TABLE OF CONTENTS

CERTIFICATE	i
DECLARATION BY THE CANDIDATE	ii
COPYRIGHT TRANSFER CERTIFICATE	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	vii
LIST OF FIGURES	X
LIST OF TABLES	xiv
LIST OF ABBREVIATIONS	XV
PREFACE	xix
CHAPTER 1: INTRODUCTION	1-37
1.1 REMOTE SENSING	1
1.2 INTERACTION OF RADIATION WITH MATTER	8
1.2.1 General principles	8
1.2.2 Interaction of radiation with the atmosphere	5
1.3 ACTIVE AND PASSIVE SENSING	8
1.4 WHY MICROWAVE FOR REMOTE SENSING?	9
1.5 A BRIEF OVERVIEW OF MICROWAVE SENSORS	11
1.6 REVIEW OF LITERATURE	14
1.7 STATEMENT OF PROBLEM	32
1.8 RESEARCH OBJECTIVES	35
1.9 ORGANISATION OF THESIS	36
CHAPTER 2: EXPERIMENTAL DETAILS	38-49
2.1 BISTATIC SCATTEROMETER MEASUREMENT SYSTEM	38
2.2 CROP GROWTH PARAMETERS MEASUREMENT	43
2.2.1 Fresh biomass (FBm) and vegetation water content (VWC) measurement	43
2.2.2 Leaf area index (LAI) measurement	45
2.2.3 Plant height (PH) measurement	45
2.3 SOIL SURFACE PARAMETERS MEASUREMENTS	45
2.3.1 Soil moisture content measurement	45

2.3.1.1 Requirements	46
2.3.1.2 Procedure to determine the soil moisture content	46
2.2.1.3 Soil moisture content computation	46
2.2.2 Surface roughness measurement	46
2.2.2.1 Root mean square (RMS) height (s) measurement	47
2.2.2.2 Auto correlation function and correlation length measurement	47
CHAPTER 3: BISTATIC SPECULAR SCATTERING MEASUREMENTS FOR	50-74
THE ESTIMATION OF RICE CROP GROWTH VARIABLES	
USING FUZZY INFERENCE SYSTEM AT X-, C-, AND L-BAND	S
3.1 INTRODUCTION	50
3.2 EXPERIMENTAL DETAILS	54
3.3 METHODS	55
3.3.1 Brief description about fuzzy inference system (FIS)	55
3.3.2 Subtractive based clustering	55
3.4 RESULTS AND DISCUSSION	57
3.5 CONCLUSIONS	74
CHAPTER 4: STUDY OF BISTATIC SCATTERING RESPONSE OF WHEAT	75-92
CROP FOR THE ESTIMATION OF CROP GROWTH	
PARAMETERS USING A FUZZY INFERENCE SYSTEM	
AT X-, C- AND L-BANDS FOR CO-POLARIZATIONS	
4.1 INTRODUCTION	75
4.2 EXPERIMENTAL DETAILS	78
4.3 METHODS	78
4.3.1 Brief description about fuzzy inference system	78
4.3.2 Grid partition based fuzzy inference system (G -FIS)	79
4.4 RESULTS AND DISCUSSION	80
4.5 CONCLUSIONS	92
CHAPTER 5: GROUND BASED BISTATIC SCATTEROMETER	93-109
MEASUREMENT FOR THE ESTIMATION OF GROWTH	
VARIABLES OF LADYFINGER CROP AT X-BAND	
5.1 INTRODUCTION	93

5.2 EXPERIMENTAL DETAILS	95
5.3 METHODS	96
3.3.1 Brief description about S-ANFIS	96
5.4 RESULTS AND DISCUSSION	99
5.5 CONCLUSIONS	109
CHAPTER 6: ESTIMATING THE SOIL MOISTURE CONTENT VIA	10-124
SCATTERING MEASUREMENTS ALONG THE	
SPECULAR DIRECTION AT L-BAND USING	
NEURO-FUZZY INFERENCE SYSTEM	
6.1 INTRODUCTION	110
6.2 EXPERIMENTAL DETAILS	113
6.3 METHODS	114
6.3.1 G-ANFIS	114
6.4 RESULTS AND DISCUSSION	115
6.4.1 Angular variation of scattering coefficients and copolarization ratio P (dE	3) 115
for different soil moisture contents	
6.4.2 Evaluation of data sets	119
6.4.3 Estimation of soil moisture content using three different MF for G-ANFIS	S 120
6.5 CONCLUSIONS	124
CHAPTER 7: CONCLUSIONS AND FUTURE RESEARCH	25-128
7.1 CONCLUSIONS	125
7.2 FUTURE RESEARCH	128
REFERENCES 12	29-144
LIST OF PUBLICATIONS 14	45-146