TABLE OF CONTENTS

CEDITIES ATE	•
CERTIFICATE	i
DECLARATION BY THE CANDIDATE	ii
COPYRIGHT TRANSFER CERTIFICATE	iii iv vii xii
ACKNOWLEDGEMENT	
TABLE OF CONTENTS	
LIST OF FIGURES	
LIST OF TABLES	xvi
LIST OF ABBREVIATIONS	xix
PREFACE	xxii
CHAPTER 1: INTRODUCTION	1-36
1.1 WHAT IS REMOTE SENSING	1
1.2 TYPES OF REMOTE SENSING	3
1.2.1 Passive remote sensing	3
1.2.2 Active remote sensing	4
1.3 THE ELECTROMAGNETIC SPECTRUM	5
1.4 INTERACTION OF EMR WITH ATMOSPHERE	6
1.4.1 Scattering	6
1.4.2 Absorption	7
1.5 INTERACTION OF EMR WITH THE EARTH SURFACE FEATURES	9
1.5.1 Spectral reflectance	11
1.6 DIGITAL IMAGE REPRESENTATION	12
1.7 SATELLITE CHARACTERISTICS	13
1.8 CHARACTERISTICS OF REMOTE SENSING IMAGE	14
1.8.1 Spatial resolution	14
1.8.2 Spectral resolution	15
1.8.3 Radiometric resolution	17
1.8.4 Temporal resolution	18
1.9 THERMAL REMOTE SENSING	18
1 10 APPLICATIONS OF THERMAL REMOTE SENSING	

1.11 SURFAC	E URBAN HEAT ISLANDS	21
1.12 IMPORT	ANCE OF LAND SURFACE TEMPERATURES ANALYSIS	24
IN URBA	AN AREAS	
1.13 RESEAR	CH QUESTIONS	24
1.14 REVIEW	OF LITERATURE	25
1.15 MOTIVA	TION OF THE STUDY	31
1.16 RESEAR	CH OBJECTIVES	33
1.17 ORGANI	SATION OF THESIS	34
CHAPTER 2	: MATERIALS AND METHODOLOGY	37-46
2.1 SATELLI	TE DATA AND ITS SPECIFICATIONS	37
2.1.1	MODIS satellite data	37
2.1.2	Landsat satellite data	38
2.2 CALCUL	ATION OF SPECTRAL INDICES	41
2.3 CLASSIF	ICATION OF IMPERVIOUS SURFACE FRACTION	43
2.4 ESTIMAT	TION OF LST FROM LANDSAT DATA	44
CHAPTER 3	: DISAGGREGATION OF MODIS LAND SURFACE	47-72
	TEMPERATURE IN URBAN AREAS USING IMPROVED	
	THERMAL SHARPENING TECHNIQUES	
3.1 INTRODU	JCTION	47
3.2 STUDY A	AREA AND DATA USED	50
3.2.1	Study area	50
3.2.2	Data used and image preprocessing	52
3.3 METHOD	OOLOGY	53
3.3.1	Calculation of spectral indices	54
3.3.2	Inter-calibration of sensors	54
3.3.3	Thermal sharpening technique	56
3.3.4	Validation	58
3.4 RESULTS	S AND DISCUSSION	59
3.4.1	Inter-calibration of Landsat and MODIS data	59
3.4.2	LST downscaling using Distrad model with different indices	61
3.4.3	LST downscaling using different robust regression techniques	64
3.5 CONCLU	SION	71

CHAPTER 4	: THERMAL SHARPENING OF MODIS LAND SURFACE	73-94
	TEMPERATURE USING STATISTICAL	
	DOWNSCALING TECHNIQUE IN URBAN AREAS	
4.1 INTROD	UCTION	73
4.2 STUDY A	AREA AND DATA USED	76
4.2.1	Study area	76
4.2.2	Data used and image preprocessing	77
4.3 METHOD	OOLOGY	79
4.3.1	Calculation of Spectral Indices	79
4.3.2	Inter-calibration of sensors	79
4.3.3	Statistical downscaling technique	81
4.4 RESULTS	S AND DISCUSSION	82
4.4.1	Downscaling of MODIS-LST using various SI employed singly	82
4.4.2	LST maps	84
4.4.3	Disaggregation of MODIS-LST using statistical-downscaling-technique	ie 88
4.4.4	Comparative analysis of downscaling MODIS-LST in different cities	91
4.5 CONCLU	SION	92
CHAPTER 5	S: A COMPARATIVE ANALYSIS OF DAY AND NIGHT LAND	95-121
	SURFACE TEMPERATURE IN TWO SEMI-ARID CITIES	
	USING SATELLITE IMAGES SAMPLED IN DIFFERENT	
	SEASONS	
5.1 INTROD	UCTION	95
5.2 STUDY A	AREA AND DATA USED	99
5.2.1	Study area	99
5.2.2	Data used and image preprocessing	99
5.3 METHOL	OOLOGY	103
5.3.1	Classification of impervious surface fraction	103
5.4 RESULTS	S AND DISCUSSION	104
5.4.1	Diurnal LST variation of land cover	104
5.4.2	Relation of LST with indices and ISF	107
5.4.3	Development of model for diurnal LST	112
5.4.4	Seasonal behaviour of the developed relation of LST with	115
	combination of indices	

5.5 CONCLUSION		119
CHAPTER 6: QUANTIFICATION OF URBAN HEAT INTENSITY WITH		122-141
	LAND USE/LAND COVER CHANGES USING LANDSAT	
	SATELLITE DATA OVER URBAN LANDSCAPES	
6.1 INTRODUCTION		122
6.2 STUDY A	AREA AND DATA USED	125
6.2.1	Study area	125
6.2.2	Data used	126
6.3 METHODOLOGY		127
6.3.1	Supervised classification and change in LULC	127
6.3.2	Calculation of normalized LST	127
6.3.3	Calculation of Urban Heat Intensity Ratio Index (UHIRI)	128
6.3.4	Computation of land cover contribution index (LCCI)	128
6.4 RESULTS	S AND DISCUSSION	129
6.4.1	LULC classification and changes	129
6.4.2	Long term Study on LST and quantification of urban heat	131
	intensity using UHIRI	
6.4.3	LST dependence of each land cover	134
6.4.4	Quantifying the contribution of LULC types on LST	135
6.4.5	LULC change and its effect on LST	138
6.5 CONCLUSION		140
CHAPTER 7: ASSESSMENT OF SEASONAL AND LONG TERM 14		142-157
	QUANTIFICATION OF SURFACE URBAN HEAT	
	ISLAND INTENSITY (SUHII): A CASE STUDY OF	
	VARANASI CITY, INDIA	
7.1 INTRODU	JCTION	142
7.2 STUDY A	AREA AND DATA USED	144
7.2.1	Study area	144
7.2.2	Data used	145
7.3 METHODOLOGY		146
7.3.1	UHI calculation and its classification into five thermal levels	146
7.3.2	SUHI intensity calculation	146
7.4 RESULTS	S AND DISCUSSION	147

7.4.1	Seasonal and temporal variation in vegetation covers	147
	using NDVI maps	
7.4.2	UHI maps	150
7.4.3	SUHI intensity determination	155
7.5 CONCLU	JSION	156
CHAPTER 8	8: CONCLUSIONS AND FUTURE RESEARCH	158-160
7.1 CONCLU	JSIONS	158
7.2 FUTURE	RESEARCH	159
REFERENC	CES	161-174
LIST OF PU	BLICATIONS	175-176