
Special Issue Article

Advances in Mechanical Engineering
2017, Vol. 9(12) 1–7
� The Author(s) 2017
DOI: 10.1177/1687814017740773
journals.sagepub.com/home/ade

Solution of time-fractional
Cahn–Hilliard equation with reaction
term using homotopy analysis method

Neeraj Kumar Tripathi1, Subir Das1, SH Ong2,3, Hossein Jafari4,5 and
Maysaa’ Mohamed Al Qurashi6

Abstract
In this article, the approximate analytical solution of the time-fractional Cahn–Hilliard equation with quadratic form of
the source/sink term is obtained using the powerful homotopy analysis method, which permits us to select a conver-
gence control parameter that minimizes residual errors. The concerned method is more general in theory and widely
valid in practice to solve nonlinear problems even for fractional order systems as it provides a convenient way to guaran-
tee the convergence of the approximate series. The results have been given to show the effect of the reaction term on
the solution profile in both fractional and standard order cases for different particular cases. The main feature of this
study is the authentication that only a few iterations are required to obtain the accurate approximate solution of the
present mathematical model. This is justified through error analysis for both fractional and standard order cases. This
striking feature of savings in time is exhibited through graphical presentations of the numerical values when the system
passes from standard order to fractional order in the presence or absence of the reaction term.

Keywords
Cahn–Hilliard equation, reaction term, fractional order derivative, homotopy analysis method, convergence analysis

Date received: 6 February 2017; accepted: 16 September 2017

Handling Editor: Xiao-Jun Yang

Introduction

Interactions between convection and diffusion and also
between diffusion and reaction cause many physical phe-
nomena. From a physical perspective, the convection–
diffusion and the reaction–diffusion processes describe a
wide variety of problems arising in many branches of
science and engineering. During the modelling of such
processes, the nonlinear partial differential equations
(PDEs) obtained provide new ideas regarding interac-
tions of nonlinearity and diffusion. The importance of
the analytical and numerical solutions of such nonlinear
diffusion problems with reaction in mathematical phy-
sics can be found in soliton theory.

The theory of fractional calculus is an old mathemat-
ical subject with a history as long as integer order calcu-
lus. Fractional differential equation has recently proved

to be an important tool for the modelling of many phe-
nomena. Comparing integer and fractional orders,
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fractional order gives us a wonderful instrument for the
description of memory and hereditary properties of var-
ious materials and processes. There are many methods,
namely, Adomian decomposition method,1 modified
decomposition method,2,3 homotopy perturbation
method,4,5 variational iteration method,6–8 differential
transformation method,9,10 collocation methods11–13

and Galerkin finite element method14 for the analytical
or numerical solution of fractional differential equa-
tions. One of the strongest analytical methods for sol-
ving nonlinear problems is the homotopy analysis
method (HAM), which was first introduced by the
Chinese mathematician S. J. Liao using the basic ideas
of homotopy in topology. Later, he improved the
method greatly in stages and finally it has become an
important and efficient tool for solving nonlinear prob-
lems. The advantage of the concerned method over the
other existing analytical methods is that it provides us
great flexibility to choose the auxiliary operator and ini-
tial guess. The main advantage of the method is that
the convergence control parameter used provides a con-
venient way to guarantee the convergence of the
approximate series solution.

In 1958, the classical Cahn–Hilliard equation (C-H
equation) introduced by American scientists JW Cahn
and J Hilliard15 is one of the most studied models of
mathematical physics. The equation is related to a
number of physical phenomena like the spinodal
decomposition, phase separation and phase ordering
dynamics. This equation of mathematical physics
describes the process of phase separation by which the
two components of a binary fluid are spontaneously
separated. The essential property of the equation is that
the interface between two phases is not sharp but has a
finite thickness in which the composition changes gra-
dually. Thus, it is said that the equation describes the
temporal evolution of conserved fields. A generaliza-
tion of the mathematical model capable of describing a
phase separation in the C-H theory can be found in
Berti and Bochicchio16 where this is achieved without
loss of generality by taking the potential function as
V (u)= (1=4)(1� u2)2 and combining the function V

with the boundary penalty to form the energy func-
tional of a particular configuration as

F (u(x, t))=
(1� u2)

2

4
� g

2
ruj j2 ð1Þ

where g is a constant that penalizes phase boundaries.
Fick’s first law states that the flux of particles in a

system is proportional to the gradient of the chemical
potential and thus

J =� Dr ∂F

∂u
ð2Þ

where D is the diffusion coefficient.

The energy changes when particles change position,
that is, the chemical potential of the system is given by

∂F

∂u
= u3 � u� g

∂2u

∂x2
ð3Þ

Now, the flux must obey a continuity equation

∂u

∂t
=Dr2 ∂F

∂u
ð4Þ

Finally, we get

∂u

∂t
= D

∂2

∂x2
u3 � u� g

∂2u

∂x2

� �
ð5Þ

The mathematical model gave a near accurate descrip-
tion of system dynamics during initial time range and
provided an acceptable physical interpretation of sys-
tem behaviour in intermediate time duration. The phys-
ical behaviour of the system in long time duration is
studied because of its slow nature of evolution. Since
the phenomena of downhill and uphill diffusion have
their mathematical roots in C-H equation, it needs to
be considered while development of models for binary
mixtures. The equation stems from diverse phenomena
like phase transition and moving process of river basin
and finds applications in a variety of fields ranging
from soft matter to complex fields. Recently, a few
researchers have been involved in coupling the phase
separation part of the equation to the Navier–Stokes
equation of fluid flow. If u (x, t) is the concentration of
the fluid with u (x, t)= 6 1 in an indicated domain,
then the equation is written as

∂ u

∂ t
=Dr2 ( u3 � u� gr2 u) +b

∂ u

∂ x
+ k u (1� u) ð6Þ

where the second term of the right-hand part is known
as advection term and the last term is the reaction term.
Modelling of nonlinear systems has gained tremendous
popularity among scientists and engineers during the
last few years as the nonlinearity phenomena are exhib-
ited by most of the systems in nature. Moreover, if the
models are of fractional order nonlinear problems, they
are in a different dimension due to their stochastic
nature. After the advent of powerful computers, vari-
ous computational techniques and approximate meth-
ods or numerical methods employing effective software
are used during the investigation of such types of prob-
lems. Generally, fractional order diffusion equations
are obtained from the classical diffusion equations by
replacing the first-order time derivative by a fractional
order a satisfying 0\a\1 , taking into the account the
fact that these are of non-Markovian nature, generate
the fractional Brownian motion and also have memory
effect. In overcoming lot of difficulties while confront-
ing the nonlinear problems in fractional order systems,
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researchers from various parts of the world have been
actively engaged to provide an excellent description of
the memory and hereditary properties of the systems.
In the case of fractional order equations, the analysis
has some unique features. The nonlinear equation is
considered first and then the theory is developed for
nonlinear fractional order problem.8,14,17–26 The advan-
tage of treating the nonlinear equation with fractional
order is that there is a possibility that the analysis will
have some unique features which will provide useful
additional insight.

Taking into account of the above facts, here we want
to introduce and study the nonlocal fractional order
C-H equations with advection and reaction terms,
which is described as

∂au

∂ ta
=D

∂2

∂ x2
u3 � u� g

∂2

∂ x2
u

� �
+b

∂ u

∂ x
+ k u (1� u)

ð7Þ

In the next phase, an endeavour has been taken to
solve this model with initial condition u (x, 0)= x

using HAM. To the best of the authors’ knowledge,
the fractional order C-H equation has not yet been
considered by any researcher. In this article, the
authors have made a sincere attempt to find the
approximate analytical solution of the equation for
different particular cases which have been depicted
through figures.

Basics of fractional calculus

The definitions and properties related to fractional cal-
culus given by B Riemann and J Liouville and also by
M Caputo are as follows.27–31

Definition 1. The Riemann–Liouville fractional integral
operator of order q.0 of a function f (x) is27,32

Jq
x f (x)=

1

G(q)

ðx
0

(x� j)q�1f (j) dj , q.0, x.0

J 0
x f (x)= f (x)

Definition 2. The Riemann–Liouville fractional deriva-
tive operator of order q.0 of a function f (x) is defined
by Oldham and Spanier33

Dq
xf (x)=

dn

dxn
J n�q

x f (x), n� 1\q� n, n 2 N

where Jq
x for f 2 Cm, m � �1, g � �1 satisfies the fol-

lowing properties

1. Jp
x Jq

x f (x)= J pþq
x f (x)= Jq

x Jp
x f (x)

2. Jp
x xg = G(g + 1)

G(p+ g + 1) x
p+ g

Definition 3. The Caputo order fractional derivative of a
function f (x) is27,32

Dq
x f (x)=

1

G(n� q)ðx
0

(x� j)n�q�1f n(j) dj, n� 1\q\n, n 2 N

Dq
x f (x)=

dnf (x)

dxn
, q= n

where Dq
x f (x) satisfies the following basic property

Jq
x Dq

x

� �
f (x)= f (x)�

Xn�1

k = 0

f (k)(0þ) xk

k!
,

x � 0, n� 1\q\n, n 2 N and f 2 Cn
m, m � �1

Solution of the problem by homotopy
analysis method

To solve the C-H equation by HAM,34–40 we choose
the auxiliary linear operator L½u(x, t; q)�=u(x, t; q),
where u(x, t; q) is an unknown function and the non-
linear operator is defined as

N ½u(x, t; q)�=� ∂a

∂ta
u(x, t; q)� ∂4

∂x4
u(x, t; q)

+ 6 u(x, t; q)
∂u(x, t; q)

∂ x

� �2

+ 3 (u(x, t; q))2
∂2

∂x2
u(x, t; q)

� ∂2

∂x2
u(x, t; q) + b

∂u(x, t; q)

∂ x
+ k u(x, t; q)� u(x, t; q)ð Þ2

� �
ð8Þ

Let us construct the zeroth order deformation equation
as

(1� q)L ½u(x, t; q)� u0(x, t)� = q�h H(x, t)N ½u(x, t; q)� ð9Þ

where q 2 ½0, 1� denotes the embedding parameter, L is
the auxiliary linear operator, H(x, t) 6¼ 0 is the auxiliary
function, �h 6¼ 0 is the auxiliary parameter, and u0(x, t)
represents the initial approximation of field variable. If
we substitute q= 0 in equation (9), then we simply
obtain u (x, t; 0)= u0(x, t) and for q= 1 we easily get
u (x, t; 1)= u(x, t).
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Now expanding the function u (x, t; q) in Taylor
series form with respect to the parameter q, we get

u½x, t; q�= u0(x, t)+
X‘

n= 1

un(x, t)qn ð10Þ

where

un(x, t)=
1

n!

∂nu(x, t; q)

∂qn

� 	
q= 0

ð11Þ

If the auxiliary linear operator, the initial guess and the
convergence control parameter are properly chosen, the
above series converges for q= 1 as

u½(x, t; 1)�= u0(x, t)+
X‘

n= 1

un(x, t) ð12Þ

which must be one of the solutions of the original equa-
tion as proved in Liao.38

Differentiating equation (9) n times with respect to
the embedding parameter q and then setting q= 0, and
dividing by n !, we get the nth order deformation equa-
tion as

L un(x, t)� xnun�1(x, t)½ �= h H(x, t)Rn un�1(x, t)ð Þ ð13Þ

with initial condition un(x, 0)= 0

where

xn = 0, n� 1 ; 1 , n.1 ð14Þ

Here, �h is a non-zero auxiliary linear operator,
un�1(x, t)= fu0(x, t), u1(x, t) , . . . , un�1(x, t)g and

Rn un�1(x, t)ð Þ= 1

n� 1ð Þ!
∂n�1

∂qn�1
N u(x, t; q)½ �


 �

=� ∂aun�1

∂ta
� ∂un�1

∂x4

+ 6
Xn�1

i= 0

Xi

j= 0

∂uj

∂x

∂ui�j

∂x

 !
un�1�i �

∂2

∂x2
un�1

+b
∂un�1

∂x
+ 3

Xn�1

i= 0

Xi

j= 0

uj ui�j

 !

∂2

∂x2
un�1�i + k un�1 �

Xn�1

i= 0

ui un�1�i

 !

ð15Þ

Taking u0(x, 0)= x, we get

u1(x, t) =
�hta

G(a+ 1)
(6x+b)+ k(x� x2)
� �

u2(x, t)=
�(1+ �h)�hta

G(a+ 1)
6x+b+ k(x� x2)
� �

+
�h2t2a

G(2a+ 1)

�2k2x3 +(k2 � 24k)x2 +(k2 + 12k + 108)x
�
+(12b+ 3kb+ 2k)Þ

u3(x, t)=
�h(1+ �h)2ta

G(a+ 1)
((6x+b)+ k(x� x2))

+
�h(1+ �h)2t2a

G(2a+ 1)
(2k2x3 + x2(8k2 + 60k)

+ x(� 4k2 � 48k � 216+ 2b)

� (7kb� 24b))+
�h3t3a

G(3a+ 1)

(� 4k3x4 � x3(12k3 + 132k2)

+ x2(� 3k3 � (150+ 6b)k2 � 504k)

+ x(k3 � k2(14+ 4b)+ k(180� 24b)+ 1844)

+ k2(� 38+ 4b)+ k(� 180+ 42b)+ 72b)

+
G(2a+ 1)

G(3a+ 1) G(a+ 1)ð Þ2

(12((6x+b)+ k(x� x2))(x+ k(1� 2x))

+ 6x(6+ k(1� 2x))2

+ 12k x((6x+b)+ k(x� x2))

+ k((6x+b)+ k(x� x2))2)

Proceeding in the similar manner, we can find
u(x, t), n.3. Finally, the approximate solution of
u(x, t) is obtained as

u(x, t)= lim
N!‘

uN (x, t) ð16Þ

where uN (x, t)=
PN�1

m= 0

um(x, t).

Choosing the values of the auxiliary parameter �h
introduced in the zero-order deformation equation, the
region of convergence of the series as well as the rate of
this convergence can be influenced and thus the para-
meter �h is called the convergence control parameter. To
obtain the appropriate values of �h using the �h�curve,
the optimization method is applied by minimizing the
squared residual of the governing equation defined by

En =

ð
v

N
Xn

j= 0

uj(x, t)

 !2

dt ð17Þ

To evaluate the effective region of �h, we use

z�h = �h : lim
n!‘

En(�h)=0
n o

ð18Þ

The convergence of series (16) can be obtained using
those values of �h which are distinct from the optimal
value but belonging to the effective region. Thus,
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�h�curve method enables to determine the effective
region of the convergence control parameter. It is to be
noted that the speed of the convergence of the series is
slow and never gives any guarantee to obtain a �h which
ensures the fastest convergence.

Results and discussion

In this section, numerical values of the field variable
u(x, t) for different values of the fractional and also

standard motions (a= 0:8, 0:9, 1:0) are calculated in the
presence or absence of the reaction term (k 6¼ 0 or k = 0)
at x= 1 for different particular cases which are depicted
through Figures 1–3. It is observed from the figures that
it takes more time to stabilize the field variable u(x, t) due
to the presence of the sink term (k =� 1) as compared to
the absence of the reaction term (k = 0). It is noticed that
due to presence of source term (k = 1), it takes compara-
tively less time as compared to previous cases. It should
also be mentioned that the presence of the advection term
has a big role in the system. The presence of the sink term

Figure 1. Plots of u(x, t) versus t at x= 1 for b=� 1, a= 0:8 : (a) k=� 1, (b) k= 0 and (c) k= 1.

Figure 2. Plots of u(x, t) versus t at x= 1 for b=� 1, a= 0:9 : (a) k=� 1, (b) k= 0 and (c) k= 1.

Figure 3. Plots of u(x, t) versus t at x= 1 for b=� 1, a= 1 : (a) k=� 1, (b) k= 0 and (c) k= 1.
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in the system is required to enhance the stability margin.
For the validity of the HAM used to solve the concerned
model, the numerical calculations of residual error (Em)
for different values of the convergence control parameter
�h are presented through Figures 4 and 5 for a= 0:9
and a= 1:0. It is seen that for a= 0:9 and a= 1,
the magnitudes of the errors are minimum at
�h=� 0:0715694 , � 0:0810788, � 0:10886799 and at
�h=� 0:0777697, � 0:0874554, � 0:1182229, respec-
tively, for k =� 1, 0, 1 when four terms of the series
solution are taken. It is seen from the figures that the sink
term minimizes the magnitude of the error more in the
case of the fractional order cases compared to the stan-
dard order case.

Conclusion

Three goals have been achieved through this study.
The first one is the demonstration of damping of the
field variable u(x, t) through the use of the reaction
term in the presence of the advection term in the C-H
equation for fractional order as well as standard
order using the powerful and convenient HAM. The
second one is the graphical presentation of accelera-
tion of convergence control parameter through error

analysis, which clearly depicts the potential of the
concerned method even in the presence of the reaction
term for both the cases. The third goal is the graphi-
cal exhibition that less time is required to stabilize the
probability density function when the system
approaches from standard order to fractional order
in the presence of sink term.
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Figure 4. Plots of Em versus �h for a= 0:9 in the presence of reaction term k : (a) k=� 1, (b) k= 0 and (c) k= 1.

Figure 5. Plots of Em versus �h for a= 1 in the presence of reaction term k : (a) k=� 1, (b) k= 0 and (c) k= 1.
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