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A. 1 Derivation of the expression (5.1) 

The force equation can be represented as: 
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Using convective derivative in (A.2) 
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When the potential depression starts, the kinetic energy drop to the point where 1/3

0γ γ=  

and the expression (A.3) becomes: 
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A. 2 Derivation of the expression (5.4) 

The relativistic mass factor is given as: 
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Rearranging the (A.5) provides:  
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Differentiate the (A.6) with respect to z : 
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A. 3 Derivation of the expression (5.8) 

From conservation of energy 
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The propagation constant can be written as: 
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Assume that, 
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The term � can be expressed as: 
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Substituting (A.11) in (A.12) provides: 
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Now substitute (A.13) in (A.9) gives: 
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The above expression can be expressed as: 
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where 0 2 cI r constπ= ×  and 
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