
Chapter 3

DISCOVER: A Sequential

Approach-based Academic Venue

Recommender System

“All life is an experiment. The more experiments you make the better.”

-Ralph Waldo Emerson (1803-1883)

3.1 Introduction

Researchers generally favour to publish in those academic venues (journals, conferences,

or workshops) where they find acknowledgement of top notch papers applicable to their

domain of research [150]. However, with swift evolution and expansion of domains of

multidisciplinary areas, there has been an active change within the range of journals,

henceforth making the choice of an appropriate venue an even more burdensome task [36].

Although a researcher may know a few leading high-profile venues for her specific field of

interest, a venue recommender system becomes particularly helpful when one explores a

new field or when more options are needed.

We propose DISCOVER: A Diversified yet Integrated Social network analysis and

COntextual similarity-based scholarly VEnue Recommender system. Our work provides

an integrated framework incorporating social network analysis, including centrality mea-

sure calculation, citation and co-citation analysis, topic modeling based contextual simi-

larity and main path analysis of a bibliographic citation network.
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3.2 Problem Description

Let G = (V,E) be a citation graph with n papers, such that V = {p1, p2, ..., pn}, and

each directed edge e = (pi, pj) ∈ E represents a citation from paper pi to pj. We use the

following two phrases to describe the citation network.
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Figure 3.1: Overview of DISCOVER

(i) References of pi represent the set of papers which are referred by the paper pi.

(ii) Citation to pj denotes the set of papers which have used the paper pj as a reference.

For the rest of the paper, we use the above two phrases to define the graph around

vertex pi. Let each paper pi be published in a particular venue vi. So now we have,

S = {v1, v2, ..., vn} be a predefined set of publication venues (not all vi’s are necessarily

unique). Given an input paper (seed paper) p0, the venue recommendation task is to

recommend an ordered list of suitable publication venues (v01 , v02 ,..., v0k) related to the

seed paper p0, such that v01 is the most relevant and v0k is k-th most relevant venue in

the decreasing order of relevance or suitability.

Hence it is primarily a ranking problem. We need first to figure out the set of papers

which are closely related to the seed paper and then rank them. Venue recommendations

are provided if the title, keywords, and abstract of a seed paper are given to the system

as input (Fig. 3.1).

3.3 The Functional Architecture of DISCOVER

We introduce the overall architecture of the proposed system DISCOVER with its op-

erational methods. DISCOVER is designed for shortlisting academic venues to make a
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personalized recommendation for researchers. It has a layered approach where each layer

performs a specific task used by the next layer.

Bibliographic
Dataset

Data	pre-processing	(A)

Content	analysis	(B)

Papers	with
citations?

Social	network
	analysis	(C)

Title	and	keywords
matching	(B)

Citation	analysis	(D)

Main	path	analysis	(E)

Title	and	keywords	
matching	(B)

Select	top	papers

Abstract	matching

Result	fusion	(F)

Top	N	venue
recommendation

YesNo (Set	I)(Set	II)

Figure 3.2: Organizational architecture of DISCOVER

3.3.1 Framework of DISCOVER

DISCOVER is based on social network analysis where the association of nodes in networks

and the significance of individual nodes are considered. The overall process comprises the

following six steps (Fig. 3.2).

A. Data Preprocessing : This step aims to structure, arrange, and organize the
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dataset suitable for faster extraction of relevant papers.

B. Content Analysis (Field of Study, Keyword, Title, Abstract Matching):

This module is introduced to filter relevant papers based on fields of study, keywords,

title, and/or abstract matching. This step may be utilized multiple times at different

point of time when one or more types of matching are done.

C. Social Network Analysis: Various centrality measures like degree, closeness, be-

tweenness, eigenvector and HITS score, etc. are calculated of the papers shortlisted

in previous Steps A and Step B that will be used down the line.

D. Citation Analysis: This module is used to accomplish two objectives. First,

identification of the most similar papers as papers of interest (I) with the help of

title, keyword and abstract similarity. Then, by applying bibliographic coupling

(BC), co-citation scores(CC) and a new distance measure, the most related papers

to the paper of interest (I) are selected.

E. Main Path Analysis : To determine the most influential papers in the citation

network, traversal counts like search path count (SPC) is used. Key-route search is

employed to select significant links during both local and global search to identify

the global key-routes.

F. Result Fusion : The final ranking of scholarly venues is done based on abstract

similarity using LDA and NMF. A score based fusion technique (combMNZ) is

applied to leverage the advantages of both methods.

The details of the above steps are described below.

3.3.2 A. Data Preprocessing

The original MAG dataset is organized in a hierarchical fashion divided into 4 levels (Level

0 being the root and Level 3 the leaves) where levels correspond to the field of study. Levels

are related in super class - sub class relation where lower levels are subsumed in upper

levels. But, a paper belonging to a Level-3 node can be a part of multiple Level-2 nodes

(in case of inter-disciplinary fields), and, following the same logic, of multiple Level-1
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nodes. Hence, locating the field of study to get all the relevant papers using only the

keywords is not very straight-forward, but often can be very tedious and time-intensive.

The dataset, therefore, is reorganized using a hybrid binary tree. Fig. 3.3 illustrates

the modifications done. We use the relation between the fields of study (FOS) in the

original graph. FOSs related to each other are provided with a pair-wise confidence score

based on their similarity. A score of 1 implies that the two fields are very similar (part

of or dependent on each other) and a lower score implies lesser similarity. If the two

fields are not similar at all, their confidence score will be 0. We use confidence scores

among FOSs to divide them into two groups of children nodes at each level, one greater

than the average confidence score (left children) and the other equal to and less than

(right children) the average confidence score of all the children nodes with the parent

node (FOS).
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Figure 3.3: Hybrid binary tree to hierarchy of field of studies

For example, field of study F22, which is at Level-1 has three children’s like F13, F14

and F15. These children are divided into two groups:

(i) Field of studies F13 and F14 have a high confidence score with the field of study F22

and are placed on the left-hand side of the field of study F22.

(ii) The field of study F15 shows a less confidence score with the field of study F22 and

are placed on the right-hand side of the field of study F22.
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Keyword-set Construction and Organization

Keywords are identified as available under the keywords tag of research papers. Stop-

words, if any, are removed and keywords are stemmed using Snowball stemmer [151]. The

keywords of all the papers are fetched in a bottom-up fashion, and their union is stored at

between two levels of FOS (rectangular boxes in Fig. 3.3). For example, the keyword-set

between Level-3 and Level-2 (for example, S1) is constructed by concatenating the key-

words of the field of study at Level-3 (F1, F2, and F3). Similarly, keyword-set between

Level-2 and Level-1 (S7) is constructed by concatenating the keywords from papers in

Level-2 FOSs, i.e. (F13, and F14).

3.3.3 B. Content Analysis (Keyword-based Search Strategy)

We traverse the above tree in a top-down fashion to search for papers. We extract only

those papers having high similarity with the keywords of a given seed paper. A queue Z

is created and maintained to keep track of the visited nodes. At the start, Z contains

only the root nodes corresponding to the field of study (e.g., F25). A node is popped from

Z, and the given set of keywords is matched with its (popped node) left, right and parent

sets of keywords of the popped node separately. Upon a match, the number of matches

is checked and proceeded in the following way.

(i) Case 1 : If the number of matches is greater on any one side (either left or right),

the other side is ignored. All the nodes of the greater side are added to queue Z.

(ii) Case 2 : If the number of matches on both sides is equal, nodes from both the sides

are added to the queue Z.

(iii) Case 3 : If the number of matches of the parent is equal to that of the greater side

or all three are equal, even the parent node is added to the queue Z.

This process is repeated until we reach leaf level (or Level-3). There is a duplication

of data in the proposed hybrid binary tree, but the computation time is enormously

reduced as at every step, just like binary search trees, the unmatched half side of the tree

is not considered.
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Illustrative Example of Keyword-based Search

Suppose we are matching the keywords for a given paper pm. Initially, we have only one

field of study, F25 in the queue Z. This node is popped, and keywords of pm are matched

with the keyword sets at level 0, namely S13 and S14 and the parent field keywords (F25).

Let the left subtree have a clear maximum number of matches. We then proceed in that

direction and successively push F22 and F23 into the queue Z. For each of these nodes,

the search is done similar to the that done for F25. Finally, when we reach Level 3, now,

we have all the relevant fields of study ids in our queue, including the primitive lower level

keywords and some higher-level keywords matching with the given keywords.

Suppose at Level 3, only fields of study like F1, F2, F3 and F14 are left in the queue.

In Fig. 3.3, all papers belonging to fields F1, F2, F3 and F14 are fetched and used for

further analysis.

For the papers so selected, the following procedures are adopted.

3.3.4 C. Social Network Analysis

Depending on the availability of citations, the shortlisted papers will be divided as follows

(Fig. 3.2).

(a) all papers whose citations exist in the dataset (Set-I)

(b) the set of papers whose citations are not available in the dataset (Set-II).

The system will generate a citation network only with the Set-I papers based on

references. Following centrality measures will be used on them to determine their impor-

tance [152,153].

Motivation of Selecting Various Centrality Measures

Different centrality measures are summarized in Table 2.2. For each paper p, in-degree

(p) is computed. The papers whose in-degree is greater than or equal to average in-degree

of the network are shortlisted for further computation. Later on again, the average score

of degree {indeg(p) + outdeg (p)} is taken into consideration for removing papers. We

adopt such two-stage filtering in order to ensure that i) first, highly cited papers are not

missed, and ii) no new papers which cite a lot of papers are missed either.
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Figure 3.4: Graph model for centrality measures

The average score of each measure is used as a threshold to shortlist in parallel, which

are combined to filter only unique papers (Fig. 3.4). We choose all of them individually

as the aim of filtering is to first remove the unimportant papers before selecting the

important ones.

For example, if a very high-quality paper has low in-degree because of its recent

publication, the paper may not be considered in degree centrality calculation, but it gets

due consideration in Betweenness, Closeness, Eigenvector and HITS centrality calculation

and, therefore, may qualify based on these measures (Fig. 3.4). This way if a paper lacks in

one or more factors in the citation profile, it can qualify through other centrality measures

implying fair chance to all potential papers. Moreover, this exercise is restricted only to

the Set-I papers, which are having a good number of citations. The task, therefore, does

not punish any papers which do not have enough citations (Set - II).

A smaller citation network is generated considering only the shortlisted papers, and

the connected components (mathematically they are weakly connected components as

directed edges will be deemed as undirected edges for finding the connected components

and henceforth often referred to as merely components) are identified.

We remove such components having less than the average number of nodes retaining

the rest where,

Average #nodes =
Total #nodes in citation network

Total #connected components
(3.1)
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This step further reduces the number of potentially non-relevant papers.

Complexity Analysis

Although our academic bibliographic data is huge containing large number of nodes (n)

(Table 3.14), the graph is actually a sparse one as the number of edges (m) is much less

(m < O(n2)). In this work (implementation with MAG datset), we found around 5k-13k

papers (Computer Science) after keyword-based search strategy (Sec. 3.3.3). But most

of the papers were there without any citations. For 72 different seed papers, the average

number of papers found with citations (Set-I) were 4, 373 and average number of edges

were around 7, 496. The average degree of a node was 1.71.

Algorithm 1: Similarity score generation
Input: St= the seed title to be compared with

Ct= List of titles to be checked for similarity

Output: List of Similarity scores (St, Ct)

Function Create Synset(S):

Synset← {}

foreach word w ∈ S do

POSw ← do parts of speech tagging

Synset ←

Synset ∪ wordnet.Synsets(w, POSw)[0]

/* adds only the first synonym for w */

end

return Synset

End Function

SynsetS ← Create Synset(St) /* Synset of St */

foreach title tj ∈ Ct do

Synsetj ← Create Synset(tj) /* ∀tj ∈ Ct */

Scoresj ← Sim(SynsetS , Synsetj) /* Algo. 2 */

end

return Scores = [Scoresj ]

In Social network analysis, a Degree centrality measure has a time complexity of

O(m). Both Closeness and Betweenness centrality of all vertices in the citation network
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involve the shortest paths between all pairs of vertices on a graph, which takes O(mn) time

using Brandes algorithm [154]. This algorithm performs a simple breadth-first search, in

which distance and shortest-path counts are determined from each vertex.

Algorithm 2: Synset similarity algorithm
Input: SynsetS= array synset terms S

Synsetj = array of synset terms j

Output: Similarity score (SynsetS , Synsetj)

Initialization

Score ← 0,Word count← 0

Function Sim(SynsetS, Synsetj):

for each word ai in SynsetS do

Best score← 0

/* Best score for each word in SynsetS */

for each word bi in Synsetj do

if Wup sim(ai, bi) > Best score then

Best score←Wup sim(ai, bi)

/* Wup sim as per Eqn. 3.2*/

end

end

if Best score 6= 0 then

Score← Score+Best score

/* Sum of all Best score */ Word count←Word count+ 1

/* Number of words in SynsetS */

end

end

Sim score← Score
Word count

return Sim score

End Function

For computing the Eigenvector and HITS centrality measures, power iteration method

can be used that approximates the metrics within a few steps and also avoids numerical

accuracy issues. That way both Eigenvector and HITS centrality measures can be done in

O(n2) time [155,156]. Hence, overall computational complexity of social network analysis

is not more than O(n2).
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3.3.5 B. Content Analysis

From each such shortlisted connected components, title and keywords similarity of all

papers with the seed paper (input paper) are re-considered.

For title similarity, Python nltk Wordnet is utilized [157] 1, as given in Algo. 1 and

Algo. 2. We employed Wu-Palmer similarity (Wup similarity) to compute the similarity

among Synsets [158]. Synsets are organized in wordnet taxonomies (hypernym tree) in

such a way that the root or higher-level terms are more abstract terms (hypernyms) and

lower-level terms are more specific (hyponyms).

It is mainly calculated the similarity by considering the depths of two Synsets and

that of their Least Common Subsumer (more specific ancestor node) 2.

Wup similarity(s1, s2) = 2 ∗ depth(lcs(s1, s2))

(depth(s1) + depth(s2))
(3.2)

Where 0 < Wup similarity(s1, s2) ≤ 1 and lcs stands for Least Common Subsumer. The

score can never be 0 as the depth of the lcs is never 0 (depth of the root of taxonomy is

1). Whenever multiple candidates for the lcs exist, the one having the longest paths to

the root will be selected during the calculation.

Jaccard similarity coefficient is employed for keyword similarity (See Eqn. 3.3). If

P and Q be a set of keywords extracted from seed the paper and from the test papers

respectively or vice-versa [159], it is defined as

J(P,Q) =
|P ∩Q|
|P ∪Q|

(3.3)

where 0 ≤ J(P,Q) ≤ 1.

Later, we find the cumulative similarity score as an average of the two similarities

for each paper in the connected components as follows.

Cumulative similarity =
Title similarity + Keywords similarity

2
(3.4)

These cumulative similarity scores are computed for both Set-I and Set-II papers.

However, the following steps are done for Set-I papers. Set-II papers join at the end of

Main Path Analysis(E).

1It is an open-source package in Python language which is trained on English Wordnet
2www.nltk.org/howto/wordnet.html
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Identification of Papers of Interest (I)

The cumulative similarity scores (Eqn. 3.4) are used to identify top-k (we take k =

10) papers from each connected component that are most similar to the seed paper.

Abstracts of these top-k papers are extracted, and abstract similarity is calculated with

the seed paper applying Okapi BM25+3(Sec. 2.4.2). The paper having the highest BM25+

score (Sec) with the seed paper is chosen as the paper of interest (I) for each selected

components.

Paper
C

Paper
D

Paper
Q

Paper
R

Paper
P

Paper
A

Paper
B

Figure 3.5: The structure of citation analysis

3.3.6 D. Citation Analysis

The papers so selected provide the basis of further study of the interplay of the papers

within a component based on co-citation analysis. We look at the bibliographic coupling

(BC) and co-citation (CC) scores for each candidate papers [160,161].

3BM stands for Best Matching. To address the deficiency of Okapi BM25 in its term frequency (TF)

normalization component, Okapi BM25+ (a variant of Okapi BM25) is employed.
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Bibliographic Coupling (BC)

It gives a measure of the similarity between two papers based on the number of common

papers they jointly cite.

BC(C,D) = |LC ∩ LD| (3.5)

where LC , LD are set of bibliographic lists in C & D respectively.

Fig. 3.5 illustrates bibliographic coupling, showing that papers P , Q and R are cited

by both papers C and D. BC strength of papers C and D is, hence, 3.

Co-Citation(CC)

It denotes the number of other papers that cite two given papers together. The co-citation

strength (CC-strength) can be computed as follows.

Input:	Citation
network	

Calculate	distance	of	individual
paper	from	paper	of	interest	(I)

Output:	Select	top	scoring
papers	as	candidate	papers	

Calculate	candidate	score
	(C-score)	of	individual	paper

Compute	Co-citation	(CC)
for	each	selected	papers	

Compute	Bibliographic
Coupling	(BC)	for	each

selected	papers

Figure 3.6: Graph model for candidate score computation

While BC score implies similarity of two papers based on similar sub-domain and

time (referring the same set of papers), CC score implies shared authority on a particular

sub-domain or very general domain (same set of papers jointly refer the two). Taken

together, they represent the importance and contemporariness of a pair of papers within
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Table 3.1: Computation of C-score for papers in the citation network

Paper Total BC Total CC Total Similarity d(I,k) C-score

P6 2 6 8 2 4.0

P15 0 1 1 2 0.3

P17 3 1 4 2 2

P20 1 2 3 3 1

P22 2 6 8 3 2.6

a citation network.

CC(A,B) = |IA ∩ IB| (3.6)

where, IA denotes the set of papers that cite paper A, in other words, |IA| = indeg(A) In

Fig. 3.5, CC(A,B) = 3 as papers A,B are co-cited by papers P,Q, and R.
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Figure 3.7: Seven-level citation network

Candidate Score Computation (C-score)

Summation of BC and CC respectively of a particular paper paired with all others in the

component can, therefore, be an important feature and we combine them into a single

measure called the candidate score (C-score) which is defined by

C-score(k) =

∑
o∈SI

[BC(k, o) + CC(k, o)]

d(I, k)
(3.7)

where SI is the collection of nodes in the component with the paper of interest I,

and d(I, k) is hop-distance from I to k. The reason for using such hop-distance along

with both BC and CC lies in the state-of-the-art literature [162].
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All papers other than paper “k” are represented as “o”. The C-score considers the

relevance of “k” with, o and I. We normalize the score so obtained by d(I, k) in order to

provide incentives to the papers that are close to I and penalize the papers at a distance.

The overall process of candidate papers selection is depicted in Fig. 3.6.

Illustrative Example of Candidate Paper Selection

Fig. 3.7 shows an illustrative example with representative citation scores in Table 3.1

(Fig. 3.7 is restructured used by Son et al. [162]). P6 has out-degree 2 meaning P6 can have

maximum two pairs with positive BC-strength. BC(P6, P1) = 1 = BC(P6, P7) and BC

for all other pairs of nodes involving P6 is zero. Again, P6 has in-degree = 4 meaning it can

have maximum 4 pairs of positive CC-values. CC(P6, P9) = 1 = CC(P6, P5), CC(P6, I) =

4. The aggregate score of the BC and CC is 8, which is the numerator of the C-score for

P6. Similarly, the denominator of the C-score for P6 is d(I, P6) = 2. Similarly, BC and

CC values of all other nodes are computed. Some example nodes are given in Table 3.1.
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Figure 3.8: Identification of papers with higher than average C-scores

Although total similarity score (sum of BC and CC) of paper P6 and P22 are equiv-

alent, C-score of P22 is less than that of P6 because P22 is farther from I than P6 is. We

propose that P6 is more similar to the user topic than P22 is. On the other hand, although

P6 and P17 are at the same distance, P17 has a lower C-score because the total similarity

of P17 is lower than that of P6.

Again, BC of P17 is greater than BC of P22 but the C-score of P22 is higher than that

of P17. The papers with low C-scores tend to be isolated from the network community.

P15 is likely to be an irrelevant paper probably produced by self-citations, and ceremonial
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citations4.

Computation of C-scores are thus done for each of the papers with respect to an I

in the component. Based on a user-specified threshold, the papers with higher C-scores

are selected as candidate papers which are used to generate a citation network.

In this work, experiments were conducted for 72 seed papers in computer science

domain and 48 seed papers in the biology domain. We observed that choosing average

C-scores as the threshold fit the bill and the average number of papers left after this step

was in between 800 and 2000 (Computer Science).

In the above example, initially, there are a total of 27 papers, excluding I in the

citation network depicted in Fig. 3.7. Considering average C-score as a threshold as

appeared in Fig. 3.8 only 14 papers are shortlisted as candidate papers.

Complexity Analysis

Let us assume there are n1 number of vertices and m1 number of edges exist in the citation

network generated among papers shortlisted after title and keywords matching as defined

in Sec. 3.3.5 (only for papers shortlisted after social network analysis). Considering the

citation network contains a small diameter d, phenomenon known as ”six degrees of

separation” [163–165]. In this work, average number of nodes and edges were found

around 1, 190 and 1, 837 respectively. The average degree of a node and average diameter

were 1.54 and 8.3 respectively.

Citation analysis mainly involves two types of steps such as Bibliographic Coupling

(BC), and Co-Citation (CC) in a citation network. Let’s assume the maximum number

outdegree, and indegree of a given vertex are k1, and k2 respectively. To identify the BC

of a given node pi, we need to move towards each outgoing vertices of that particular

node pi. Then for each outgoing vertices of pi, we need to visit only those vertices whose

outgoing edges are directly connected to any outgoing vertices of pi. As a result, the total

time complexity for computing BC for a single vertex is O(k1k2). So for all the nodes in

the citation network, the complexity is O(n1k1k2).

Similarly, for CC computation of a particular vertex pi, we need to initially visit all

the vertices whose incoming edges are directly connected to vertex pi. Later, for each of

4Ceremonial citation is one that is done even though the citing paper is very lightly related with the

cited publication
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these vertices whose outgoing edges are connected to vertex pi, we need to traverse all

outgoing vertices. So a total of O(k2k1) complexity is needed for one vertex. As a result,

O(n1k1k2) complexity is needed for all the nodes in the citation network. The total time

needed to compute the distance of each vertex from a given vertex pi is O(m1 + n1).

Hence, overall computational complexity of citation analysis is not more than O(m1+

n1).

3.3.7 E. Main Path Analysis

The citation network so produced after shortlisting of papers with C-score is used for

main path analysis. Here we try to arrange the papers in a chronological fashion so that

knowledge is supposed to flow from a source to sink paper. A source is an original paper

that is supposed to introduce a new domain (loosely can be considered as the origin of

knowledge) whereas sink is the most recent paper which cites its ancestor papers. To build

this directed graph (we call it reference-flow graph), we need to reverse the direction of

the citation network.

For example, if there is a citation from node B → A in citation network, a directed

link B ← A is drawn in the reference-flow graph for main path analysis. It means paper

A is cited/referred by paper B. After applying the above changes in the citation network

in Fig. 3.8, the new reference-flow graph is obtained as given in Fig. 3.9.
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Figure 3.9: Selection of candidate papers

The most significant path in a citation network is traced by main path analysis. This

is used to identify the structural backbone in the evolution of a scientific field [166]. Main

path analysis is more useful when there is a need to investigate connectedness in acyclic
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networks and especially draw attention when nodes are time-dependent, as it chooses the

most representative nodes at different points of time [167].

To determine the main path, the following steps are needed to be considered.

(i) Assignment of link-weights in the network using traversal count.

(ii) Identification of key route in reference-flow graph.

Assignment of Link Weights in Citation Network

For identifying the main path in any network, the links in the network are assigned

weights using traversal count [168] that measures the importance of a link. The number

of traversals of a link for different source-sink pair of nodes is known as traversal count

of the link. It has several variants, depending on how the pairs are chosen. We are using

Search Path Count (SPC) 5 for weighing the links.

If a path through which much knowledge flows includes a citation link, it has a

certain prominence in the knowledge-dissemination process. Using SPC as traversal count

in Fig. 3.9, we obtain the link- weight of the citation network as given in Fig. 3.10. The

most significant links are added to form the main path connecting a source and a sink

node [167] as described below.
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Figure 3.10: Assignment of link-weights using SPC technique

5A link’s SPC is the number of times the link is traversed if one runs through all possible paths from

all the sources to all the sinks.
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Identification of Key-route in Citation Network

There can be several paths between a source and sink pair having the same traversal

count. We need to select the most promising one. Local, global, and key-route search

are some of the various approaches to identify it. We find the key-route search in the

following way.

(i) Choose the link having the maximal traversal count. This link is considered starting

link of key-route.

(ii) Push ahead from the end node of the key-route until the point when a sink node

happens.

(iii) Go in reverse from the begin node of the key-route until the point that a source

node happens.

By executing the steps many times, multiple key-routes can be found, each time choosing

the link with the next-highest traversal count. However, the first such key-route with

highest SPC is considered as the main path.

Illustrative Example of Key-route Identification

Let us consider a simple citation network depicted in Fig. 3.9. It has 4 sources, C1,

C11, C13, C14 and 5 sinks such as C2, C3, C4, C5, C10. There are various substitute

paths to traverse from the sources to the sinks. Assuming that one exhaustively searches

all paths from every source to every sink, the SPC for each link is defined as the to-

tal number of times the link is traversed. For example, Link C12 − C2 has an SPC

value of 5 because paths C13 − C8 − C6 − I − C12 − C2, C14 − C9 − C7 − I − C12 − C2,

C1 − C12 − C2, C11 − C8 − C6 − I − C12 − C2 and C11 − C9 − C7 − I − C12 − C2 pass through

it. Since the Link I-C5 is a part of four distinct paths C11 − C8 − C6 − I − C5, C9 − C7 − I − C5,

C13 − C8 − C6 − I − C5, and C14 − C9 − C7 − I − C5 respectively, its SPC value is 4. The

link-weights as SPC are shown in Fig. 3.10.

Links C9 − C7 and C8 − C6 have the highest SPC value of 10. Initially, the link

C9 − C7 and C8 − C6 are chosen due to their highest SPC value as 10. Now, search

backward from the beginning node until a point that source is hit and search forward

from the end nodes C7 and C6 until a sink is hit.
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We get C11 − C9 − C7 − I − C12 − C2, C11 − C8 − C6 − I − C12 − C2 as the global

key-routes starting from node C11. In addition, we get C13 − C8 − C6 − I − C12 − C2,

C14 − C9 − C7 − I − C12 − C2 as the global key-routes. The sum of the SPC values in

all the key-route paths is 32, which, is the largest among all possible paths, as shown in

Fig 3.11. We have a total of 10 papers in the key-routes, including the paper of interest

Figure 3.11: Key-route identification using main path analysis

I. After retaining only unique papers in the key-route, we have C2, C6, C7 ,C8, C9, C11,

C12, C13, C14 and I as the final candidate papers. Initially, we had a total of 28 papers,

including I in the network. After applying C − score, there were 15 papers, including

I that were shortlisted. Now, after applying the key-route, we end up with 10 papers,

including I as significant papers in the citation network (Fig. 3.11).

Complexity Analysis

In the main path analysis, we need to traverse all the outgoing vertices of a given source

vertex si. Then repeatedly for each outgoing vertices of si we need to traverse their

corresponding outgoing vertices till we reach a sink node sj in the citation network. In this

work, average number of nodes and edges were found around 503 and 872 respectively with

an average degree of 1.73. It is clearly indicates the sparseness of the citation network.

The diameter of the network was 6.4. The maximum outgoing vetices and maximum

incoming vertices of a node were around 23 and 57 respectively. We need to visit all

possible paths from a given source vertex to a sink vertex.

As mentioned in Sec. 3.3.6, the diameter of the citation network is d, and the number
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of outdegree of a given vertex is k3. So for a given source vertex si, the time complexity

will be O(kd−1
3 ). Assume that there are s1 number of source vertices and s2 number of sink

vertices present in the citation graph. So the total time complexity will be O(s1k
d−1
3 s2).

Hence, overall computational complexity of main path analysis is not more than

O(s1k
d−1
3 s2).

3.3.8 F. Result Fusion

To find the final ranking of venues, the following steps are followed sequentially.

(i) Merging Set-I and Set-II papers for abstract similarity using LDA and NMF tech-

niques

(ii) Extraction of unique venues and their similarity computation

(iii) Normalization of similarity scores and their fusion

Merging Set-I and Set-II Papers for Abstract Similarity Using LDA and NMF

Techniques

Title similarity and keyword similarity are computed for Set-II papers as well using Algo. 1

and Algo. 2 and keyword matching is performed by Eqn. 3.3. Top t2 similar papers are

chosen based on cumulative scores.

We have three assumptions regarding the inclusion of Set-II papers for abstract

similarity.

(a) There may be few papers that have no citations (Set-II), but any such paper may

be published at reputed venues.

(b) The title and keywords of the seed paper may match with some papers in Set-II, so

there is a possibility that the seed paper may get accepted at similar venues as that

of Set-II papers.

(c) Generally, the papers published in reputed venues get a high number of citations.

So along with the shortlisted key-route papers (t1), we add shortlisted Set-II papers

(t2) to make a combined list of shortlisted papers (t1 + t2).
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For each paper in the list, we find abstract similarity with the seed paper using LDA

and NMF techniques independently. We use LDA and NMF as these techniques capture

topics rather than exact terms. At this point, when sufficient care has been taken on

keywords match and also some papers are qualified based on other criteria (not keyword

matching), we believe some abstract level topic matching would work.

Also, we use both LDA and NMF separately since LDA mainly considers terms in a

document independent of its presence in other documents to identify topics [132]. NMF,

on the other hand, tries to capture a set of words occurring together in a topic using tf-idf

vector [46]. We assume these two methods are complementary in nature and provide two

different ranks to a given paper. The number of topics or vector dimension considered here

is 100 during the topic extraction. Thus we get two lists of papers sorted in decreasing

order of similarity scores based on LDA and NMF respectively.

Extraction of Unique Venues and Their Similarity Computation

We extract the venues corresponding to the papers in the two ranked lists and make two

lists of unique venues. Venues are ordered based on the top-scoring papers published

there. We also assign the score to the venues such that each venue vk represents the

highest similarity score of papers published at vk. Hence we have two ordered lists of

venues. The entries in the lists are the same set of venues occurring possibly at different

ranks with different similarity scores.

Normalization of Similarity Scores and Their Fusion

The similarity scores depend on the techniques (LDA or NMF) and hence are not readily

comparable. To compare, we need to normalize the scores and then apply some fusion

techniques to get a single ordered list of venues. In the recommendation community, data

fusion is one of the widely investigated areas. We used score-based fusion over rank-based

one as it reduces the number of ties. There are several score-based fusion techniques such

as CombSum, CombMNZ, and weight combination [169].

We use CombMNZ fusion technique [170]. To run CombMNZ, similarity scores of

two lists must be normalized, so that they lie in a common range. There are different

normalization strategies proposed in the literature. We select the one used by Lee et

al. [171], as it is the one most commonly used for comparison and has been defined as
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Algorithm 3: Fusion-based final venues ranking

Input: Observed shortlisted key-route papers (t1) and shortlisted Set-II papers (t2)

to check abstract similarity

Output: Top N recommended list of venues

Initialization

let m be the seed paper

let T = t1 + t2 be the set of candidate papers

while T is not empty do

for i← 0 to |T − 1| do

Compute abstract similarity with m using LDA technique

Li ← similarity score of each candidate papers

Compute abstract similarity with m using NMF technique

Ni ← similarity score of each candidate papers

end

Sl=Ordered list of papers in decreasing values of LDA based similarity score

Vl=Set of unique vanues based on top scoring papers in Sl

for k ← 0 to |Vl − 1| do

lk ← LDA based similarity score of each candidate venues

nk ← NMF based similarity score of each candidate venues

end

Normalize(lk)← lk−min(lk)
max(lk)−min(lk) ;

Normalize(nk)← nk−min(nk)
max(nk)−min(nk) ;

end

for k ← 0 to |Vl − 1| do

N(vk)=Normalize(lk) +Normalize(nk)

CombMNZvk = N(vk) ∗ |Ns > 0|

end

N(vk) ← Normalized score of venue vk in result set LDA and NMF

|Ns| ← No. of non-zero normalized scores given to vk by any result set LDA and NMF

Sort venues in the decreasing order of CombMNZvk scores

Prepare the final list of top N venues recommendation
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“standard normalization” [172]. We apply CombMNZv on normalized scores of venues.

Finally, we recommend top-N venues based on CombMNZv scores where N (usually

N 6= t1 or t2) is user-specified. The complete algorithm is provided in Algo. 3.

3.4 Experiments

We conduct an extensive set of experiments. Below we outline the experimental dataset,

evaluation strategy, evaluation metrics, experimental setting, parameter tuning, and other

comparable methods. All experiments are conducted on a 64-bit and 2.4GHz Intel Core

i5, 8-GB memory system.

3.4.1 Dataset Used

We use the Microsoft Academic Graph (MAG) dataset [44,147] (Sec. 2.7.1) to demonstrate

the effectiveness of DISCOVER.

3.4.2 Evaluation Strategy

We adopt two kinds of evaluations namely Coarse-level or offline evaluation and Fine-level

or online evaluation to measure the performances of DISCOVER against other state-of-

the-art methods (Sec. 2.5).

3.4.3 Evaluation Metrics

We employ eight metrics such as Accuracy@N, Mean Reciprocal Rank (MRR), Precision,

F−measuremacro (F1), Normalized discounted cumulative gain (nDCG), Diversity, Stabil-

ity, and Average-Venue Quality (Ave-quality) to evaluate the performance of DISCOVER

against other state-of-the-art methods (Sec. 2.6).

3.4.4 Experimental Setting

Initially, we consider papers from CS. Removing the papers with no venues details, there

are only 13,402,547 papers in CS. Similarly, we preprocess papers from BIO domain and

are left with only 12,848,227 papers. All the papers published on or after the year 1982
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and before the year 2012 are used as a training set, the rest (papers dated in or after

2012) are as the testing set as given in Table 3.2.

Table 3.2: Statistics of training and testing dataset in CS and BIO

FOS Pre-processed Dataset Training Dataset Testing Dataset

Computer Science (CS) 13,402,547 10,424,960 2,977,587

Biology (BIO) 12,848,227 9,961,893 2,886,334

Preparation of Test Dataset

Due to operational constraints, only 12 sub-domains of CS and 6 sub-domains of BIO

are selected as in testing dataset. A total of 72 seed papers are chosen from 12 sub-

domains (6 from each): Information Retrieval (IR), Image Processing (IP), Security (SC),

Wireless Sensor Network (WSN), Machine Learning (ML), Software Engineering (SE),

Computer Vision (CV), Artificial Intelligence (AI), Data Mining (DM), Natural Language

Processing (NLP), Parallel and Distributed Systems (PDS) and Multimedia (MM) in CS.

Similarly, a total of 48 seed papers are chosen from 6 sub-domains (8 from each sub-

domains): Computational Biology (CB), Anatomy (AN), Immunology (IM), Toxicology

(TX), Biochemistry (BI) and Paleontology (PL) in BIO.

Seed papers are chosen, keeping in mind the cold-start issues for new venues and

new researchers. We consider 3 categories of venues and 3 categories of researchers based

on venue count (vc) (number of papers published at a given venue) and publication count

(pc) (the number of publications of a researcher) [31,74] on the following six categories.

(i) Category 1 : 2 ≤ vc < 8

(ii) Category 2 : 8 ≤ vc < 15

(iii) Category 3 : 15 ≤ vc

(iv) Category 4 : 2 ≤ pc < 8

(v) Category 5 : 8 ≤ pc < 15

(vi) Category 6 : 15 ≤ pc

It is ensured that each category is well represented in the seed papers for both CS and

BIO data.
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Procedure of Online Evaluation

For this evaluation, we did not have the ready annotation, but we need one. The anno-

tation or relevance assessment is collected from the volunteers through crowdsourcing in

the best effort basis. For CS, 40 researchers with expertise in the mentioned sub-domains

are provided with input and output of our recommender system where for each paper, 15

venues are recommended. Out of 40 researchers, 9 evaluated 3 papers each, 14 researchers

evaluated 2 each, and the rest 17 were evaluated by 17 researchers. Similarly, for BIO,

25 researchers volunteered. There were 7 researchers who evaluated 3 papers each, 9

researchers evaluated 2 each, and the rest 9 researchers evaluated one each.

All the experts were identified from academia with a minimum of 3 years of research

experience. Most were having a Ph.D. except few research students and research assistants

who were pursuing Ph.D with bachelors’ or masters’ degree in science or technology. The

experts or researchers were so chosen that their active areas of research perfectly match

with the topics of seed papers. Among 65 researchers, there were 12 professors, 9 associate

professors, 24 assistant professors, 13 senior research students, and the remaining 7 were

research assistants.

All experts were from reputed institutions like Indian Institute of Technology Kharag-

pur, Indian Institute of Technology Roorkee, Indian Institute of Technology (BHU) Varanasi,

Central University Hyderabad, Manipal University, and Banaras Hindu University (BHU).

The age range of all professors are in the range of [48-55], age range of associate professors

are in between [43-47], assistant professors are having an age of [36-41], senior research

students are in the age range of [28-31], and remaining research assistants are having an

age range of [29-33]. The overall gender distribution of male and female experts were 44

and 21, respectively.

The experts check the titles, abstracts, authors, year of publication, and recom-

mended venues of the papers. An expert assigns an appropriate relevance value (r) to

each recommended venue as she deems the quality of the match between the scope of the

recommended venue and the topic of the seed paper as below.

Relevance (r) =


2 perfectly matching

1 partial matching

0 otherwise

(3.8)

However, as precision is defined for binary relevance only, during precision score
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computation, relevance grade 2 is only considered relevant, and both relevance grade 1

and 0 non-relevant.

3.4.5 Parameter Tuning and Optimization

DISCOVER has a few essential parameters during its process pipeline as follows.

(i) Number of top-k papers for identifying I (Refer Sec. 3.3.5)

(ii) Number of papers without citation history (t2) (Refer Fig. 3.2 and Sec. 3.3.4)

(iii) Vector dimension for LDA (Refer Sec. 3.3.8)

Impact of Top-k Papers on Selection of I

To identify the paper of interest (I), one for each component, the number of papers

extracted after finding the title and keyword similarity is an important parameter to our

system. Initially, we test with top 5 papers based on the cumulative score (of title and

keywords matching). We then test with 10, 15, 20, 25 and 50 respectively and observe

that there were not much changes on the selection of I after top-10 papers. Hence, k = 10

is considered for abstract similarity.

Impact of t2 on Reccommendation Order

We also experimentally test the effect of the number of papers (t2) selected from Set-II

to perform abstract similarity. We changed the value of t2 from 5 to 50. The upper limit

is taken as 50 to offer equal opportunity to Set-II as given to Set-I (on an average the

main path analysis results in 45-85 number of papers). However, it is noticed that after

15 papers, there was no major change in the recommended order, and hence, t2 is set to

15.

Impact of Vector Dimension on Final Recommendation

In order to find the appropriate value of dimension (no. of topics) for LDA, we tried with

the values{10, 50, 100, 200}. It is observed that the model performs best when the value

of the vector dimension is 100. While considering the vector dimension as 200 it performs

the second-best and shows the worst performance at vector dimension 10. Although 100
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may not be ‘the best’ value for dimension, at the coarse level, this is the optimized number

of dimensions.

To comprehensively evaluate our proposed method and more specifically, to address

the broad research questions (RQs) discussed in Sec. 1.5, we prefer to examine the fol-

lowing sub-queries (SQs):

SQ1: How effective is DISCOVER in comparison to other state-of-the-art methods and

other freely available online services?

SQ2: How is the quality of venues recommended by DISCOVER in comparison to other

state-of-the-art methods in terms of H5-index of recommended venues?

SQ3: How does DISCOVER handle cold-start issues for new researchers and new venues

and also the issues like data sparsity, scalability, diversity, and stability?

3.4.6 Baseline Methods

Performance of DISCOVER is compared with the eight state-of-the-art methods (Sec. 2.8.1).

Comparison with Other Freely Available On-line Services

(a) EJF: The system uses NLP and Okapi BM25 to recommend journals based on title

and abstract of the seed paper [50].

(b) SJS: It is also a freely available online service which could provide journals recom-

mendation based on the input title, abstract and field of study of the seed paper.

We also compare our results against EJF and SJS in terms of metrics discussed

in Sec. 2.6. For comparison, recommendations from DISCOVER are restricted to only

Elsevier and Springer journals.

3.5 Results and Discussions

The performance of DISCOVER against the existing state of the art methods and freely

available on-line services EJF and SJS respectively are reported. For clarity and easy

understanding, we provide the results and discussion in two steps as given below. We also
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Table 3.3: Accuracy@k and MRR results comparison of FOS “CS”

Approach Acc@3 Acc@6 Acc@9 Acc@12 Acc@15 MRR

FB 0.013 0.027 0.069 0.097 0.180 0.022

CF 0.027 0.041 0.097 0.138 0.208 0.025

CN 0.027 0.069 0.097 0.152 0.236 0.029

CBF 0.041 0.097 0.166 0.222 0.291 0.038

CF+CBF 0.053 0.102 0.179 0.237 0.319 0.047

RWR 0.055 0.111 0.180 0.236 0.347 0.058

PVR 0.083 0.125 0.208 0.277 0.388 0.062

PAVE 0.125+ 0.194+ 0.250+ 0.291+ 0.416+ 0.093+

DISCOVER 0.222* 0.347* 0.472* 0.541* 0.708* 0.167*

‘*’ denote statistically significant results over the second best (‘+’)

conduct paired-samples t-test on overall precision, nDCG, Accuracy, and MRR for both

CS and BIO between DISCOVER and the second-best performers. Only p values less

than 0.05 were considered statistically significant at 5% level of significance (α =0.05).

During the assessment, stistically significant results and the second-best performer

are marked by the ‘*’ and ‘+’ symbol in each position.

3.5.1 Offline or Coarse-level Evaluation

Venue-prediction accuracy of DISCOVER is measured on both CS and BIO domains at

different recommended ranks (@3, @6, @9, @12, and @15) in Table 3.3 and Table 3.4

respectively. Prediction accuracy of DISCOVER is the best among all at all levels in

the domain of both CS and BIO. Also, the scores are statistically significant from the

second-best scores.

Our approach is not biased either in favor of CS or against BIO. Both the collections

are also comparable (CS has 15,641,658 papers, while BIO 14,785,486 papers). But at

early positions, the system performs inferior for BIO due to possibly the following reason.

We observe that in BIO domain higher number of papers are shortlisted after abstract

similarity calculation (70-110 in comparison to 60-100 in CS) leading to the higher number

of journals in the candidate set of recommendations (Table 3.14). BIO journals are found

to have larger scope covering diverse topics of papers. Hence it becomes difficult for

DISCOVER to correctly predict the original journal at early ranks as a lot of BIO journals

share overlapping scopes. The phenomenon is substantially less prominent in CS dataset,
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Table 3.4: Accuracy@k and MRR results comparison of FOS “BIO”

Approach Acc@3 Acc@6 Acc@9 Acc@12 Acc@15 MRR

FB 0.000 0.020 0.062 0.104 0.187 0.021

CF 0.000 0.044 0.104 0.166 0.229 0.028

CN 0.020 0.062 0.125 0.187 0.250 0.030

CBF 0.020 0.083 0.125 0.187 0.270 0.032

CF+CBF 0.032 0.097 0.136 0.203 0.291 0.044

RWR 0.041 0.083 0.145 0.229 0.312 0.036

PVR 0.041 0.104 0.187 0.250 0.354 0.039

PAVE 0.056+ 0.145+ 0.229+ 0.354+ 0.437+ 0.067+

DISCOVER 0.128* 0.223* 0.328* 0.491* 0.697* 0.163*

‘*’ denote statistically significant results over the second best (‘+’)

possibly leading to better performance there.
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Figure 3.12: Sub-domain wise precision@k calculation (CS)

FB and CF methods exhibit the worst performances and are unable to predict at all

at the 3-recommendations level. As far as MRR scores are concerned, DISCOVER displays

the best, and in case of BIO, the score is more than double of its nearest competitor.

We have also investigated the efficacy of the proposed model DISCOVER in terms
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Table 3.5: F-measure (F1) analysis of FOS “CS”

Approach F1@3 F1@6 F1@9 F1@12 F1@15

FB 0.004 0.021 0.032 0.029 0.024

CF 0.007 0.029 0.037 0.034 0.031

CN 0.010 0.041 0.068 0.056 0.052

CBF 0.013 0.049 0.083 0.079 0.075

CF+CBF 0.016 0.053 0.098 0.093 0.088

RWR 0.018 0.058 0.103 0.109 0.102

PVR 0.023 0.064 0.194 0.176 0.153

PAVE 0.059+ 0.119+ 0.243+ 0.213+ 0.196+

DISCOVER 0.147* 0.197* 0.363* 0.341* 0.335*

‘*’ denote statistically significant results over the second best (‘+’)

Table 3.6: F-measure (F1) analysis of FOS “BIO”

Approach F1@3 F1@6 F1@9 F1@12 F1@15

FB 0.000 0.018 0.031 0.030 0.027

CF 0.000 0.026 0.039 0.038 0.034

CN 0.007 0.038 0.071 0.063 0.058

CBF 0.009 0.041 0.075 0.068 0.067

CF+CBF 0.012 0.046 0.078 0.064 0.059

RWR 0.014 0.048 0.097 0.093 0.091

PVR 0.018 0.059 0.183 0.168 0.147

PAVE 0.053+ 0.108+ 0.237+ 0.218+ 0.193+

DISCOVER 0.119* 0.186* 0.327* 0.314* 0.308*

‘*’ denote statistically significant results over the second best (‘+’)

of F −measuremacro (F1) on both CS and BIO domains, as defined in Eqn. 2.25. Note

that here, precision is considered only for the original venues, i.e., non-zero precision

comes only if a system within top-15 recommendations recommends the original venue.

In both CS and BIO domains, DISCOVER outperforms other state-of-the-art methods at

all ranks (Table 3.5 and Table 3.6). Similarly, the second-best performance is exhibited

by PAVE, whereas FB performs the worst in both CS and BIO. F1 scores are generally

seen to increase with rank up to a certain point (around 9-12) and drop after that. This

is possible since precision and recall both increase till that point until the original venues

are retrieved, causing an increase in the F1 score. However, with further increase in ranks,

precision drops sharply without much increase in recall leading to an overall drop in F1

scores. Here also DISCOVER outperforms in terms of F1 measure in comparison to other
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state-of-the-art methods.

3.5.2 Online or Finer-level Evaluation

The performances of different systems along with DISCOVER in individual sub-domains

of CS (12 sub-domains) and BIO (6 sub-domains) according to different metrics are dis-

cussed below.

Precision@k

The precision scores of DISCOVER and other state-of-the-art methods of 12 sub-domains

under FOS CS are shown in Fig. 3.12 and Fig. 3.13 and for 6 sub-domains of BIO in

Fig. 3.14.
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Figure 3.13: Sub-domain wise precision@k calculation (CS)

DISCOVER outperforms other state-of-the-art methods consistently according to

precision@k in 9 sub-domains, namely, CV, ML, IR, NLP, IP, WSN, AI, PDS, and SC.

It exhibits an average performance in domains SE, MM, and DM. In the case of BIO,

DISCOVER outperforms others in all 6 sub-domains: CB, AN, IM, TX, BI, and PL.
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Figure 3.14: Sub-domain wise precision@k calculation (BIO)
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Figure 3.15: Sub-domain wise precision@k calculation (CS)
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To compare against freely available online services such as EJF and SJS, recom-

mendations of DISCOVER are restricted to only the Elsevier and Springer journals (See

Fig. 3.15 and Fig. 3.16). In CS, precision@k scores of DISCOVER (Elsevier) exceed that

of EJF in 10 sub-domains (AI, IR, PDS, WSN, IP, MM, SC, NLP, ML, and DM) except

in SE and CV sub-domains where DISCOVER could not show good performances.
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Figure 3.16: Sub-domain wise precision@k calculation (CS)

Similarly DISCOVER (Springer) exceeds SJS in 10 sub-domains (AI, PDS, WSN,

IP, CV, MM, SC, NLP, ML, and DM) except IR and SE (Fig. 3.15 and Fig. 3.16).

In the case of BIO, DISCOVER (Elsevier) exceeds EJF in 5 sub-domains (IM, AN,

TX, BI, and PL) other than domain CB (Fig. 3.17). However, DISCOVER (Springer)

outperforms SJS in all sub-domains of BIO. Interestingly, DISCOVER (Springer) exhibits

the best performance in CB there.

Overall Results of Precision@k

When we compute the overall precision taking the average of precision values over 12 sub-

domains of CS at a given rank (3, 6, 9, 12 and 15), DISCOVER outshines other methods

at all ranks (Table 3.7). PAVE is the second-best performer and mostly outplays other
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Figure 3.17: Sub-domain wise precision@k calculation (BIO)

baseline methods. As the second-best, PVR outperforms PAVE only for precision@3.

Among the low-performers, CN fares badly at position (P@3) but does better than CBF

at all other positions. FB method performs the worst compared to all other methods

except at position 6 (P@6).

For BIO, the same exercise was done (Table 3.8) with similar results. DISCOVER is

consistently better than all other methods at all positions, and PAVE is the second-best

performer among other baseline methods.

nDCG@k

As explained earlier, nDCG captures the performance for graded relevance of venues. In

terms of nDCG, DISCOVER is ahead of other state-of-the-art methods consistently in 9

sub-domains (CV, ML, IR, NLP, IP, WSN, AI, PDS, and SC) (Fig. 3.18 and Fig. 3.19)

except SE, MM, and DM. DISCOVER shows consistent performances in terms of preci-

sion@k and nDCG@k in 9 sub-domains out of 12 sub-domains in CS.

For BIO, (Fig. 3.20), DISCOVER defeats other state-of-the-art methods consistently

in 5 sub-domains such as CB, AN, BI, TX, and PL except for IM where it shows an average
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Table 3.7: Overall precision (P@k) results (CS)

Methods P@3 P@6 P@9 P@12 P@15

FB 0.541 0.581 0.583 0.585 0.590

CF 0.578 0.574 0.584 0.598 0.604

CN 0.615 0.625 0.629 0.631 0.632

CBF 0.634 0.618 0.612 0.605 0.609

RWR 0.638 0.620 0.615 0.613 0.615

CF+CBF 0.659 0.642 0.641 0.630 0.627

PVR 0.689+ 0.666 0.643 0.631 0.622

PAVE 0.666 0.671+ 0.648+ 0.635+ 0.637+

DISCOVER 0.778* 0.733* 0.697* 0.685* 0.684*

‘*’ denote statistically significant results over the second best (‘+’)

Table 3.8: Overall precision (P@k) results (BIO)

Methods P@3 P@6 P@9 P@12 P@15

FB 0.527 0.541 0.551 0.549 0.561

CF 0.540 0.549 0.556 0.557 0.563

CN 0.598 0.606 0.605 0.604 0.611

CBF 0.639 0.628 0.627 0.622 0.622

RWR 0.652 0.641 0.620 0.612 0.611

CF+CBF 0.653 0.654 0.641 0.634 0.626

PVR 0.670 0.661 0.637 0.629 0.632

PAVE 0.718+ 0.682+ 0.656+ 0.645+ 0.641+

DISCOVER 0.794* 0.753* 0.727* 0.717* 0.706*

‘*’ denote statistically significant results over the second best (‘+’)

performance.

In terms of nDCG@k, both DISCOVER (Elsevier) and DISCOVER (Springer) do

much better their counterparts, namely EJF and SJS in 10 sub-domains (MM, SC, ML,

IP, DM, IR, WSN, SE, PDS, and AI) other than SC and CV in the CS domain (Fig. 3.21

and Fig. 3.22).

For BIO, DISCOVER (Elsevier) excels over EJF in all 6 sub-domains while DIS-

COVER (Springer) outranks SJS in 4 sub-domains (CB, BI, IM and AN) except TX and

PL (Fig. 3.23).
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Figure 3.18: Sub-domain wise nDCG@k calculation (CS)
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Figure 3.19: Sub-domain wise nDCG@k calculation (CS)
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Figure 3.20: Sub-domain wise nDCG@k calculation (BIO)
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Figure 3.21: Sub-domain wise nDCG@k calculation (CS)
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Figure 3.22: Sub-domain wise nDCG@k calculation (CS)

0 3 6 9 12 15
Top K papers

0.60

0.65

0.70

0.75

0.80

0.85

0.90

nD
CG

@
K

Computational Biology

0 3 6 9 12 15
Top K papers

0.60

0.65

0.70

0.75

0.80

nD
CG

@
K

Bio Chemistry

0 3 6 9 12 15
Top K papers

0.6

0.7

0.8

0.9

nD
CG

@
K

Paleontology

0 3 6 9 12 15
Top K papers

0.55

0.60

0.65

0.70

0.75

0.80

nD
CG

@
K

Immunology

0 3 6 9 12 15
Top K papers

0.55

0.60

0.65

0.70

0.75

0.80

0.85

nD
CG

@
K

Anatomy

0 3 6 9 12 15
Top K papers

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

nD
CG

@
K

Toxicology

DISCOVER(Springer)DISCOVER(Elsevier)SpringerElsevier

Figure 3.23: Sub-domain wise nDCG@k calculation (BIO)
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Table 3.9: Overall nDCG@k results (CS)

Methods nDCG@3 nDCG@6 nDCG@9 nDCG@12 nDCG@15

FB 0.541 0.586 0.622 0.687 0.772

CF 0.583 0.588 0.625 0.693 0.784

CN 0.616 0.624 0.647 0.712 0.802

CBF 0.643 0.640 0.664 0.717 0.804

RWR 0.644 0.646 0.674 0.735 0.812

PVR 0.687 0.686 0.702 0.753 0.828

CF+CBF 0.688+ 0.691+ 0.709 0.730 0.779

PAVE 0.672 0.688 0.714+ 0.771+ 0.840+

DISCOVER 0.783* 0.765* 0.770* 0.802* 0.872*

‘*’ denote statistically significant results over the second best (‘+’)

Overall Results of nDCG@k

Average nDCG@k over 12 sub-domains of CS are depicted in Table 3.9. DISCOVER

exceeds all other baseline methods with PAVE being the second-best except at position 3

and 6 (nDCG@3 and nDCG@6). CF+CBF performs better than PAVE only at positions

3 and 6. Afterward its shows a lower nDCG than both PVR and PAVE methods. Among

the rest, RWR performs better than CBF, CN, CF, and FB with FB being the worst

performer.

Table 3.10: Overall nDCG@k results (BIO)

Methods nDCG@3 nDCG@6 nDCG@9 nDCG@12 nDCG@15

FB 0.538 0.544 0.543 0.579 0.578

CF 0.541 0.558 0.571 0.601 0.609

CN 0.575 0.589 0.617 0.628 0.626

CBF 0.656 0.658 0.666 0.657 0.642

RWR 0.648 0.642 0.654 0.637 0.627

CF+CBF 0.664 0.661 0.675 0.669+ 0.643

PVR 0.631 0.631 0.642 0.657 0.653+

PAVE 0.685+ 0.686+ 0.678+ 0.660 0.648

DISCOVER 0.760* 0.742* 0.752* 0.743* 0.740*

‘*’ denote statistically significant results over the second best (‘+’)

In BIO, there is a clean sweep for DISCOVER in terms of nDCG irrespective of

positions (Table 3.10). PAVE exhibits the second-highest performance.
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Table 3.11: Diversity (D) and Stabilty (MAS) of DISCOVER and other approaches

Methods D (CS) D (BIO) MAS (CS) MAS (BIO)

FB 0.227 0.241 9.961 9.864

CF 0.387 0.355 8.936 8.873

CN 0.281 0.274 9.784 9.862

CBF 0.219 0.206 5.887 6.045

RWR 0.312 0.322 8.992 9.137

CF+CBF 0.394 0.369 5.639+ 5.582+

PVR 0.403+ 0.397+ 8.236 8.179

PAVE 0.327 0.319 8.863 8.761

DISCOVER 0.519* 0.503* 4.758* 4.695*

‘*’ denote statistically significant results over the second best (‘+’)

3.5.3 Evaluation of Diversity

Diversity is defined in terms of content dissimilarity. We group all papers published at

a particular venue and extract their corresponding keywords. We apply the similarity

score in Eqn. 2.29 in the definition of diversity (Table 3.11). DISCOVER is seen to show

the best diversity, and its performance gap with the second-best (PVR) is statistically

significant (at 5% level) for both CS and BIO as shown in Table 3.11.

3.5.4 Evaluation of Stability

We have also provided a comprehensive investigation of the stability of the proposed

DISCOVER, as defined in Eqn. 2.30. DISCOVER shows the minimum MAS than all

other standard approaches (Table 3.11). It shows a MAS of 4.758 for CS, meaning that

on an average, every predicted venue will shift by a position of 4.758 after adding new

data into the training data of the system. Similarly, it shows a MAS of and 4.695 for BIO.

We have considered the average MAS-score as a threshold to decide whether a particular

method provides stability or not.

3.5.5 Ablation Study and Analysis

We also conduct an ablation study to showcase the contribution of different components

(major modules) on the performance of DISCOVER from different perspectives. The pre-

cision, MRR, accuracy, nDCG, diversity, stability and H5-Index obtained by DISCOVER
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Table 3.12: Ablation study on DISCOVER

Method Acc@15 MRR P@15 nDCG@15 Diversity MAS H5-Index

D-KBS 0.476+ 0.084 0.378+ 0.476 0.481 7.924 89

D-SNA 0.589 0.128 0.469 0.594 0.296 4.986 69+

D-Title 0.631 0.152 0.601 0.798 0.508 5.321 93

D-Keyword 0.512 0.103 0.435 0.567 0.506 5.872 91

D-CA 0.497 0.082+ 0.393 0.473+ 0.318+ 4.935 79

D-MPA 0.612 0.149 0.511 0.695 0.417 6.851 67

D-Abstract 0.409 0.069 0.361 0.451 0.506 7.693+ 86

DISCOVER (D) 0.713 0.163 0.679 0.864 0.508 4.631 98

The top-most contributing components and the second-best are marked by ‘bold-face’ and ‘+’ respectively

and when one component is removed therefrom at a time are shown in Table 3.12. In

the Method column, KBS, SNA, CA, and MPA denote keyword-based search strategy,

social network analysis, citation analysis, and main path analysis methods, respectively.

The rows represent performance of the entire DISCOVER system and when a module is

removed from DISCOVER in turn. Acc, MRR, and P denote Accuracy, Mean Reciprocal

Rank, and Precision.

More significantly different components of the model have different effects on various

assessment steps. As can be seen from the table, the use of keyword-based strategy and

the similarity of abstract-based model is very important: if it is withdrawn, both accuracy

and precision drop dramatically by almost 30 percent. Citation analysis is also a necessary

component that contributes the most to achieving the model’s MRR and nDCG as evident

from the largest drop in nDCG. Similarly, the largest drop happens for diversity when the

social network analysis module is removed. We find that eliminating a search strategy

based on a single component keyword from the model results in drops of up to 3.3 MAS

points across both CS and BIO domains. When the main path analysis module is removed,

we see a similar decrease in the overall standard of venues in terms of the H5-Index. These

findings illustrate the importance of, and, thus justify combining multiple modules from

different contexts in DISCOVER.

The objective of DISCOVER is to reduce total computation cost in recommendation

besides addressing the issues of sparsity, diversity, and stability. Hybrid binary tree archi-

tecture with a keyword-based search strategy is adopted in the initial stage. In a variety

of ways, we use link and content similarity-based methods to boost the model’s relevance.
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Social network analysis using different centrality measures and content characteristics of

a paper such as title and keywords are used in the proposed system to capture important

terms and relevance of other papers. Main path analysis, which tracks the most significant

paths in a citation network, is used to provide conceptually similar papers to a given seed

paper. Finally, abstract matching is performed only on a small set of papers carefully

filtered through a pipeline of steps. Total computational overhead does not, therefore,

substantially increase with increase in the number of papers. Each module has its own

significance and they complement each other in a cascaded manner to generate the final

recommendation.

3.5.6 Study of the Proposed Approach

Here we revisit the sub-queries (SQs) pertaining to the broad RQs that we started with

along with our observations.

SQ1: How Effective is DISCOVER in Comparison to Other State-Of-The-Art

Methods?

We see the performance of DISCOVER vis-a-vis the other methods for each of the sub-

domains of CS and BIO dataset in detail (Fig. 3.12, Fig. 3.13, Fig. 3.14, Fig. 3.15,

Fig. 3.16,Fig. 3.17, Fig. 3.18, Fig. 3.19, Fig. 3.20, Fig. 3.21, Fig. 3.22, Fig. 3.23). Also

we measure the overall performance of DISCOVER over all sub-domains taken together.

The overall results of precision@k, nDCG@k, accuracy and MRR as shown in Tables 3.3,

3.4, 3.5, 3.6, 3.7, 3.8, 3.9, and 3.10 are statistically significant (paired-samples t-test

at α=0.05) over other approaches in both the domains of CS and BIO.

SQ2: How is the Quality of Venues Recommended by DISCOVER?

The venues recommended by DISCOVER are of high quality as compared to other state

of the art methods. including EJF and SJS recommendations (Fig. 3.24a, Fig. 3.24b,

Fig. 3.25a and Fig. 3.25b). The average H5-index of DISCOVER shows the highest aver-

age value of 97 while recommending first venues, 86 while recommending the 3rd venue,

then slightly downgrades and ends with a H5-index of 70 at position 15 in domain CS as

depicted in Fig. 3.24a. In BIO, DISCOVER shows the highest average H5-index of 108
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Figure 3.24: (a) Average venue quality (CS) (b) Average venue quality (BIO)

while recommending the 7th venue as shown in Fig. 3.24b. DISCOVER (Elsevier) recom-

mending similar venues with EJF except for few positions (1st and 7th) recommendation

in the domain of CS where DISCOVER is better (Fig. 3.25a). The average H5-index

of DISCOVER (Elsevier) is 75 whereas the average H5-index of EJF is 71. Similarly

DISCOVER (Elsevier) performs better than EJF with an average H5-index of 94 in the

domain of BIO (Fig. 3.25b).
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Figure 3.25: (a) Average venue quality of EJF and SJS(CS) (b) Average venue quality of

EJF and SJS (BIO)
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Table 3.13: MRR results of proposed DISCOVER and other approaches

Approach MRR

2<=vc<8 8<=vc<15 15<=vc 2<=pc<8 8<=pc<15 15<=pc

FB 0.017 0.025 0.029 0.019 0.023 0.027

CF 0.024 0.026 0.030 0.022 0.027 0.029

CN 0.026 0.029 0.035 0.023 0.032 0.030

CBF 0.032 0.039 0.038 0.027 0.037 0.038

CF+CBF 0.038 0.049 0.056 0.044 0.043 0.046

RWR 0.039 0.046 0.048 0.028 0.038 0.041

PVR 0.042 0.051 0.056 0.035 0.042 0.044

PAVE 0.096+ 0.108+ 0.115+ 0.096+ 0.104+ 0.109+

DISCOVER 0.147* 0.176* 0.180* 0.164* 0.169* 0.171*

‘*’ denote statistically significant results over the second best (‘+’)

SQ3: How does DISCOVER Handle Cold-start Issues for New Researchers

and New Venues and Other Issues?

The overall comparison on various issues, including cold start issues, are listed in Ta-

ble 3.15.

(i) Cold-start Issues: We take the average MRR of both CS and BIO in all 6 cate-

gories mentioned in Sec. 3.4.4. The analysis in Table 3.13 shows that, even if the

seed paper related to a new venue and new researcher, DISCOVER could predict

the original venue at early ranks. It does not require past publication records or

co-authorship networks for the recommendations. It considers only the current area

of interest along with the title, keywords, and abstract as inputs to recommend the

same.

Table 3.14: Step-wise papers filtration of both CS and BIO

Steps No. of papers (CS) No. of papers (BIO)

Original Dataset 15,641,658 14,785,486

Data preprocessing (Training) 10,424,960 9,961,893

Keyword-based search 5k-13k 4k-11.5k

Centrality measure calculation 2k-5k 1.5k-4k

Co-citation score computation 800-2k 500-1.5k

Main path analysis 45-85 55-95

Abstract Matching 60-100 70-110

(ii) Data Sparsity: To specifically address data sparsity issue, social network analysis

through various centrality measures and content features of a paper like abstract,
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Table 3.15: Issues involved in DISCOVER and other compared approaches

Methods Cold-start Sparsity Diversity Stability

FB yes (new researcher) no yes yes

CF yes (researcher and venue) yes no yes

CN yes (new venue) no yes yes

CBF yes(new venue) no yes no

RWR yes (new researcher) no yes yes

CF+CBF yes (researcher and venue) yes no no

PVR yes (researcher and venue) yes no yes

PAVE yes(new researcher) no yes yes

EJF yes(new venue) no yes no

SJS yes(new venue) no yes no

DISCOVER no no no no

title, and keywords were exploited to capture the strength of both significance and

relevance, respectively. It has been observed that the average number of papers

found after keyword matching are in the range of 5k-13k and 4k-11.5k for CS and

BIO, respectively. Table 3.14 displays the stepwise filtration of papers of both CS

and BIO. After the initial filtering, we are left with meaningful papers for further

computation, which are close to the area of interest. Hence there is no data sparsity

issue in our proposed approach, as mentioned in Table 3.15.

(iii) Computational Costs: In DISCOVER reduction of computational costs has been

prioritized. It applies the main path analysis to extract only relevant and conceptu-

ally related papers. As shown in Table 3.14, there is more than 90% reduction after

the initial step of the keyword-based search, and there is a substantial reduction

in further steps as well. Table 3.14 shows the average number of papers involved

in each step of the proposed approach. We believe that the proposed system will

show a satisfactory performance with a larger dataset. Even a substantial increase

in dataset size will not impact the overall computation time by much and therefore

does not suffer from scalability issue.

(iv) Diversity: Several steps are taken to ensure diversity in the result set. We use

both link and content similarity-based techniques at a number of places. Also, the

main path analysis, that traces the most significant paths in a citation network

captures conceptually related papers to a given seed paper. Integration of these
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approaches can provide recommendations from diverse publishers, as evidenced by

Table 3.11. DISCOVER shows the highest value of D (diversity) as compared to all

other approaches.

(v) Stability: We build a content-aware recommender system based on the title, key-

words, and abstract similarities. During the initial stages, centrality measures are

calculated, and thereafter, the textual content similarity is computed to find the

related papers. Ranking of venues is done at a very later stage from a collection of

related papers filtered out in a long pipeline. The addition of new papers, therefore,

do not affect the order of recommendations. In all these batteries of techniques to-

gether provide stability to the recommendations. DISCOVER shows the minimum

MAS than all other standard approaches (Table 3.11).

3.5.7 Some Insights

Overall good scores discussed in Sec. 3.5.2 and Sec. 3.5.1 showcase the efficacy of the

proposed DISCOVER for venue recommendation. However, there are few limitations as

follows.

(i) The proposed system may not recommend relevant venues with less than 3 to 5

domain-specific keywords. As a result, DISCOVER displays average performance

in terms of precision@k in few sub-domains like SE, MM, and DM as depicted in

Fig. 3.12 and Fig. 3.13.

(ii) If there are an insufficient number of related papers, the proposed system may fail to

capture the relevant papers resulting in possibly irrelevant venue recommendations.

Due to these constraints, DISCOVER exhibits the worst performance of precision

against EJF in sub-domains ML, DM and against SJS in sub-domains IR and SE

as depicted in Fig 3.12 and Fig. 3.13.

(iii) The proposed approach displays the worst nDCG against EJF as depicted in Fig. 3.22.

The minimum number of related papers of a specific sub-domain required for good

recommendation is found to be in the range of 1k-2k.

(iv) The proposed system hence exhibits the worst nDCG against both EJF and SJS

in sub-domain CV as depicted in Fig. 3.22. The system could recommend relevant
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venues if the citation network is strongly connected.

3.6 Conclusions

Academic venue recommendation is an emerging area of research in recommendation sys-

tems. The set of proposed techniques are few in numbers, and they suffer from several

problems. One of the major issues is that of cold-start having two sub-parts: that for

new venues and new researchers. Also, there exist other issues of sparsity, diversity, and

stability that are hitherto not adequately addressed by existing state-of-the-art methods.

This paper proposes a diversified yet integrated social network analysis and contextual

similarity-based scholarly venue recommender (DISCOVER) system that reasonably ad-

dresses all the above-mentioned issues. It is developed taking into account recent advances

in social network analysis incorporating centrality measure calculation, citation and co-

citation analysis, topic modeling based contextual similarity, and main path analysis of a

bibliographic citation network.

To assist in identifying relevant research outlets, contextual similarity through a hy-

brid approach of both topic modeling and matrix factorization techniques are adopted.

We conducted an extensive set of experiments on a real-world dataset: MAG, and demon-

strated that DISCOVER consistently outperforms the state-of-the-art methods and other

freely available online services such as EJF and SJS. On two different domains of field

(CS and BIO), DISCOVER shows significantly better scores of precision@k, nDCG@k,

accuracy, MRR, F − measuremacro, diversity, and stability than other state-of-the-art

methods. DISCOVER also suggests high-quality venues as compared to state-of-the-

art methods and other freely available online services such as EJF and SJS in terms of

H5-index. Nonetheless, there is scope for future study in this direction. We plan to

experiment with other datasets and to extend it to multiple disciplines with the goal of

improving accuracy, novelty, coverage, and serendipity. We would also like to investigate

the same with the help of heterogeneous bibliographic information network with meta

path features.
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