List of Tables

Table No.	Title	Page No.
Table 2.1	List of chemicals	39
Table 3.1	Comparison of proposed method with earlier reported literature toward the detection of Co^{2^+} .	79
Table 3.2	Standard recovery test of spiked Co ²⁺ in vitamin B-12 sample measured with N-CQDs.	84
Table 4.1	Di exponential lifetime fitting data of N,S–CQDs and N,S–CQD–MnO $_2$ nanohybrid.	103
Table 4.2	Comparative study of synthesized N,S–CQD–MnO ₂ composite based nanoprobe with earlier reported method.	107
Table 4.3	GSH detection in a human blood serum and RSD for the three independent measurements.	109
Table 5.1	Quantum yield of CQDs with respect to quinine sulfate.	120
Table 5.2	Sensing performance of different fluorescent nanoprobe towards the Hg^{2^+} detection.	126
Table 5.3	Detection of Hg^{2+} in natural water sample and RSD for $n = 3$.	129
Table 6.1	Comparison of the obtained kinetic parameters K_{m} and V_{max} with other nanomaterial and HRP.	150
Table 6.2	Sensing performance of different nano-probe for the detection of GSH.	156
Table 6.3	Detection of GSH in a human blood serum and RSD for the three replicate measurements.	157