperforms other methods in terms of

average H5-Index of recommended venues as displayed in Fig. 5.6b. Overall, the average

H5-Index of venues recommended by LSTM model is 89.

The top-quality venues recommended by LSTM model are at position 8 with the

highest H5-Index of 98. Then it shows a downward trend and reaches an H5-Index of value

86 at position 15. The lowest quality of venues with an H5-index of 82 is recommended

by the LSTM model at position 2.

5.5.5 Offline Evaluation of Ensembled Model: DeepRec

In this section, we examine the performance of the ensembled model DeepRec in terms

of evaluation metrics such as accuracy, and MRR. We also conduct paired-samples t-test

on overall accuracy and MRR between DeepRec and the second-best performers. Only

p values less than 0.05 were considered statistically significant at 5% level of significance

(α =0.05). During the assessment of DeepRec, statistically significant results and the

second-best performer are marked by the ‘*’ and ‘+’ symbols in each position.

The complete results of accuracy and MRR are depicted in Table 5.10 while evalu-

ating it for the journals having less than 500 papers. It is evident that proposed DeepRec
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shows a consistent performance over all other standard approaches. More than 43% time,

it could predict the original venue of the seed paper within the top 3 recommendations.

Initially, the DeepRec model shows an accuracy of 0.4393 at position 3. Then slowly it

Table 5.11: Accuracy and MRR results of DeepRec and other compared approaches

Approach Acc@3 Acc@6 Acc@9 Acc@12 Acc@15 MRR

FB 0.0555 0.0972 0.1250 0.1666 0.1944 0.0338

CF 0.0972 0.1111 0.1527 0.1805 0.2361 0.0451

CN 0.1111 0.1388 0.1805 0.2222 0.2500 0.0516

CBF 0.1527 0.1805 0.2083 0.2361 0.2916 0.0648

RWR 0.1944 0.2222 0.2500 0.2916 0.3194 0.0775

PVR 0.2083 0.2361 0.2368 0.3194 0.3472 0.0863

PRS 0.2497 0.2877 0.3265+ 0.3987+ 0.5467+ 0.1356+

PAVE 0.2500+ 0.2916+ 0.3055 0.3611 0.4305 0.0906

CNN 0.4379 0.5264 0.7006 0.7208 0.7273 0.1287

LSTM 0.4563 0.5647 0.6752 0.7342 0.7501 0.1385

Bi-LSTM 0.4547 0.5659 0.6377 0.6984 0.7482 0.1294

CNN+Bi-LSTM 0.4874 0.5651 0.6659 0.7345 0.7842 0.2203

RNN+CNN 0.4231 0.4474 0.4645 0.4981 0.5042 0.2046

DeepRec (Stacking Ensemble) 0.4982* 0.5994* 0.6993* 0.7871* 0.8369* 0.2894*

‘*’ denote statistically significant results over the second best (‘+’)

shows an upward trend and exhibits an excellent performance with an accuracy of 0.6992

at position 15. The PAVE method performs the second-best among all other standard

approaches at positions 3, 6 and 9 respectively. We have also investigated the overall The

complete results of accuracy and MRR are depicted in Table 5.11 while evaluating it for

the journals having more than 500 papers. More than 83% time it could predict the orig-

inal venue of the seed paper within the top 15 recommendations. The worst performance

among all methods is shown by the FB method.

Similarly, during the evaluation of MRR, we can see that the proposed model Deep-

Rec outperforms all other state-of-the-art methods and shows excellent behavior with

an MRR result of 0.2195. The proposed approach could predict the original venue at

early recommendations as compared to all other methods. The second-best performance

is exhibited by the PRS method, whereas the FB method performs the worst among all

different standard approaches.
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5.5.6 Online Evaluation of Ensembled Model: DeepRec

In this section, we examine the performance of the ensembled model DeepRec against

other state-of-the-art methods. The evaluation metrics, including precision, nDCG, and

average venue quality (H5-Index) are taken into consideration during this evaluation. We

also conduct paired-samples t-test on overall precision and nDCG between DeepRec and

the second-best performers. Only p values less than 0.05 were considered statistically

significant at 5% level of significance (α =0.05). During the assessment of DeepRec,

statistically significant results and the second-best performer are marked by the ‘*’ and

‘+’ symbols in each position.

Table 5.12: Precision results for proposed DeepRec and other compared approaches

Methods P@3 P@6 P@9 P@12 P@15

FB 0.6052 0.5899 0.5753 0.5522 0.5798

CF 0.6125 0.6354 0.6357 0.6466 0.6354

CN 0.6801 0.6681 0.6715 0.6690 0.6592

CBF 0.7125 0.7121 0.7116 0.7016 0.7009

RWR 0.7460 0.7226 0.7159 0.7179 0.7208

PVR 0.8159 0.7848 0.7529 0.7618 0.7601

PRS 0.8079 0.8380+ 0.7654 0.7609 0.7639

PAVE 0.8219+ 0.8049 0.8395+ 0.8393+ 0.8412+

CNN 0.8574 0.8579 0.8564 0.8271 0.8376

LSTM 0.8803 0.8867 0.8786 0.8654 0.8537

Bi-LSTM 0.8748 0.8793 0.8694 0.8563 0.8469

CNN+Bi-LSTM 0.8792 0.8673 0.8685 0.8492 0.8338

RNN+CNN 0.8547 0.8495 0.8437 0.8347 0.8297

DeepRec (Stacking Ensemble) 0.9146* 0.9210* 0.9130* 0.9037* 0.9142*

‘*’ denote statistically significant results over the second best (‘+’)

Precision@k

The overall results precision evaluation are shown in Table 5.12. We can see the signifi-

cance of DeepRec in terms of precision over all other standard approaches. Initially, the

proposed DeepRec exhibits a precision of 0.9227 at position 2, and after that, it slightly

behaves a downward trend and shows a precision of 0.9040 at position 7 and finally shows

a precision of 0.9142 at position 15 as displayed in Fig. 5.8a.

Proposed model DeepRec exhibits the highest precision of 0.9255 at position 1. It
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Table 5.13: nDCG results for proposed DeepRec and other approaches

Methods nDCG@3 nDCG@6 nDCG@9 nDCG@12 nDCG@15

FB 0.6409 0.6229 0.6238 0.6244 0.6281

CF 0.6678 0.6767 0.6782 0.6800 0.6786

CN 0.6944 0.7028 0.6985 0.7009 0.7014

CBF 0.7562 0.7402 0.7408 0.7478 0.7530

RWR 0.7499 0.7494 0.7437 0.7502 0.7562

PVR 0.7847 0.7908 0.7867 0.7872 0.7778

PRS 0.7794 0.7830 0.7936 0.7849 0.7940

PAVE 0.8356+ 0.8288+ 0.8298+ 0.8496+ 0.8368+

CNN 0.8689 0.8657 0.8686 0.8581 0.8571

LSTM 0.8879 0.8705 0.8554 0.8492 0.8356

Bi-LSTM 0.8793 0.8691 0.8566 0.8398 0.8295

CNN+Bi-LSTM 0.8642 0.8632 0.8584 0.8473 0.8344

RNN+CNN 0.8547 0.8495 0.8437 0.8347 0.8297

DeepRec (Stacking Ensemble) 0.9209* 0.9036* 0.9016* 0.9096* 0.9027*

‘*’ denote statistically significant results over the second best (‘+’)

shows a lower precision of 0.9037 at a position 12. Similarly, PAVE method performs the

second-best among all other state-of-the-art methods except a few positions 5,6, 7, and

8, respectively. The PRS method exhibits slightly higher precision than PAVE method at

those positions. The worst performance among all methods is shown by the FB method.

nDCG@k

The overall results of nDCG@k of all methods are shown in Table 5.13. It is clearly visible

that the proposed DeepRec shows a significant improvement of nDCG over all other state-

of-the-art methods. During the initial recommendations, the proposed ensemble model

DeepRec performs a higher nDCG of 0.9209 at position 3. Then it shows a downward

trend and reaches a nDCG of 0.8885 at position 11, and afterward, it shows an upward

trend and reaches a nDCG of 0.9027 at position 15. It is clearly shown in Fig. 5.8b

that the overall nDCG results of DeepRec are consistent and shows the highest nDCG of

0.9209 at position 3. The PAVE model demonstrates the second-best performance. The

FB model shows the worst performance over all other standard approaches.
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Figure 5.8: (a) Precision of DeepRec (b) nDCG of DeepRec

Average Venue Quality (H5-Index) Analysis

We investigate the performance of venue quality recommended by DeepRec as compared

to other existing approaches, as depicted in Fig. 5.9. Overall, the average H5-Index of

venues recommended by DeepRec model is 93. The top-quality venues recommended
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Figure 5.9: Venue quality of DeepRec and other approaches

.

by DeepRec model is at position 4 with the highest H5-Index of 102. Then it shows a

downward trend and reaches an H5-Index of value 93 at position 15. The lowest quality

of venues with an H5-index of 86 is recommended by the DeepRec model at position 2.
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5.5.7 Study of Proposed Approach

The main findings concerning our SQs as introduced in Sec. 5.4.4 are summarized below:

SQ1: How Effective is DeepRec in Comparison to Other State-Of-The-Art

Methods?

We investigated the overall results of precision@k, nDCG@k, accuracy, and MRR of

proposed ensembled model DeepRec and all other state-of-the-art techniques. It demon-

strates the best execution while assessing promising outcomes in higher values of preci-

sion@k and nDCG@k separately. Additionally, the performance of accuracy and MRR

Table 5.14: MRR results for DeepRec over new venue and new researcher

Methods 2<=vc<8 8<=vc<15 15<=vc 2<=pc<8 8<=pc<15 15<=pc

FB 0.0437 0.0591 0.0683 0.0565 0.0677 0.0769

CF 0.0473 0.0637 0.0725 0.0683 0.0746 0.0828

CN 0.0526 0.0773 0.0866 0.0739 0.0877 0.0914

CBF 0.0668 0.0848 0.1132 0.0894 0.0917 0.0995

RWR 0.0793 0.0849 0.0853 0.0854 0.0861 0.0864

PVR 0.0798 0.0879 0.0851 0.0853 0.0893 0.0847

PRS 0.0972 0.0895 0.0949 0.0858 0.0903 0.0885

PAVE 0.0977+ 0.1014+ 0.1298+ 0.1016+ 0.1039+ 0.1073+

DeepRec 0.2076* 0.2274* 0.2217* 0.2154* 0.2141* 0.2251*

‘*’ denote statistically significant results over the second best (‘+’)

demonstrates that the proposed approach; DeepRec results are measurably significant

over all other state-of-the-art techniques. The outcomes are appeared in Table 5.10, Ta-

ble 5.11, Table 5.12, and Table 5.13 respectively.

SQ2: How is The Quality of Venues Recommended by DeepRec as Compared

to State-Of-The-Art Methods?

The venues recommended by DeepRec are of high quality when contrasted with other

cutting edge techniques as portrayed in Fig. 5.9. The average H5-index of DeepRec

demonstrates a most elevated average estimation of 93 after recommending 15 venues.

The most elevated H5-index recommended by DeepRec is 102, and the least is 86, whereas

the most noteworthy H5-index suggested by PAVE is 87, and the least is 76. It shows

the highest H5-Index of 102 at position 4. At position 2, it shows the lowest H5-Index
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of 86. PAVE recommends venues having the second best H5-index. The least quality of

recommendation performed by the FB model.

SQ3: How Does DeepRec Handle Cold-start Issues and Other Issues Like

Data Sparsity, Diversity, and Stability

(i) Cold-start Issues: To specifically address “cold-start” issues like a new researcher

and new venue, we integrate extracted high-level features from abstract and title

with CNN model and LSTM model, respectively into the proposed model DeepRec.

We applied CNN in order to extract latent factors from the content information,

which then directly integrated into the recommendation process to deal with the

cold-start issues. Similarly, we have also used LSTM to extract low dimensional

latent factors of high dimensional input (seed paper).

We investigated the performance of DeepRec while assessing for new researchers

and new venues associated inputs (seed papers). The examination in Table 5.14

reflects that, regardless of whether the seed paper related to the new researcher

and new venue, DeepRec could anticipate the original venue at an early stage of

recommendations. It does not require past publication records or co-authorship

networks for the recommendations. It considers only the current area of interest

along with the title and abstract as inputs to recommend the same. DeepRec works

irrespective of researchers’ past publication records, rather only focuses on the work

at hand. DeepRec does not have data sparsity issues, as mentioned in Table 5.15.

(ii) Data Sparsity: To explicitly address data sparsity issue, both significance and

relevance parameters are taken into consideration. We have transformed the high

dimensional and sparse embedding matrix into a lower-dimensional and dense set

using deep learning techniques including CNN and LSTM, respectively. CNN is

specifically designed to process temporal, latent contextual aspects of high dimen-

sional and sparse input. Due to this efficiency of extracting hidden contextual

features that are relevant makes the deep learning approach highly preferable. We

use stacked generalized ensemble leaning of both CNN and LSTM model in order to

capture the quality of essentialness, relevance and to extract low dimensional latent

factors of high dimensional input aiming to cope with data sparsity issue.
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Table 5.15: Cold-start and other issues available

Methods Cold-start Sparsity Diversity Stability

FB yes (new researcher) no yes yes

CF yes (researcher and venue) yes no yes

CN yes (new venue) no yes yes

CBF yes(new venue) no yes no

RWR yes (new researcher) no yes yes

PVR yes (researcher and venue) yes no yes

PRS yes(new venue) no yes no

PAVE yes(new researcher) no yes yes

DeepRec no no no no

For example, in the convolutional layer, 256 filters with window size 3 move on

the textual representation to extract the features. As the filters move on, many

sequences that capture the syntactic and semantic features are generated. In this

work, we have considered the dimension of input data is 300∗300, and the dimension

of the first layer output data is 149 ∗ 1, and successively, the final layer output is of

dimension 34∗1 . Hence the convolutional layer is an effective way for dimensionality

reduction. As specified in Table 5.15, DeepRec does not have data sparsity issues.

Table 5.16: Diversity and Stability of DeepRec and other approaches

Methods Diversity (D) MAS (Stability)

FB 0.238 8.204

CF 0.369 7.865

CN 0.281 8.339

CBF 0.215 4.575

RWR 0.317 6.965

PVR 0.402+ 7.165

PRS 0.252 4.212+

PAVE 0.323 6.594

DeepRec 0.425* 2.852*

‘*’ denote statistically significant results over the second best (‘+’)

(iii) Diversity: To alleviate the problem of diversity issue, we integrated the individual

results of both CNN and LSTM model using stacked generalized ensemble leaning.

This fusion model is proposed in order to capture the contextual similarity-based

relevance features and to extract low dimensional latent factors of high dimensional
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input aiming to cope with diversity issue.

Diversity is defined in terms of content dissimilarity. We group all papers published

at a particular venue and extract their corresponding keywords. We apply the

similarity score defined in Eqn. 2.29 (Table 5.16). DeepRec shows the best diversity

with a diversity score of 0.425. The second-best performer is the method PVR,

which shows a diversity score of 0.402. We have considered the average D-score as

a threshold to decide whether a particular method provides diversity or not.

(iv) Stability: To deal with the stability issue, we propose a stacked generalized en-

semble model DeepRec. At the starting stage, keeping in mind the end goal to fully

exploit contextual similarity, CNN and LSTM are applied individually on both ab-

stract and title. In this work, we have provided a comprehensive investigation into

the stability of the popular recommendation algorithm, as defined in Eqn. 2.30. As

shown in Table 5.16, DeepRec shows the minimum MAS than all other standard ap-

proaches. It shows a MAS of 2.852 on DBLP dataset, meaning that on average, every

predicted rating will shift by 2.852 after adding new data into the that are identical

to the system’s current predictions to the training data. We have considered the

average MAS-score as a threshold to decide whether a particular method provides

stability or not. We investigate the execution of the ensemble model DeepRec after

adding another 3% of testing data into the training data. Thus the technique of

stacked generalized ensemble model DeepRec is desirable.

5.5.8 Discussion on MAG as Evaluation Dataset

Three different venue recommenders are proposed in the thesis. The first in the line,

DISCOVER was mainly for a heterogeneous dataset where recommendations are based

on keywords, titles and interactions among different fields of studies. Abstracts of pa-

pers were checked at the last stage of recommendation. The other two: CNAVER and

DeepReC were for a focused, more homogeneous collection with greater cohesion in terms

of citations. Hence, based on the use case, we chose two different datasets: MAG for

DISCOVER and DBLP for CNAVER and DeepRec. While MAG suited for DISCOVER

well, it could not be used for CNAVER and DeepRec. The following reasons determine

our choice of datasets in different works of venue recommendation.
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(i) The MAG dataset does not have full-text or abstract of the publications. Abstract

matching is done at the last stage in DISCOVER. It is to be noted that the av-

erage number of papers involved after main path analysis in CS and BIO domains

are around 45-85 and 55-95 respectively to perform abstract similarity. But in

CNAVER, abstract matching is performed at the beginning to generate feature de-

scription by using LDA model. Similarly, during the training phase of DeepRec, an

abstract is needed as an input to both CNN and LSTM models.

(ii) MAG also has very good coverage across different domains. On the other hand,

there are certain limitations to completeness. Only 30 million papers out of 127

million have some citation data. The MAG contains 528,682,289 internal citations

(citations between the papers in the graph). This means each paper in the graph is

cited on average 4.17 times. However, in DBLP-Citation-network dataset, there are

3,079,007 papers and 25,166,994 citations, with the average citations per paper is

8.17 – which is comparatively higher and therefore a better candidate for CNAVER

and DeepRec.

(iii) In MAG, a significant portion of the papers are disconnected from the network

(neither cite nor are cited by any other papers). There are over 80 million such

nodes. In DBLP-Citation-network V10 dataset, citation data is extracted from

DBLP, ACM, MAG, and other sources. Due to the basic building block of CNAVER

is mainly dependent on the citation network, we consider DBLP-Citation-network

V10 dataset over MAG.

5.5.9 Some Insights

The overall performance results obtained and discussed in Sec. 5.5 showcase the efficacy of

the proposed DeepRec. The excellent overall precision implies that the models can effec-

tively recommend the relevant venues. However, there are a few limitations to our work.

The proposed system DeepRec includes multiple parameters from both CNN and LSTM

models along with rigorous experimentation. There were multiple classes to classify, and

each class requires a huge amount of data to train both CNN and LSTM models. It

eventually leads to an increase in computation costs. Dependence of CNNs on the initial

parameter tuning (for a good point) to avoid local optima. Thus, a weakness of CNNs
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is the considerable amount of work they require to initialize according to the problem at

hand. This would require some expert knowledge in the domain. One of the limitations of

our model is that it cannot recommend venues that are not present in the dataset or have

been removed due to less number of papers of that venue since we fixed the minimum

paper count to 500. DeepRec may not recommend suitable venues if there are less number

of related papers that exist in the training dataset.

5.6 Conclusions

Academic venue recommendation is an emerging area of research in recommendation

systems. The proposed techniques are few in numbers and suffer from various limitations.

One of the major issues is that of cold-start having two sub-parts: a new venue and a

new researcher. Additionally, there exist problems of sparsity, scalability, diversity, and

stability in venue recommender system that are not adequately addressed by existing

state-of-the-art methods.

This work proposes DeepRec: A deep learning-based scholarly venue recommender

system. The proposed method is explicitly modeled mainly based on a stacked generalized

ensemble learning. Our ensemble learning-based model is elaborately designed based on a

convolution neural network (CNN), and Long short-term memory (LSTM). DeepRec only

requires the title and abstract of a new paper to identify scholarly venues. DeepRec could

reasonably address all the specified issues. We conducted an extensive set of experiments

on a real dataset: DBLP, and showed that DeepRec consistently outperforms the state-of-

the-art methods. It demonstrates substantially higher scores of precision@k, nDCG@k,

accuracy, and MRR than other best in class techniques. DeepRec proposes top-notch

venues when contrasted with cutting edge techniques as far as H5-index.

However, there is still scope for future investigation and improvement. We intend to

explore with different datasets and to broaden it for various controls to enhance precision,

accuracy, diversity, novelty, coverage, serendipity, and good fortune. We would like to

explore the same with the assistance of heterogeneous bibliographic data to recommend

scholarly venues.
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