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4.1 INTRODUCTION 

Rice is a worldwide important food crop. The economy of many countries 

depends on the rice production (Wang et al. 2005). Due to its importance as a great 

food source, it is necessary to monitor continuously over the full growth period of rice 

crop by acquiring the accurate and timely information about the crop condition. 

The tropical monsoon climate is the main period of rice transplanting and 

growing for the Asian continent (Chakraborty et al. 2005). The microwave remote 

sensing is more effective tool for monitoring of rice growth than the optical sensing, 

because, it works any time and in any weather condition with great potential. The 

primary advantage of microwave remote sensing is its penetration capability through 

clouds and to some extent rain(Oh et al. 2009). 

Synthetic aperture radar is useful to monitor the growth of rice crop by 

analyzing ERS-1 data at 5.3 GHz, VV- polarization and at incidence angle 23° (Le 

Toan et al., 1997). The ERS-1 SAR data of two rice fields has been studied to analyze 

the temporal variation of radar response. The model has been developed to estimate 

plant height (PH) and plant biomass (BM) of rice crop variables based on temporal 

variation of the radar response. Kim et al.(2000) studied the temporal and angular 

responses of the radar backscattering from rice crop at 9 GHz using ground based 

scatterometer with three polarizations (HH-, VV-, and HV-) at incidence angles  0-70° 

and reported the maximum backscattering coefficient of the rice field at an early 

growth stage of about 43-60 days after the transplanting. Lim et al.(2008) also 

reported the temporal and multi- angular responses of the radar backscattering from 

rice crop using ground based C- band (6 GHz) scatterometer with full polarization ( 

HH-, VV-, HV- and VH-) in the angular range of incidence angle 10° - 60°. Kim et 

al.(2008) studied multi frequency backscattering response from rice crop and found 

high correlation between backscattering coefficients and rice crop variables at full 
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polarizations (HH-, VV-, VH-, HV-) in the angular range of 20° - 60°. Oh et al.(2009) 

measured the polarimetric (VV-, HH-, HV-, and VH-) backscattering coefficients of 

flooded rice field using L- and C- bands at incidence angles 30°, 40°, 50° and 60°.  

In agriculture, the estimation of crop variables can be used for monitoring the 

crop growth and prediction of crop yields. An artificial neural network (ANN) is the 

best optimization technique over a conventional technique for the estimation of crop 

variables using remote sensing. Several studies showed the applications of artificial 

neural network in the field of remote sensing applications on agriculture (Chen and 

McNairn 2006; Del Frate et al. 2004; Del Frate et al. 2003; Jin and Liu 1997; Karkee 

et al. 2009; Prasad et al. 2009; Singh et al. 2009; Walthall et al. 2004; Xiao-Hua et al. 

2009). 

 The objective of present investigation is to study the bistatic scattering 

behavior of rice crop at various growth stages using X- band. Polynomial regression 

analysis is done to find the suitable incidence angle and polarization for the operation 

of bistatic scatterometer at both like polarizations. Two types of feed forward back 

propagation artificial neural networks (FFBPANN) are developed for the estimation of 

rice crop variables.  

4.2 DIFFERENT GROWTH STAGES OF RICE CROP   

The life cycle of a rice crop in India depends on the variety of rice crop and the 

environment conditions. It ranges from 105 to 125 days from transplanting to maturity 

stage. The temporal knowledge about the rice crop development at various growing 

stages is important for understanding the radar response (Shao et al. 2001). The whole 

life of rice crop can be distinguished by the four main growth stages, i.e., 1) sowing-

transplanting period; 2) vegetative stage; 3) reproductive stage; and 4) ripening 

stage(Le Toan et al. 1997). The picture of various growth stages of rice crop is shown 

in Figure 4.1.  
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4.3 METHODS AND OBSERVATIONS 
4.3.1 BISTATIC SCATTEROMETER MEASUREMENT 

The specifications of bistatic scatterometer set-up employed for the outdoor 

bistatic measurements at various growth stages of rice crop are shown in Table 2.1 and 

the detailed procedure for the bistatic measurement is discussed in the Chapter 2. 

 
(a) 

 

 

(b) 
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(c) 

Figure 4.1 Growth stages of rice crop (a) vegetative stage, (b) reproductive stage and (c) repining 
and maturing stage 

4.3.2 RICE CROP VARIABLES MEASUREMENT  

Rice crop variables namely vegetation water content (VWC), leaf area index 

(LAI), plant height (PH), SPAD value , plant density, number of stems per bunch, leaf 

length, leaf width etc. were measured at 8 different growth stages of rice crop and are 

summarized in the Table 4.1. The bistatic scatterometer measurements were carried 

out on the same day of taking observations for rice crop variables at the interval of 10 

to 15 days. 

The detailed procedure for the measurement of biophysical parameters 

(biomass, LAI, Plant height, chlorophyll content etc.) of the rice crop at its various 

growth stages are presented in the Chapter 2.  

4.4 PROCEDURE FOR THE ESTIMATION OF RICE CROP VARIABLES  
 The flow chart of algorithm used for the estimation of rice crop variables is 

shown in Figure 4.2. The following points are adopted to develop the proposed 

algorithm. 
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Table 4.1 Summary of the ground truth data with measurement dates 

4.4.1 POLYNOMIAL REGRESSION ANALYSIS 

Polynomial regression (least square method) analysis was done to determine 

the suitable incidence angle and polarization of the bistatic scatterometer system for 

the estimation of rice crop variables.  

The fourth degree polynomial equation used in the present investigation is 

  

where CP are the crop variables (VWC, LAI, PH and SPAD value). The coefficients 

(a, b, c, d and e) were obtained by using least square method. The values of 

coefficients of determination (R2), standard error (SE) and standard error of estimation 

between bistatic scattering coefficients and rice crop variables are presented in the 

Table 4.2 and 4.3 at HH- and VV- polarization, respectively. 

4.4.2 FEED FORWARD BACK PROPAGATION ARTIFICIAL NEURAL 
NETWORK (FFBPANN) 

 In the present study, the feed forward back propagation method is used to train 

the multilayer perceptron. The simple processing units (neuron) are arranged in 

different layers as input, hidden and output layers in the FFBPANN models. The input 

layer propagates information in the forward direction to each node of hidden layer 

with their synaptic weights. These weighted inputs are added at each node. Each 

Date 

/days after transplanting 

Aug.13 

/5 

Aug.26 

/18 

Sep. 7  

/30 

Sep.22 

/ 45 

Oct.7  

/ 60 

Oct.22 

/ 75 

Nov.01 

 / 85 

Nov.21 

/ 105 

VWC (kg/m2) 0.09 0.45 0.80 1.24 1.69 2.40 2.57 2.42 

LAI (m2/ m2) 0.32 1.25 1.27 1.39 1.87 1.92 2.12 1.98 

SPAD value 43.7 42.2 40.9 36.3 30.8 25.5 16.6 15.5 

Plant height    (cm) 10.8 24.8 65.6 79 90 101 105 102 

Stems per bunch 6 9 11 12 15 17 18 18 

No. of leaves per stem 2 2 3 3 3 4 4 4 

Bunches per m2 42 42 42 42 42 42 42 42 

Leaf length (cm) 7.45 14.82 18.66 26.42 31.92 34.74 35.47 36.21 

Leaf width (cm) 0.163 0.45 0.58 0.80 0.99 1.1 1.2 1.34 

Leaf thickness (cm) 0.019 0.019 0.019 0.0193 0.02 0.021 0.024 0.03 
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hidden layer computes output corresponding to these weighted sums through 

linear/non-linear sigmoidal transfer functions (Erbek et al. 2004; Haykin 1994, 

1999b).  

 The back propagation training is a supervised training procedure. In the 

supervised training procedure, both target inputs and target outputs are provided to the 

network. The output values computed from each hidden layer nodes become the input 

values for nodes of the output layer. The weighted sum that are processed through the 

transfer function become the inputs for the output layer nodes. Such nodes of output 

layer compute the final output of FFBPANN model corresponding to their inputs. 

These computed output values are compared with the target output values. Therefore, 

corresponding error is estimated at the output layer between the computed output 

values and target output values. The estimated errors are minimized by back 

propagating the error through the network and adjusting the weights and biases in the 

hidden and output layers until desired results are achieved. This process is repeated 

iteratively and connection weights and biases are modified until the convergence 

reached to an acceptable error. Therefore, back propagation neural network reached 

very close to the desired result or target value. When the feed forward and back 

propagation algorithms are used together then they are called as feed forward back 

propagation artificial neural network (FFBPANN). 

4.4.3 DATA PREPARATION 

 The observed data sets (bistatic scattering coefficient and crop growth 

variables) were interpolated into 101 data sets at the interval of one day from 5 to 105 

days after transplanting of rice crop at 30° incidence angle for HH- and VV- 

polarization. The interpolated data sets for the various growth stages of rice crop were 

used for training and testing of FFBPANN models. The 81 data sets (at 6-9, 11-14, 16-

19, 21-24, 26-29, 31-34, 36-39, 41-44, 46-49, 51-54, 56-59, 61-64, 66-69, 71-74, 76-

79, 81-84, 86-89, 91-94, 96-99, 105 days after transplanting) out of 101 data sets were 

selected for the training of FFBPANN models and remaining 20 data sets ( at 5,10, 15, 

20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 days after 

transplanting) were used for the testing of the developed FFBPANN models. 
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 The interpolated values of bistatic scattering coefficients for HH- and VV-

polarizations at incidence angle 30° were used as input data set and values of crop 

variables such as VWC, LAI, PH and SPAD value were used as output data set for the 

training of FFBPANN models. 

4.4.4 CREATION OF FFBPANN MODELS 

 An ANN tool box in MATLAB software was used to create and simulate the 

FFBPANN models. Two FFBPANN models with slightly different architectures were 

developed for the estimation of rice crop variables namely FFBPANN-

FFBPANN- - - or 

VV- polarized scattering coefficient), one hidden layers (10 neurons) and one output 

neuron (VWC or LAI or PH or SPAD value). The FFBPANN-

input neurons (HH- and VV- polarized scattering coefficient), one hidden layer (10 

neurons) and 4 output neurons (VWC, LAI, PH and SPAD value). The sigmoid 

hidden layer and output layer neurons respectively. The training function Levenberg-

Marquardt (trainlm) and performance function root mean squared error (RMSE) were 

used for training and evaluating the performance of both the FFBPANN models. Eight 

multi layers FFBPANN-

HH- and VV- polarization. The FFBPANN-

effect of both polarizations (HH- and VV-) for the estimation of rice crop variables. 

The architectures of these developed FFBPANN models may also be defined as 

(1×10×1) and (2×10×4) FFBPANN models. Figure 4.3 (a-b) showed the schematic 

diagram of FFBPANN- -

difference between FFBPANN- -

Table 4.4. 

 

 

 

 

 



Estimation of rice crop variables using artificial neural networks 

 

 
Department of Physics, Indian Institute of Technology (BHU), Varanasi Page 70 

 

Table 4.2 Angular variation of polynomial regression results for HH-polarization 

Angle 

(°) 

Vegetation Water Content 

(VWC) 

Leaf Area Index 

          (LAI)  

Plant height 

            (PH) 

SPAD Value 

R2 SE SEE R2 SE SEE R2 SE SEE R2 SE SEE 

20 0.81 0.30 0.38 0.92 0.20 0.15 0.78 11.36 15.75 0.77 3.51 4.9 

25 0.86 0.31 0.32 0.95 0.20 0.11 0.85 11.83 13.12 0.87 3.71 3.7 

30 0.97 0.33 0.13 0.98 0.20 0.07 0.97 12.64 5.67 0.98 3.94 1.48 

35 0.82 0.30 0.37 0.92 0.20 0.14 0.79 11.44 15.32 0.75 3.46 5.21 

40 0.60 0.26 0.56 0.78 0.18 0.25 0.61 10.02 21.17 0.53 2.91 7.17 

45 0.88 0.31 0.30 0.96 0.20 0.10 0.86 11.90 12.65 0.84 3.67 4.10 

50 0.91 0.32 0.25 0.97 0.20 0.08 0.90 12.23 10.24 0.93 3.85 2.64 

55 0.89 0.32 0.29 0.95 0.20 0.11 0.87 11.97 12.20 0.89 3.76 3.43 

60 0.74 0.29 0.45 0.90 0.19 0.17 0.69 10.66 18.87 0.71 3.37 5.60 

65 0.57 0.25 0.58 0.81 0.18 0.23 0.55 9.57 22.58 0.48 2.77 7.55 

70 0.70 0.28 0.49 0.87 0.19 0.19 0.66 10.48 19.55 0.62 3.14 6.48 

 

Table 4.3 Angular variation of polynomial regression results for VV- polarization 

Angle 

(°) 

Vegetation Water Content 

(VWC) 

Leaf Area Index 

          (LAI)  

Plant height 

            (PH) 

SPAD Value 

R2 SE SEE R2 SE SEE R2 SE SEE R2 SE SEE 

20 0.63 0.26 0.53 0.82 0.18 0.23 0.59 9.87 21.66 0.55 2.97 7.01 

25 0.79 0.30 0.40 0.90 0.19 0.17 0.82 11.63 14.29 0.73 3.42 5.41 

30 0.90 0.32 0.27 0.95 0.20 0.12 0.90 12.21 10.33 0.91 3.80 3.11 

35 0.73 0.29 0.46 0.87 0.19 0.19 0.77 11.32 15.94 0.67 3.27 5.99 

40 0.74 0.29 0.45 0.88 0.19 0.18 0.79 11.42 15.41 0.69 3.32 5.82 

45 0.77 0.29 0.42 0.83 0.19 0.22 0.88 12.06 11.55 0.82 3.62 4.38 

50 0.79 0.30 0.40 0.94 0.20 0.13 0.77 11.30 16.03 0.73 3.41 5.44 

55 0.86 0.31 0.33 0.86 0.19 0.20 0.88 12.09 11.34 0.84 3.65 4.18 

60 0.78 0.30 0.41 0.83 0.19 0.22 0.82 11.61 14.39 0.76 3.47 5.15 

65 0.77 0.29 0.42 0.82 0.19 0.22 0.81 11.60 14.48 0.74 3.43 5.33 

70 0.72 0.28 0.47 0.80 0.18 0.24 0.77 11.29 16.09 0.68 3.29 5.92 
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Figure 4.2 Flow chart for the retrieval algorithm of rice crop variables 

 
 

Yes

No 

Polynomial regression analysis done between bistatic scattering coefficients and rice crop 
variables at different incidence angle to determine suitable incidence angle  

Interpolation for bistatic scattering coefficient and rice crop variables done between 5 to105 
days after transplanting into 100 data sets (bistatic scattering coefficient and crop variables) 

Measurements made for bistatic scattering coefficients and crop variables                                        
(VWC, LAI, PH and SPAD value) at various growth stages of rice crop 

81 data sets used for training and remaining 20 data sets used for testing the FFBPANN model 

Eight FFBPANN model developed with one input 
and one output neuron 

Is 
Calculated error 
> Desired error  

 

Update weight and bias values 
as to reduce error 

A FFBPANN model developed with two input and 
four output neurons 

Set input data (HH- or VV- polarized bistatic 
scattering coefficient) and output data crop 

variables (VWC or LAI or PH or SPAD value) 

Initialize weights and bias values  

Set input data (HH- and VV- polarized bistatic 
scattering coefficient) and output data crop 

variables (VWC and LAI and PH and SPAD value) 

Estimated rice crop variables  

Calculate the output with respect to weights and 
bias 
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(a) 

 (b) 

Figure 4.3 Architecture of (a) FFBPANN- -
of rice crop variables 
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Table 4.4 The statistical difference between FFBPANN- -  

FFBPANN parameters FFBPANN-  FFBPANN-  

No. of layers 3 3 

No. of input layer neurons 1 2 

No. of hidden layer neurons 10 10 

No. of output layer neurons 1 4 

Activation function (hidden layer 
neurons) 

Hyperbolic tangent sigmoid 
(tansig) 

Hyperbolic tangent sigmoid 
(tansig) 

Activation function (output layer 
neurons) 

Linear (purelin) Linear (purelin) 

Training rule Levenberg-Marquardt 
(trainlm) 

Levenberg-Marquardt 
(trainlm) 

Training data set 81 81 

Testing data set 20 20 

Learning rate 0.6 0.6 

No. of weight connections 20 60 

4.5 RESULT AND DISCUSSIONS 

The rice crop variables (except SPAD value) were found to increase more 

rapidly at early stages (60 days after transplanting) of the growth in comparison to the 

later growth stages.  The SPAD value was found higher at early days of the growth 

and then after started decreasing (Chen et al. 1991a).  

Figure 4.4 and 4.5 showed angular variations of bistatic scattering coefficient 

°) of rice crop at HH- and VV- polarization respectively. Angular variations of 

bistatic scattering coefficient were computed for eight growth stages from 

transplanting to maturity stage at the interval of 10 to 15 days after transplanting of 

rice crop. The bistatic scattering coefficients showed decreasing behavior at vegetative 

and reproductive stage and then after found increasing behavior at ripening stage 

(maturity) in the entire angular range of incidence angles at both the like polarizations.  

At the vegetative stage, the bistatic scattering coefficient was found dominant 

due to major contribution of stems and the interaction between the stems and water 

underneath the rice crop. During vegetative to reproductive stage, the bistatic 

scattering coefficients were found to decrease until the leaves became large and dense. 

However, the bistatic scattering coefficient was found to decrease slowly due to 
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random scattering by vertical leaves during reproductive stage. The increase in the 

size of leaves causes to cover most of the spaces between plants resulted to quench the 

contributions from the stems and the water underneath. At the ripening stage, the color 

of leave was found changed from green to yellow and density of leaves was increased. 

As the crop grew, the angular dependency of bistatic scattering coefficient was found 

to decrease and it became almost independent near the ripening stage of rice crop.  

 

 

Figure 4.4 Angular variation of bistatic scattering coefficient at different growth stages for HH-

polarization 
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Figure 4.5 Angular variation of bistatic scattering coefficient at different growth stages for VV-

polarization 

Polarization of a microwave is sensitive to the shape, size and orientation of 

the targets elements. The horizontal polarization gives the measure of the horizontal 

dimension, while the vertical polarization gives the measure of the vertical dimension 

of the scattering elements (Prasad et al. 2009).  Thus, the microwave response of 

different incidence angles due to the change in leave size, its orientation with respect 

to incidence angle can be used for the effective monitoring of the growth stages of a 

crop (Chakraborty et al. 2005). For the incidence angles above 300, the bistatic 

scattering coefficient showed a faster decay at VV-polarization than HH-polarization. 

The attenuation due to vertical cylinders (vertical leaves) at vertical polarization (VV-) 

was higher than the horizontal polarization (HH-) (de Matthaeis and Lang 2005; De 

Matthaeis et al. 1994; Lin et al. 2009; Liu et al. 2008).  

4.5.1 POLYNOMIAL REGRESSION ANALYSIS FOR SELECTING THE 
SUITABLE SCATTEROMETER SYSTEM CONFIGURATION  

The rice crop variables were fitted with fourth order polynomial to determine 

the suitable incidence angle and polarization for the estimation of rice crop variables 

using bistatic scatterometer measurements. Tables 4.2 and 4.3 depict the polynomial 

regression results for rice crop variables in the angular range of 20° to 70° incidence 

angles at HH- and VV- polarization respectively. The coefficients of determination 
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(R2) were found maximum at 30° incidence angle for all the rice crop variables at HH-

polarization and VV-polarization. However, the highest value of coefficients of 

determination (R2) was found at 30° incidence angle for all the rice crop variables at 

HH-polarization. The VV- polarized wave is more attenuated in comparison to HH- 

polarized wave due to the vertical interaction with the vertical structure of leaves and 

stems of the rice crop. The wave traveled longer path at higher incidence angle in 

comparison to lower incidence angle in the crop canopy. Due to this reason, the 

incident wave was found more attenuated at higher incidence angle in comparison to 

lower incidence angle. Therefore, the HH- polarization and lower incidence angle 

were found to be more suitable for accurate estimation of rice crop variables (Bouvet 

et al. 2009; Inoue et al. 2002; Li et al. 2011)   

4.5.2 FEED FORWARD BACK PROPAGATION ARTIFICIAL NEURAL 
NETWORK (FFBPANN) FOR THE ESTIMATION OF RICE CROP 
VARIABLES 

 The performance of FFBPANN- -

of VWC, LAI, PH and SPAD value are shown in Figure 4.6 (a-d). The estimated 

values of rice crop variables were found very close to the observed values by both the 

FFBPANN models. However, the estimated values of rice crop variables by the 

FFBPANN-  model were found much closer to the observed values in comparison to 

the FFBPANN-  model. 

  The results of statistical analysis carried out to evaluate the performance of 

FFBPANN models is presented in Table 4.5. The statistical analysis was done 

between the observed value and the estimated value of rice crop variables by both 

FFBPANN models. The FFBPANN-

variables using single polarized data set (either HH- polarized data set or VV- 

polarized data set). In the case of FFBPANN- model, the values of coefficient of 

determination (R2) were found to be 0.986, 0.954, 0.986, 0.886 for crop variables 

VWC, LAI, PH, SPAD value, respectively at HH- polarization. For VV polarization, 

the values of R2 were found to be 0.964, 0.919, 0.975, 0.810 for crop variables VWC, 

LAI, PH, SPAD value, respectively. Using the FFBPANN- model, the values of R2 

were found to be 0.995, 0.968, 0.998, 0.993 for crop variables VWC, LAI, PH, SPAD 
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value, respectively. The high values of R2 indicate very good performance of both the 

FFBPANN models for the estimation of rice crop variables. However, the 

FFBPANN-  model trained with dual polarized data sets (HH- and VV-) provided 

better results than the FFBPANN-  model trained with single polarized data sets (HH- 

or VV-). The estimated values of rice crop variables by FFBPANN-

slightly scattered at the later growth stage than its initial stage of growth.  

 The bistatic scattering response depends on the orientation and structure of 

rice constituents with respect to polarization of incident wave. At the initial growth 

stages, the orientation and structure of rice constituents were uniform in comparison 

to later growth stages of the rice crop. At the later growth stages, the orientation of the 

leave and stems became randomly distributed over the rice crop bed. Thus, the single 

polarized data set is not adequate to acquire the additional information available due 

to polarimetric response of orientation and architecture of rice constituents. Therefore, 

it may be beneficial to use polarimetric data sets for the training of FFBPANN to 

achieve accurate estimation of the rice crop variables. The high correlation between 

the observed and estimated crop variables by the FFBPANN models indicates the 

potential of FFBPANN model for the accurate estimation of rice crop variables. 

 

 

 



Estimation of rice crop variables using artificial neural networks 

 

 
Department of Physics, Indian Institute of Technology (BHU), Varanasi Page 78 

 

 

 

 

 



Estimation of rice crop variables using artificial neural networks 

 

 
Department of Physics, Indian Institute of Technology (BHU), Varanasi Page 79 

 

 

Figure 4.6 Performance of first FFBPANN models for the retrieval of rice crop variables for (a) 
VWC (b) LAI (c) PH (d) SPAD value with different combination of data sets 

  

Table 4.5 Linear regression results between observed and FFBPANN estimated values of crop 
variables for three different data sets 

Regression  

coefficient 

            HH- Polarization       VV- Polarization  Combined HH- and VV- 
polarization 

VWC LAI PH SPAD 
value 

BM LAI PH CC VWC LAI PH SPAD 
value 

R 0.993 0.976 0.993 0.941 0.982 0.958 0.987 0.900 0.997 0.984 0.999 0.996 

R2 0.986 0.954 0.986 0.886 0.964 0.919 0.975 0.810 0.995 0.968 0.998 0.993 

Adj_ R2 0.985 0.951 0.985 0.880 0.962 0.914 0.974 0.800 0.995 0.962 0.998 0.992 

SE 0.178 0.090 6.220 1.860 0.172 0.078 6.211 1.537 0.187 0.049 6.660 2.350 

SEE 0.091 0.086 3.170 2.900 0.144 0.101 4.249 3.240 0.053 0.213 1.200 0.851 

RMSE 0.118 0.091 3.860 3.650 0.157 0.133 4.603 4.740 0.057 0.037 1.340 0.912 

 

4.6 CONCLUSIONS 

 The significant temporal and angular variations of bistatic scattering 

coefficient for the rice crop were observed at X-band. The high sensitivity of the HH- 

and VV- polarized bistatic scattering coefficients with the rice crop variables was 

observed at an incidence angle 30°. However, the HH- polarized bistatic scattering 

coefficients were found more sensitive in comparison to VV- polarized bistatic 
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scattering coefficients with the rice crop variables at 30° incidence angle. The 

performances of both the developed FFBPANN models were found good for the 

estimation of rice crop variables. However, the performance of FFBPANN-II was 

found better in comparison to the FFBPANN-I model. Hence, the polarimetric data 

sets may be useful for the accurate estimation of rice crop variables using ANN.


