List of Figures

Figure No.	Title	Page
1.1	Schematic diagram for transesterification/alcoholysis reaction [36]	9
1.2	Classification of diesel engine model [98]	23
3.1	Figure 3.1: Selected vegetable oil seed for production of oil (a) Copra, (b) Castor, (c) Mahua, (d) Neem, (e) Linseed	56
3.2	Seed decorticator	57
3.3	Expeller	58
3.4	Filter press	59
3.5	Transesterification reaction	62
3.6	Transesterification unit	64
3.7	Schematic diagram of transesterification unit	65
3.8	Diiferent process during the production of biodiesel from the selected seeds (a) Filling of oil in the reactor (b) Washing tank, (c) Three later (d) Two layer	66
3.9	Separation of gycerine and biodiesel	67
3.10	Experimental setup (VCR engine and Gas analyser)	73
3.11	Schematic diagram of the experimental set up	74
3.12	Schematic diagram of VCR Engine	75
3.13	Valve timing diagram	76
3.14	Figure 3.14: (a) Variable compression ratio adjustments; range of CR for CI: 12-18 and for SI: 6-10 (b) Tilting cylinder block	81
3.15	AVL 444 Gas analyser	82
3.16	Bomb calorimeter and bomb with carrier	84
3.17	Brook field viscometer	86

3.18	Pensky Marten' Apparatus	88
4.1	Variation of burning duration with compression ratio	100
4.2	Variation of burning duration with injection timing	101
4.3	Variation of burning duration with biodiesel blends	101
4.4	Basis of flame initiation process	103
4.5	System with two zones	106
4.6	Validation of cylinder pressure and crank angle	118
4.7	Burning duration vs BMEP	119
4.8	Burning duration vs Brake Power	119
4.9	Flow diagram of quasi-dimensional thermodynamic-based simulation of CI engine operating cycle	120
5.1	Energy input/output after maturity of plants	148
5.2	Energy input with methanol recovery	149
5.3	Energy input after maturity of plants	151
5.4	Net energy input distribution for different plants in biodiesel production: (a) Jatropha (b) Mahua (c) Neem (d) Palm (e) Coconut (f) Karanja (g) Jojoba (h) Tung	154
5.5	Distribution of input cost for different plants in biodiesel production (a) Jatropha (b) Mahua (c) Neem (d) Palm (e) Coconut (f) Karanja (g) Jojoba (h) Tung	163
6.1	BP vs CR at B10	167
6.2	BP vs CR at B20	167
6.3	BP vs CR at B30	168
6.4	BP vs CR at B50	168
6.5	BSFC vs CR at B10	169
6.6	BSFC vs CR at B20	169

6.7	BSFC vs CR at B30	169
6.8	BSFC vs CR at B50	169
6.9	CO vs.CR at B10	171
6.10	CO vs.CR at B20	171
6.11	CO vs.CR at B30	171
6.12	CO vs.CR at B50	171
6.13	NO vs.CR at B10	174
6.14	NO vs.CR at B20	174
6.15	NO vs.CR at B30	174
6.16	NO vs.CR at B50	174
6.17	Peak cylinder pressure vs blends	176
6.18	BMEP and IMEP vs blends	176
6.19	BP and IP vs blends	178
6.20	BSFC and ISFC vs blends	178
6.21	NO formation vs blends	179
6.22	Pmax vs injection timing	182
6.23	BMEP and IMEP vs injection timing	182
6.24	BP and IP vs injection timing	184
6.25	BSFC and ISFC vs injection timing	184
6.26	NO formation vs injection timing	185
6.27	Pmax vs S/B ratios	187
6.28	BMEP and IMEP vs S/B ratios	187
6.29	BP and IP vs S/B ratios	189
6.30	BSFC and ISFC vs S/B ratios	189

6.31	NO formation vs S/B ratios	190
6.32	Pmax vs S/B ratios	192
6.33	BMEP and IMEP vs S/B ratios	192
6.34	BP and IP vs S/B ratios	194
6.35	BSFC and ISFC vs S/B ratios	194
6.36	NO formation vs S/B ratios	195
В	Flow chart of main programme	247
C.1	Flow chart for SUBROUTINE DIFOR	251
C.2	Flow chart for SUBROUTINE PAREQ	254
C.3	Flow chart for SUBROUTINE STINT	256
C.4	Flow chart for SUBROUTINE SPOUT	257
C.5	Flow chart for SUBROUTINE PROPS	259
C.6	Flow chart for SUBROUTINE SPIG	261