Chapter 1

Introduction

In the beginning, I would like to mention that the thesis is divided into three parts.
In the first part (Chapter 2), some singular and non-singular linear and non-linear
problems have been solved. In the second part (Chapter 3 and Chapter 4), we
construct the approximate solutions of the hyperbolic partial differential equations.
Finally in the third part (Chapter 5), the approximate solution of fractional order
differential equation has been deduced.

In the introductory chapter of the thesis, firstly, basic definitions of some well
known polynomials such as Legendre polynomials, Lagrange polynomials, and Euler
polynomials are introduced. After that, the review of operational matrices, ODEs
and PDEs is provided. Finally, we have discussed about the fractional derivative.

The brief introduction to the aforementioned polynomials is as follows.

1.1 Legendre polynomials

Legendre polynomials were discovered in 1782 by Adrien-Marie Legendre, which
form a system of complete and orthogonal polynomials in the domain [—1, 1], with
a vast number of mathematical properties, and numerous applications with the

orthogonality property as
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where, d,,, is the Kronecker delta. We can define the Legendre polynomials using

different aspects. Let us define Legendre polynomials as follows.

Definition 1.1.1. The Legendre polynomials can be defined as the coefficients in

a formal expansion in powers of ¢ of the generating function

1 o0
—_— = P, (x)t".
V1= 2zt + 12 nz:_o (@)
The coefficient of each t™ is a polynomial of degree n.

Definition 1.1.2. The Legendre polynomial is the series solution of Legendre’s

differential equation

% |:(1 — xQ)dPnLEx)} +n(n+1)P,(x) =0.

Some of the Legendre polynomials are

Po(z) =1,

Py(z) =z,

Py(w) = 5(32% — 1),

Py(z) = %(5%3 — 3x),

Py(x) = L(352" — 3022 + 3).

1.2 Lagrange polynomials

Definition 1.2.1. Let xg,21,...,xx be the node points such that no two xls are

same, then the Lagrange interpolating polynomial is defined as

L) =] ((;_ Z)) ,
o
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which satisfies the following Kronecker delta property /;(z;) = d;;, where

1.3 FEuler polynomials

Definition 1.3.1. The Euler polynomial F,(z) is given by the Appell sequence

with

N —

g(f) = _(et + 1)7

giving the generating function as

After the brief discussion about various polynomials, a brief introduction about
ordinary differential equations (ODEs) and partial differential equations (PDEs) is

given below.
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1.4 Review of ordinary differential equations and partial differential

equations

1.4.1 Ordinary differential equations

The mathematical modeling of real word problems often leads to ordinary differen-
tial equations (ODEs). ODEs play important role in the area of applied sciences.
Various phenomena like mechanics of particle (physics), population dynamics (ecol-
ogy), stellar structure (astronomy), birth-death model (biology), etc. are described
by ODEs. Further, the ODEs are classified into two categories: initial value prob-
lems (IVPs) and boundary values problems (BVPs), depending upon the conditions
specified at the points of the domain. Several methods have been developed to
solve IVPs analytically. But, it is not possible to solve all IVPs with these meth-
ods, especially nonlinear and IVPs with singularities at some points of the domain.
So, one needs to develop numerical methods to solve the IVPs. The simplest and
oldest methods to solve IVPs are Euler’s method, Improved Euler’s method and
Runge Kutta methods [3]. Moreover, many researchers have established schemes
to solve IVPs numerically [4-6]. Recently, the operational matrix approaches have
been developed by various researchers [7-10]. In chapter 2, two schemes based on

operational matrices of Lagrange polynomials have been developed to solve IVPs

numerically.

1.4.2 Partial differential equations

Partial differential equations (PDEs) are fundamental to the modeling of natural
phenomena since they arise in every field of science and engineering [11-13]. Most
of the physical phenomena like wave propagation, heat transfer, electromagnetic
field, flow of traffic [14-16], etc., are described by PDEs. Besides, the more complex
phenomena in science and engineering field which depends upon more than one
space variable are also described by the PDEs. Therefore, mathematicians always

desire to understand the solutions of these equations. Consequently, the desire to
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understand the solutions of these equations has always a prominent place in the
efforts of mathematicians. Like algebra, topology, and rational mechanics, PDEs
are the core area of mathematics.

Due to the wide applications of PDEs in the area of science and engineering,
a large number of mathematicians have been involved to find the solutions of the
PDEs. Some well-known methods for solving PDEs analytically are characteris-
tic method, separation of variable, Laplace transformation, homotopy perturbation
method (HPM), variational iteration method (VIM), Laplace transform method
(LTM) and Adomian decomposition method (ADM) [17-20]. But, there is wide
range of PDEs, on which these analytical methods do not work. Keeping this
into the mind, mathematicians gave attention to solve PDEs numerically. In this
progress, one needs to develop some numerical techniques to solve PDEs. Several
methods such as the finite difference methods, finite element methods [21-25] and
spectral methods [26-28] have been applied by the various mathematicians to find
the numerical solutions. Moreover, collocation methods and finite volume methods

[20-32] are also applied to solve PDEs numerically.

1.5 Operational matrices

Orthogonal functions and polynomials have received considerable attention in deal-
ing with various problems in mathematics such as Fourier series, wavelet series,
signal processing, spectrofluorometric analysis etc. Orthogonal functions are fre-
quently used towards a considerable simplification of the statistical analysis, for the
linear regression model. They have played an important role in problem solving in
various areas of mathematics.

One of the important roles of orthogonal functions is in operational matrix
theory. Operational matrices are those which are produced by approximating a
derivative or integration of a function in terms of orthogonal functions. The main
advantage of this technique is that it reduces original problems into a system of

algebraic equations, which can easily be solved. In the numerical analysis, oper-
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ational matrices technique is a powerful technique for approximating solutions of
integral and fractional differential equations (see [33-37]). There are many equa-
tions including PDEs and PIDEs which contain singularity and can not be solved
by classical methods. The operational matrix technique performs nicely for solving
such equations and converts the main problem into system of algebraic equations.
It not only simplifies the proposed problem but also speeds up the computation (see
(36, 38-41]).

The theory of the operational matrices mainly depends on two operators, differ-
entiation and integration and the corresponding operational matrices can be evalu-
ated in the following manner
f@(x)da: ~ Pd(t),

dd(t)
dt
where, P and M are the matrices of integration and differentiation, respectively of

~ MO(t),

dimension N + 1 and ®(t) = [¢o(t), ¢1(t), Pa(t), ..., dn(t)] is the orthonormal basis
which is orthonormal in the certain interval. More generally, one can write,

¢t

[ ... [ ®(z) (dz)" =~ P*®(t),

d*®(t)

~ k
i~ MEa(E).

The popularity of the operational matrix approach is due to its easy implemen-
tation, high order convergence, and easy to extend in higher dimensions. Some of

the advantages are discussed below,
e [t can be easily extended into higher dimensions using Kronecker product.

e It reduces the given equation (PDEs, IPDEs, FPDESs etc.) into a system of

algebraic equations which can be solved by well-known methods.
e Solution is convergent even though the size of increment is large.

e Removes the singularities in the equation.
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Due to the above advantages, the operational matrices of differentiation and
integration have been used by many researchers.

Several types of orthogonal basis functions have been used for operational matrix
of integration such as block-pulse function [42], Chebyshev polynomials [43, 44], the
Walsh function [45], Laguerre series [46-48], Legendre polynomials [49], Fourier
series [50, 51], Bessel series [52], Haar wavelets [53], Legendre wavelets [54] and
Berstein polynomials [55].

Meanwhile, the operational matrix of differentiation has also been determined
for several types of orthogonal basis functions, such as Legendre polynomial [56],
Jacobi operational matrix [57], Legendre wavelets [58], Chebyshew wavelets [59] and
Bernoulli wavelets [60]. In chapters 2 and 4, the operational matrices have been used

based on Lagrange polynomials and in chapter 3, Euler’s operational matrices are

used.

1.6 Survey of fractional derivatives

The concept of non-integer order differentiation is by no means new. It is evident
from the letter written by Leibniz (1859) to L’Hospital in 1695 that the idea of
fractional calculus is known as soon as the ideas of the classical calculus were known.
Although Euler (1730), Lagrange (1772), and others made contributions even earlier
but, the study in a systematic way was begun in the beginning and middle of the
19" century by Liouville (1832), Riemann (1853), and Holmgren (1864).

Several definitions of the fractional derivatives like Grunwald Letnikov, Caputo,
Riemann-Livioulle have been made till the date. However, one can obtain Caputo
and Riemann Liouville from Grunwald Letnikov by using some suitable transforma-
tions. Out of these definitions, Caputo and Riemann-Livioulle’s definitions attract
the researchers because those are defined starting from ¢ = 0. Other derivatives like
Feller, Riesz need information starting from ¢ = —oo which is almost a difficult case
for time dependent problems.

In this thesis, the Caputo derivative of order « is used in chapter 5 due to its
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wide applications in the applied mathematics [30, 61, 62], which is defined as

¢

oD u(t) = ﬁ / (t — s) "+ %Ef)ds, n—1l<a<n.
0

Another reason for using Caputo definition is that Caputo derivative of constant

is zero whereas the Riemann-Liouville derivative of constant is non-zero. But, one

needs derivative zero from the physical point of view and the Riemann-Liouville

derivative of a constant is zero only when the lower terminal is tending to —oo i.e.,

the starting point is t = —oo.
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