CONTENTS

	Page No.
Acknowledgment	iv-v
Abstract	vi-viii
List of Tables	xiii-xiv
List of Figures	xv-xvi
List of Abbreviations	xvii
Chapter – 1: Introduction	01-10
1.1 General	01
1.2 Overburden	01
1.3 Flyash	02
1.4 Mine water	03
1.5 Occurrence of acid mine drainage	04
1.6 Statement of the Problem	06
1.7 Application of the Study	07
1.8 Objective of the Work	07
1.9 Organisation of the Chapter	09
Chapter – 2: Literature Review	11-24
2.1 Introduction	11
2.2 Impacts of opencast mining	12
2.3 Flyash	12
2.3.1 Classes of Flyash	13
2.4 Overburden	14
2.4.1 Backfilling	15
2.5 Work done in India	15
2.5.1 Flyash and flyash-mixed overburden as a backfilling material	17
2.5.2 Leaching	21
2.6 Research gap	23
Chapter – 3: Fieldwork and Methodology	25-52
3.1 Study Area	25
3.1.1 Topography	26
3.1.2 Climate, flora and fauna	26
3.2 Field investigation	29
3.2.1 Sample collection and storage	29

3.2.1.1 Collection of overburden	29
3.2.1.2 Collection of flyash	29
3.2.1.3 Collection of water sample	32
3.3 Laboratory investigation	36
3.2.1 Geochemical and mineralogical analysis of flyash, overburden, and overburden +30% flyash	36
3.3.1.1 Mineralogical analysis	39
3.3.1.2 X-ray diffraction analysis	39
3.3.1.3 X-ray fluorescence analysis	40
3.3.1.4 Scanning electron microscopy	41
3.3.2 Geo-environmental characteristics of coal and associated rocks	41
3.3.2.1 Rock-pH	42
3.3.2.2 Determination of sulfide sulfur in coal and associated rocks	42
3.3.2.3 Acid production potential	43
3.3.2.4 Acid neutralization potential	43
3.3.2.5 Physico-chemical composition of overburden	44
3.3.3.5.a Bulk density	44
3.3.3.5.b Grain size	44
3.3.3.5.c Texture analysis of overburden	44
3.3.3.5.d Determination of pH	45
3.3.3.5.e Determination of electrical conductivity	45
3.3.3.5.f Determination of organic carbon	46
3.3.3.5.g Determination of nitrogen	47
3.3.3.5.h Determination of phosphorus	47
3.3.4 Determination of trace/heavy metals of water samples, flyash, overburden and overburden+30% flyash	47
3.3.4.1 Heavy metal analysis	47
3.3.4.2 Flyash characteristics	48
3.3.5 Water quality analysis	50
3.3.6 Graphical representation of water quality data	52
3.3.6.1 Contour mapping	52
3.3.6.2 Water type and hydro-geochemical facies	52
Chapter – 4: Results and Discussion	53-124
4.1 Introduction	53
4.2 Geochemical analysis	54

4.2.1 Geochemical analysis of overburden, flyash and overburden + 30% flyash	54
4.3 Heavy metals and trace elements concentration in overburden, and overburden+30% flyash	58
4.4 Mineralogical analysis	61
4.4.2 XRF analysis of overburden, flyash, and overburden + 30% flyash	64
4.5 Microscopic analysis of size	67
4.5.1. SEM analysis of overburden, flyash, and overburden $+$ 30% flyash	67
4.6 Physico-chemical characteristics of water quality	77
4.7 Application of work in field: case studies	85
4.7.1 Basic description of experiment	85
4.7.1.1 Leaching experiments parameters	86
4.7.1.2 Design and fabrication of experimental setup for rock - water interaction study	87
4.7.2 Case Study 1: Rainwater analysis and observation	88
4.7.3 Case Study 2: Gorbi abandoned mine	91
4.7.3.1 When mine is abandoned and filled with highly acidic mine water	91
4.7.3.2 Determination of mine water quality in Gorbi abandoned mine	92
4.7.4. Case study 3a - Amlohri opencast project	101
4.7.4.1 When water is acidic	101
4.7.5 Case study 3b - Jhingurdah opencast project	102
4.7.5.1 When water is acidic	102
4.7.6 Case study 4 – Dudhichua opencast project	103
4.7.6.1 When water is alkaline	103
4.8 Statistical analysis of water sample data	105
4.8.1 Correlation analysis	105
4.8.1.1 Correlation Matrix mine water for pre-monsoon season	105
4.8.1.2 Correlation Matrix mine water for post-monsoon season	105
4.9 Graphical representation of water quality data	111
4.9.1 Hydro-chemical facies	111
4.10 Contour mapping	115

Chapter – 5: Conclusions & Suggestions for Future Work	125-127
5.1. Conclusion	125
5.3. Suggestions for future work	127
References	128-133
List of publications	134