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3.1 INTRODUCTION 

Soil moisture is an important variable for hydro-meteorological applications 

(Ahmad et al. 2010) and has significant effect on catchment water balance, water 

yield, groundwater recharge, and storage (Al-Shrafany et al. 2012; Srivastava et al. 

2013c; Zhang et al. 2001). The study of spatial and temporal soil moisture distribution 

on the top ground surfaces is very necessary at regional as well as on global scale 

(Srivastava et al. 2013a). Furthermore, consistent estimates of soil moisture from 

cropped surfaces are required for efficient irrigation management and scheduling 

(Glenn et al. 2011; Lorite et al. 2012). In-situ observations of soil moisture such as 

those from probe or gravimetric measurements are available and could be used for 

soil moisture, but they do not represent the spatial distribution accurately as soil 

moisture is highly variable both spatially and temporally and hence unsuitable for 

large scale applications (Srivastava 2013; Srivastava et al. 2013b; Wang and Qu 

2009). On the other hand satellite remote sensing is found suitable for soil moisture 

retrieval with high accuracy (Kerr et al. 2012).  

Microwave remote sensing is a powerful tool to monitor the soil moisture over 

the soil surfaces (Srivastava et al. 2014). Nowadays, it is becoming much popular than 

the optical sensors due to its adequate capability to acquire observations in all weather 

conditions and all the time (day and night) (Owe et al. 2001a). In context of soil 

moisture, several researchers (Chauhan 1997; Engman and Chauhan 1995; Njoku and 

Li 1999; Schmugge et al. 1986; Ulaby et al. 1981; Wang et al. 1983) have conducted 

experiments using monostatic radar geometry (ground based, airborne and space 

borne) to develop empirical, semi empirical and theoretical models for the estimation 

of soil surface parameters by active and passive microwave remote sensing. However, 

only limited number of bistatic experiments have been conducted (Khadhra et al. 

2012; Singh et al. 1996) and reported in the technical literature domain. Thus, this 

study is important for microwave remote sensing community to understand the 

interaction of X- band bistatic radar with soil moisture and its performances towards 
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soil moisture retrieval. The space mission has been started by German Space Agency, 

with twins satellite (TanDEM-X and TerraSAR-X) for bistatic radar to generate a 

three dimensional image of the earth. 

It is very difficult to understand the scattering mechanism of microwave with 

the natural soil surfaces. During the last decade, many useful modeling approaches 

based on linear regression analysis and non parametric algorithms like artificial neural 

network (ANN), support vector regression (SVR), fuzzy logic (FL) etc have been 

reported for the estimation of soil moisture and soil surface parameters (Oh et al. 

1992; Saleh et al. 2006; Singh 2005; Singh et al. 1996). These models have 

advantages to provide reasonable results in most of the cases. For e.g. the linear 

regression models based on least square method is widely used for establishing the 

linear relation between the scattering coefficients and soil moisture content. The ANN 

is a model free estimator and it acquires a highly non-linear input-output relationship 

through a process called training. Several researchers (Chai et al. 2009; Del Frate et 

al. 2003; Dharanibai and Alex 2009; Jiang and Cotton 2004) have widely used ANN 

for the estimation of surface soil moisture. However, rare studies have been reported 

using the bistatic scatterometer data for the retrieval of soil moisture. 

In purview of the above, the foremost objective of this chapter is to acquire the 

suitable and reliable model for the estimation of soil moisture using microwave 

bistatic scatterometer data at X-band. The performances of several models such as 

BPANN, RBFANN and GRANN and the LRM are attempted in this study to estimate 

the soil moisture. The remainder of this chapter is structured as follows: In section 2, 

we introduce the experimental procedure, which provides a brief overview of the 

instrumentation and field measurements. In section 3, the description of selected 

techniques are provided and the criteria for the assessment is listed. In section 4, the 

results obtained from all the approaches are presented and discussed. The last section 

5 contains the conclusions, which provides the final remark and conclusion of this 

work. 
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3.2 EXPERIMENTAL DETAILS  

The specifications of bistatic scatterometer set-up employed for the outdoor 

bistatic measurements at different moisture content of slightly rough bare soil surface 

is shown in Table 2.1 and the detailed procedure for the bistatic scatterometer 

measurements is given in the Chapter 2. 

All the observations were carried out by changing the incidence ( ) and 

receiving angles ( ) in the angular range of 20° to 70° at steps of 5° in the elevation 

direction for azimuthal angle ( = 0). The incident wave gets scattered in all the 

directions due to the soil surface roughness and moisture content. The scattered wave 

may be presented in terms of diffuse and coherent components. Most probably, the 

coherent component of the scattered wave has been received in the specular direction. 

It means, the highest power reflecting from the slightly rough bare soil surface has 

been observed in the present study.  

Figure 3.1 shows the surface roughness profile, autocorrelation function and the 

comparison of soil surface autocorrelation function with the Gaussian and exponential 

autocorrelation functions. The surface roughness was taken constant during entire 

observations to study the microwave response of soil moisture content only. The root 

 of the test soil surface were 1.61 cm 

and 11.63 cm respectively. 

3.3 DESCRIPTION OF DIFFERENT KIND OF ARTIFICIAL NEURAL 
NETWORK MODELS  

In the present study, three different ANN algorithms were used for the retrieval 

of soil moisture using bistatic scatterometer data. ANN algorithms are easy to perform 

the non-linear complex statistical modeling between dependent and independent 

variables. One of the advantages of ANN is its non-parametric nature whereas most of 

the statistical models are parametric in behavior. In the ANN,  the optimum value of 

free parameters are adjusted by training of the ANN algorithms using large input-

output data sets while most of statistical methods are parametric model that need 

higher background of statistic. The ANN algorithms have ability to implicitly detect 

complex nonlinear relationships between dependent and independent variables by 
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training. Disadvantages include greater computational burden, proneness to over 

fitting, and the empirical nature of model development.  

 

Figure 3.1 Surface roughness profile and auto correlation function for test soil surface (RMS 
 = 11.69 cm) 

 
3.3.1 BACK PROPAGATION ARTIFICIAL NEURAL NETWORK (BPANN)  

In BPANN, the simple processing units (neuron) are arranged in different 

layers as input, hidden and output layers. The inputs are applied at input layer of 

ANN. The input layer propagates information in the forward direction to each node of 

the hidden layer with their synaptic weights. At each node, these weighted inputs are 

added. Each hidden layer computes output corresponding to these weighted sums 

through linear/non-linear sigmoidal transfer functions (Erbek et al. 2004; Haykin 

1994, 1999a). Figure 3.2 shows the specific structure of BPANN used in the present 

study. 

 The output values computed from each hidden layer nodes become input 

values for nodes of the output layer. These inputs for output layer nodes are obtained 

with the weighted sum and processed through transfer function at the output layer. 

Such nodes of output layer compute the final output of BPANN corresponding to their 

inputs. These computed output values are compared with the desired output values. 

Therefore, corresponding error is estimated at the output layer between computed 
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output values and desired output values. The estimated errors are sent back to the 

ANN. The connection weights and biases are modified accordingly until desired 

results are achieved. This process is repeated iteratively and connection weights and 

biases are modified until the convergence reached to an acceptable error. Therefore, 

the estimated values by BPANN may be very close to the observed values.  

3.3.2 RADIAL BASIS FUNCTION ARTIFICIAL NEURAL NETWORK 
(RBFANN)   

RBFANN model is based on the function approximation and data 

interpolation. The RBFANN consists of three different feed forward layers namely 

input layer, hidden layer and output layer. The hidden layer neurons are implemented 

with radial basis functions (e.g. Gaussian function). The output layer neurons are 

implemented with linear summation functions as in a multilayer perceptron. The 

Gaussian function is defined as, 

 

neurons take inputs from all input layer neurons. The hidden layer neurons are 

activated with radial basis function having center and spread parameters. The 

selective function decreases rapidly with smaller value of spread whereas it decreases 

slowly with the larger value of spread. 

The center of the radial basis function for  neuron at the hidden layer is a 

vector  whose size is as the input vector  The radial distance , between the input 

vector  and center of the radial basis function  are computed for each  neurons 

in the hidden layer as, 

 

Using the Euclidean distance, the output for each  neurons of the hidden layer 

were computed by applying the radial basis function  to the Euclidean distance, 
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Figure 3.2 Structure of BPANN used in the present study 

The calculation made between the input spaces to hidden space is nonlinear 

whereas the hidden space to output space is linear. 

The jth output is computed as,   

 

 

where  

 

= output of  neuron. 

 = weight vector for  neuron. 

 = output from   hidden layer neuron. 

The value of centre and spread depend on the pattern to be used for 

optimization. Generally, the spread value should be larger than the minimum distance 

and smaller than the maximum distance between the input neurons and the centre of 

the RBFANN spread in order to get better generalization(Narendra et al. 1998). The 
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centre and weights were found by using the orthogonal least squares (OLS) algorithm 

(Chen et al. 1991b). Figure 3.3 shows the specific structure and process of RBFANN. 

 

 

Figure 3.3 Structure of RBFANN model used in the present study 

 
3.3.3 GENERAL REGRESSION ARTIFICIAL NEURAL NETWORK 

(GRANN) 

The GRANN computes the most probable value of an output  for a given training 

vector . Specifically, the network computes the joint probability density function for 

 and . The expected value of the output for the input vector  is,  

 

The density function  is estimated from the sample of observations made for 

and . The probability estimator 
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where  and  are the number of sample observations and the dimension of vector  

respectively. A physical interpretation of the probability estimate  is that it 

assigns sample probability of width  

 and . The probability estimate is the sum of those sample probabilities. 

The squared of distance between the input vector  and the training vector  is 

defined as: 

 

The final output is determined by, 

 

The smoothing factor  is a very important parameter of GRANN. The estimated 

density is smooth for large , whereas, it is non-smooth for smaller value of . Figure 

3.4 shows the specific structure of GRANN model. 

 

Figure 3.4 Structure of GRANN model used in the present study 
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3.3.4 LINEAR REGRESSION MODEL (LRM) 

The linear regression model establishes the linear relationship by fitting linear 

equation between the two variables. The first and second variable can be considered as 

explanatory variable ( ) and dependent variable ( ) respectively. This model can be 

represented by the following equation. 

 

where .  and   are the slope and intercept respectively. The 

coefficients (slope and intercept) are computed by the least square method. 

3.4 PERFORMANCE INDICES  

 Several performances indices such as %bias, Root Mean Squared Error (RMSE) 

and Nash-Sutcliffe Efficiency (NSE) are used for estimating the performances of 

different models.  The percentage bias (%bias) measures the average tendency of the 

estimated values to be larger or smaller than their observed values. The optimum 

value of %bias is 0.0 and the smaller value of %bias indicates that accurate model 

prediction. 

 

where xi is the observed and  yi is the estimated variable. 

Root-mean-square error (RMSE) is frequently used to measure the differences 

between estimated values by a model or an estimator and the observed values. 

 

where is the number of observations. 

The Nash-Sutcliffe Efficiency (NSE) is based on the sum of absolute of 

squared of differences between the estimated and observed values normalized by the 

variance of the observed values. The NSE was calculated using equation (3.12) 
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3.5  RESULTS AND DISCUSSION 

3.5.1 MICROWAVE RESPONSE OF SOIL MOISTURE IN SPECULAR 
DIRECTION AT X- BAND 

Figure 3.5 (a-b) shows the angular variation of bistatic scattering coefficient 

for slightly rough bare soil surface at various gravimetric soil moisture conditions 

(11.70%, 15.61%, 20.43% and 24.12%) at HH- and VV-polarization. The soil surface 

roughness was maintained constant during the entire observations for studying the 

specular reflection/scattering from the slightly rough bare soil surface at different soil 

moisture conditions. The bistatic scattering coefficient was found to increase with the 

percentage of soil moisture content at HH- and VV- polarizations. Several researchers 

have found similar results (Bertuzzi et al. 1992; Dobson and Ulaby 1981; Khadhra et 

al. 2012; Ulaby et al. 1982) at X-, C- and L-band. The bistatic scattering coefficient 

was found to decrease with the incidence angle at VV- polarization and increases at 

HH-polarization. The scattering from slightly rough bare soil surface depends on the 

electrical property (dielectric constant), geometrical property (surface roughness) and 

chemical composition property (soil texture) as well as on the system properties like 

frequency, polarization and incidence angle.  

The surface roughness is one of the important factors for influencing the 

scattering behaviour of electromagnetic wave from the surface. It is not an intrinsic 

property; it depends on the wavelength of the transmitted signal with respect to 

surface roughness. As the wavelength increases, the effect of roughness decreases. 

The magnitude of surface roughness also depends on the angle of incidence of the 

transmitted wave. The relation between the surface roughness and EM wave is 

defined in terms of the statistical property of surface roughness such as  and , 

where  is the wave number of the transmitted wave defined as . As the 

correlation length increases, the surface roughness decreases.  

In this study, the RMS height of the bare soil surface was high; however, the 

high correlation length of the soil surface compensates the surface roughness 

indicated by the small value of slop (m = 0.19) of the facet in the soil surface. The 
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bare soil surface under study behaves like a slightly rough surface at 10 GHz. The EM 

wave interacting with this slightly rough soil surface may be presented in terms of 

diffuse and coherent components.  

The bistatic scatterometer experiment was conducted by changing the 

incidence angle of the receiving and transmitting antenna at azimuthal angle =0 in 

the specular direction. The coherent component of the scattered waves was found to 

be dominating because of having high gain of receiving and transmitting antennas and 

their low 3 dB beam widths. The footprint of antenna beam covered the areas of the 

soil surface under study between 0.2247 m2 to 2.755 m2 in the angular range of 

incidence angle 20° to 70°. The dynamic ranges of angular variation of bistatic 

scattering coefficient with the various soil moisture contents were found to be 6.79 dB 

and 10.68 dB at HH- and VV- polarization respectively. At most care was taken to 

coincide the geometry of receiving and transmitting antenna beam with each other at 

the same place on the target during the bistatic scatterometer measurements. 

According to Fresnel reflection theory for the slightly rough surface, the reflectivity in 

specular direction was found to increase with the incidence angle at HH-polarization. 

However, it was found to decrease until the Brewster angle was reached and then after 

increased slightly in the case of VV-polarization.  

3.5.2 EVALUATION OF DATA 

Table 3.1 shows the linear regression results between the bistatic scattering 

coefficient and soil moisture content in the angular range of incidence angle 20° to 

70° at steps of 5° for HH- and VV- polarization. These results may be used for the 

evaluation of data and the selection of suitable incidence angle for the estimation of 

soil moisture at HH- and VV- polarization. The values of coefficient of determination 

(R2) were found higher at lower incidence angles than at higher incidence angles. It 

means that the bistatic scattering coefficients were more sensitive to the soil moisture 

content at lower incidence angles than the higher incidence angles. The higher values 

of (R2) were found to be 0.868 and 0.886 at 250 incidence angle for HH- and VV- 

polarization respectively. The bistatic scattering coefficients at 25° incidence angle 

were taken for the estimation of soil moisture by nonparametric models (BPANN, 

RBFANN and GRANN) and linear regression model (LRM).The data sets at 25° 
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incidence angle were interpolated to generate 68 data sets for the estimation of soil 

moisture using artificial neural networks. These 68 data sets were classified in to 17 

different groups of data sets. Thus, each such group contains 04 data sets. Out of these 

04 data sets, 03 data sets were chosen for training and 01 data set was taken for 

validation of ANN models from all the 17 different groups of data set.  

 

 

 

Figure 3.5 Angular variation of scattering coefficients at various soil moisture contents  for (a) 
HH- and (b) VV- polarization at X-band 
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Table 3.1 Linear regression results between bistatic scattering coefficient and soil moisture 

Angle (°) HH- Pol. VV- Pol. 

       R2         SE        SEE         R2         SE        SEE 

20 0.864 0.561 0.386 0.872 1.765 1.174 

25 0.868 0.645 0.436 0.886 1.810 1.125 

30 0.851 0.691 0.501 0.878 1.863 1.201 

35 0.837 0.662 0.506 0.883 1.935 1.219 

40 0.846 0.597 0.440 0.844 1.868 1.392 

45 0.821 0.755 0.609 0.829 2.088 1.644 

50 0.809 0.668 0.563 0.823 1.814 1.460 

55 0.808 0.564 0.476 0.840 1.947 1.470 

60 0.775 0.386 0.360 0.831 1.684 1.313 

65 0.816 0.318 0.262 0.812 1.459 1.216 

70 0.810 0.253 0.212 0.847 1.631 1.199 

 

3.5.3 ESTIMATION OF SOIL MOISTURE USING THREE DIFFERENT 
ARTIFICIAL NEURAL NETWORK ARCHITECTURES AND LINEAR 
REGRESSION MODEL 

Three different ANN architectures (BPANN, RBFNN and GRANN) and 

linear regression model (LRM) were used for the estimation of soil moisture content 

from the slightly rough soil surfaces in the angular ranges of 20° to 70° at HH- and 

VV- polarization using X-band bistatic scatterometer data. The observed data sets 

(bistatic scattering coefficient and soil moisture content) were interpolated into 68 

data sets at the incidence angle 25° for HH- and VV- polarization. The procedure for 

the selection of training and validation data sets is given in Section 3.5.2. 

Table 3.2 shows the optimum parameters of BPANN, RBFANN and GRANN 

models for HH and VV polarization. The parameters of ANN techniques need to be 

optimized for the accurate result. The preliminary analysis of ANN techniques is 

necessary before using it for any estimation. This study began with three ANN 

techniques namely BPANN, RBFANN and GRANN. In the BPANN, number of 

hidden layers, transfer function for each hidden layer and output layer, number of 

neurons in each layer, momentum, training algorithm, learning rate, number of 

iterations and size of training data sets are very important parameters for getting the 
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desired result. The optimization of these parameters are very challenging task. During 

the training of the ANN, the performance of ANN model is checked at different 

configurations using trial-error method. In trial-error method, the efforts were made to 

minimum value of RMSE between estimated and observed soil moisture content for 

each spread value.  

The number of iterations also plays a major role during the training of BPANN. 

The BPANN results may vary according to the number of iterations even for the same 

parameters during the training of networks. Thus, it is needed to retrain the network 3 

or 4 times using the same parameters to select the optimum number of iterations. The 

number of neurons at input and output layer of BPANN may be equal to the number 

of input-output parameters in the data sets. The number of neurons at hidden layer 

may vary for the optimization of BPANN to achieve accurate retrieval of soil 

moisture content. 

The value of spread is an important parameter to optimize the RBFANN and 

GRANN models for the training. Generally, the spread value should be larger than the 

minimum distance and smaller than the maximum distance between the input neurons 

and the centre of the RBFANN in order to get better optimization. The optimum value 

of spread is found by training the models using spread values between 1 and 15 at 

steps of 0.5 by trial-error method. In the above range of spread values, the values of 

RMSE shown by the RBFANN and GRANN models are found either constant or 

slightly higher RMSE with the increase of spread values at HH polarization. The 

relationship established between bistatic scattering coefficients and soil moisture 

content may not be fruitful by using higher value of spread at HH polarization. 

Moreover, many neurons may be required to fit the rapidly-changing function in the 

case of taking either larger or smaller spread value. The higher number of neurons 

may reduce the optimization speed of the model. On the basis of the above analysis, 

the performance of RBFANN and GRANN models is found optimized at the spread 

value 1 for HH polarization.  

In case of VV polarization, the RBFANN model gives the lowest values of 

RMSE up to spread value 3 and then its value was higher but found constant in the 

range of 4 to 15 spread value.  Thus, the spread value was chosen 1 for the RBFANN 
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model. However, the GRANN model gave the constant RMSE in the entire range of 

spread values between 1 and 15. Thus, the spread value for the GRANN model was 

chosen 1 at VV polarization.   

 The performance during the training and validation of different ANN models 

and linear regression model for the estimation of soil moisture were evaluated in 

terms of %bias, root mean square error (RMSE) and Nash-Sutcliffe Efficiency (NSE). 

Table 3.3 and 3.4 depict the performance indices during training and validation for the 

estimation of soil moisture by BPANN, RBFANN, GRANN and LRM respectively.  

 Figure 3.6 (a-b) and Figure 3.7 (a-b) depict the scatter plots between 

experimentally observed and estimated soil moisture by all the four models during the 

training and validation of models respectively. On the basis of computed performance 

indices like %bais, RMSE and NSE, the performance of BPANN and GRANN 

models were found better than the other models at HH- and VV- polarization 

respectively for the estimation of soil moisture during the training of the models. 

During the validation of models, the performance of BPANN and RBFANN models 

were found better than the other models at HH and VV polarization respectively for 

the estimation of soil moisture. Among different models, the BPANN is found to have 

marginally higher performance in case of HH polarization while RBFANN is found 

suitable with VV polarization followed by GRANN and LRM. The RBFANN model 

was found better estimator among the three estimators (BPANN, GRANN and LRM) 

for the estimation of soil moisture of bare soil surfaces at VV polarization. The 

performance of models for the estimation of soil moisture is evaluated by comparing 

the values of performance indices summarized in Tables 3.3 and 3.4.  

The performance of LRM model is compared with all the three ANN models 

on the basis of their corresponding NSE and RMSE. During the training of the 

models, the difference of the performance indices (NSE and RMSE) corresponding to 

BPANN and LRM models are found 0.0556 and 0.03449 respectively at HH- 

polarization. Whereas, the difference between the performance indices corresponding 

to GRANN and LRM models are found 0.0333 and 0.2067 for NSE and RMSE 

respectively at VV- polarization. During the validation of the models, the difference 

between the performance indices corresponding to BPANN and LRM models are 
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found 0.0312 and 0.2142 for NSE and RMSE respectively at HH polarization. At VV 

polarization, the difference between performance indices corresponding to RBFANN 

and LRM model are found 0.0293 and 0.2140 for NSE and RMSE respectively. 

 The above analysis shows small differences of NSE and RMSE corresponding 

to ANN and LRM models. This indicates almost similar performances of ANN in 

comparison to the LRM model. Thus, the LRM model may be the better approach for 

the estimation of soil moisture content of slightly rough surface using bistatic 

scatterometer data. The LRM is seemed to be the simple in operation than the ANN 

models for the estimation of soil moisture. Figure 3.8 shows the flow chart for 

comparing the results obtained by the different ANN models and LRM models.  

 
Table 3.2 Optimization of ANN model parameters 

 HH-Polarization VV-Polarization 

Optimum 
parameters 

BPANN RBFANN GRNN BPANN RBFANN GRANN 

Number of hidden 
layers 

1 1 - 1 1 - 

Number of neurons 
at hidden layer 

3 3 - 3 3 - 

Number of neurons 
at output layer 

1 - - 1 - - 

Number of neurons 
at pattern layer 

  3   3 

Transfer function at 
hidden layer 

Hyperbolic 
tangent 

sigmoidal 

Gaussian 
function 

- Hyperbolic 
tangent 

sigmoidal 

Gaussian 
function  

- 

Transfer function at 
output layer 

Linear Linear - Linear Linear  - 

Training algorithms Gradient 
descent 

- - Gradient 
descent 

- - 

Momentum  0.9 - - 0.9 - - 

Learning rate 0.1 - - 0.1 - - 

Spread  - 1 1 - 1 1 
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Table 3.3 Performance indices during training 

Models HH- Polarization VV- Polarization 

 %Bias RMSE NSE %Bias RMSE NSE 

BPANN 9.03E-05 1.0981 0.9216 -0.3643596 1.2572 0.8973 

RBFANN 3.62E-04 1.2728 0.8947 1.03E-05 1.1446 0.9148 

GRANN -0.9265517 1.6908 0.8142 -0.2223330 1.138 0.9158 

LRM -2.29E-06 1.443 0.8647 1.14E-06 1.3447 0.8825 

 

Table 3.4 Performance indices during validation 

Models HH- Polarization VV- Polarization 

 %Bias RMSE NSE %Bias RMSE NSE 

BPANN -0.1243166 1.01 0.9336 -0.8117412 0.9732 0.9383 

RBFANN -0.7344098 1.0628 0.9265 -0.8246147 0.9389 0.9426 

GRANN -1.9434577 1.5369 0.8462 -0.8745645 0.9777 0.9378 

LRM -0.6289193 1.2242 0.9024 -0.5367848 1.1539 0.9133 
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Figure 3.6 Scatter plot between observed and estimated soil moisture for the training of models 
at (a) HH- polarization and (b) VV- polarization with 1:1 lines 
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Figure 3.7 Scatter plot between observed and estimated soil moisture for the validation of models 
at (a) HH- polarization and (b) VV- polarization with 1:1 lines 

 

 In Figures 3.9 and 3.10, the Taylor plots were used to compare the quality of 

performance of the different non parametric or parametric models for the estimation 

of soil moisture by bistatic scatterometer data during the training and validation 

respectively. The circle mark along the X-axis on the Taylor plot is called as the 

reference point using observed data. The color points on the Taylor plot were drawn 

using estimated data by different models used in study. The colored point on the 

Taylor closer to circle point represents the perfect fit between observed and estimated 

data by the different approaches made in the present study. It also indicates the 

tendency of over/under estimation of data. If the standard deviation of the estimated 

values is found higher than the standard deviation of observed values, then it will 

result into overestimation and vice-versa. Taylor plot also indicates high correlation 

between observed and estimated values of soil moisture content during training and 

validation of all the models (parametric or non-parametric).  However, the GRANN 

model provided lower efficiency for the estimation of soil moisture during training 

and validation than the other models at HH- polarization. 
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Figure 3.8 Flow chart for the comparison of results 

 

Figure 3.9 Taylor plot for the performance of different models during training at HH- and VV- 
polarization 
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Figure 3.10 Taylor plot for the performance of different models during validation at HH- and 
VV- polarization 

3.6 CONCLUSIONS 
The microwave bistatic scattering coefficient was found to increase with the 

soil moisture content. The dynamic range of bistatic scattering coefficient was found 

more at VV- polarization than HH- polarization. The suitable incidence angle for the 

estimation of soil moisture of the slightly rough bare soil surface was found to be 250 

for both HH- and VV- polarization. All the four models were found suitable for the 

accurate estimation of soil moisture content using bistatic scatterometer data at HH- 

and VV- polarizations. However, the performance of these models were found a little 

better at VV- polarization than HH- polarization for the estimation of soil moisture 

from slightly rough bare soil surfaces using multi-incidence and dual polarized 

bistatic scatterometer data. The RBFANN model was found better estimator among 

the three estimators (BPANN, GRANN and LRM) for the estimation of soil moisture 

of bare soil surfaces at VV- polarization. The performance of ANN models is found 

not significantly better than LRM model for the estimation of soil moisture from 

slightly rough surface using bistatic scatterometer data. Therefore, the LRM model 

may be the best option than ANN models at VV- polarization. The LRM model is 

simple than ANN models in operation. 


