APPENDIX

A. 1 Derivation of the expression (5.1)

The force equation can be represented as:

$$
\begin{align*}
& F=e E_{z} \tag{A.1}\\
& \Rightarrow \frac{d p}{d t}=e E_{z} \\
& \Rightarrow \frac{d\left(\gamma_{0} m v\right)}{d t}=e E_{z} \\
& \gamma_{0} m \frac{d(v)}{d t}=e E_{z} \tag{A.2}
\end{align*}
$$

Using convective derivative in (A.2)

$$
\begin{equation*}
\gamma_{0} m\left(\frac{\partial}{\partial t}+v \frac{\partial}{\partial z}\right) v=e E_{z} \tag{A.3}
\end{equation*}
$$

When the potential depression starts, the kinetic energy drop to the point where $\gamma=\gamma_{0}^{1 / 3}$ and the expression (A.3) becomes:

$$
\begin{equation*}
\gamma^{3}\left(\frac{\partial}{\partial t}+v \frac{\partial}{\partial z}\right) v=\frac{e}{m} E_{z} \tag{A.4}
\end{equation*}
$$

A. 2 Derivation of the expression (5.4)

The relativistic mass factor is given as:

$$
\begin{equation*}
\gamma=\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2} \tag{A.5}
\end{equation*}
$$

Rearranging the (A.5) provides:

$$
\begin{gather*}
\gamma^{2}=\frac{1}{1-\frac{v^{2}}{c^{2}}} \Rightarrow 1-\frac{v^{2}}{c^{2}}=\frac{1}{\gamma^{2}} \Rightarrow \frac{v^{2}}{c^{2}}=1-\frac{1}{\gamma^{2}} \\
\Rightarrow \frac{v^{2}}{c^{2}}=1-\frac{1}{\gamma^{2}} \\
v^{2}=c^{2}\left(1-\frac{1}{\gamma^{2}}\right) \tag{A.6}
\end{gather*}
$$

Differentiate the (A.6) with respect to z :

$$
\begin{gather*}
\frac{\partial v^{2}}{\partial z}=\frac{\partial}{\partial z}\left(c^{2}\left(1-\frac{1}{\gamma^{2}}\right)\right) \tag{A.7}\\
\Rightarrow \quad v \frac{\partial v}{\partial z}=\frac{c^{2}}{\gamma^{3}} \frac{\partial \gamma}{\partial z} \\
\gamma^{3} v \frac{\partial v}{\partial z}=c^{2} \frac{\partial \gamma}{\partial z} \tag{A.8}
\end{gather*}
$$

A. 3 Derivation of the expression (5.8)

From conservation of energy

$$
\begin{align*}
& \gamma m c^{2}+e \phi=\gamma_{i n j} m c^{2} \\
& \Rightarrow \quad \gamma_{i n j}=\gamma+\frac{e \phi}{m c^{2}} \tag{A.9}
\end{align*}
$$

The propagation constant can be written as:

$$
\begin{equation*}
\beta=\frac{v}{c} \Rightarrow v=\beta \times c \tag{A.10}
\end{equation*}
$$

Assume that,

$$
\begin{align*}
& \sigma v=\text { const } \\
\Rightarrow & \sigma=\frac{\text { const }}{\beta \times c} \tag{A.11}
\end{align*}
$$

The term σ can be expressed as:

$$
\begin{align*}
& \sigma=\frac{\varepsilon_{0}}{r_{c} \ln \left(r_{m} / r_{c}\right)} \phi \\
\Rightarrow \quad & \phi=\sigma \times \frac{r_{c} \ln \left(r_{m} / r_{c}\right)}{\varepsilon_{0}} \tag{A.12}
\end{align*}
$$

Substituting (A.11) in (A.12) provides:

$$
\begin{equation*}
\phi=\frac{\text { const }}{\beta \times c} \times \frac{r_{c} \ln \left(r_{m} / r_{c}\right)}{\varepsilon_{0}} \tag{A.13}
\end{equation*}
$$

Now substitute (A.13) in (A.9) gives:

$$
\begin{equation*}
\gamma_{i n j}=\gamma+\frac{e}{m c^{2}} \times \frac{\text { const }}{\beta \times c} \times \frac{r_{c} \ln \left(r_{m} / r_{c}\right)}{\varepsilon_{0}} \tag{A.14}
\end{equation*}
$$

The above expression can be expressed as:

$$
\begin{gather*}
\gamma_{i n j}=\gamma+\frac{1}{\beta} \times \frac{e \ln \left(r_{m} / r_{c}\right)}{2 \pi \varepsilon_{0} m c^{3}} \times 2 \pi r_{c} \times \text { const } \\
\Rightarrow \gamma_{i n j}=\gamma+\frac{I_{0}}{I_{s} \beta} \tag{A.15}
\end{gather*}
$$

where $I_{0}=2 \pi r_{c} \times$ const and $I_{s}=\frac{2 \pi \varepsilon_{0} m c^{3}}{e \ln \left(r_{m} / r_{c}\right)}$. The expression (A.15) represent the equation (5.8).

