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The objective of the article is to find the stress intensity factors and crack energy 
for a pair of collinear Griffith cracks situated at the interface of the two orthotropic 
materials under steady-state temperature field. The problem is reduced to a pair of 
singular integral equations, which are solved using Jacobi’s polynomials. Numer-
ical computations are carried out for two different pairs of orthotropic materials 
for different particular cases, which are depicted through figures. The effect of ma-
terial constants and temperature coefficients on the behavior of physical quantities 
viz., stress intensity factors and crack energy of the interfacial cracks is the key 
feature of the present article. 
Key words: thermal stresses, collinear Griffith cracks, strain energy release rate, 

heat flux

Introduction

In many engineering disciplines viz., electronics, aerospace, and nuclear energy, lot of 
research has already been done during the study of behavior of the stress and displacement fields 
at the vicinity of the crack tip situated at the interface of the composite materials subject to thermal 
loading. Orthotropic composite materials are widely used in structural materials due to their light 
weight and strong in nature. When a cracked orthotropic composite material is used in a high or 
low temperature region, then heat flows through material. In this case, it is important to determine 
the thermal stress intensity around the crack, which occurs due to the disturbance in the heat flux. 
The investigation of thermo-elastic field and thermal stress concentration around the crack help 
to understand the stability and life of the cracked engineering materials and structures. According 
to linear elastic fracture mechanics, stress at the vicinity of the crack tip is singular. It is direct-
ly proportional to the inverse of square root of distance from the crack tip. Many observations 
of thermo-elastic cracked surfaces show that the thermal stress singularity at the vicinity of the 
crack tips are same as those with mechanical stresses. However, the nature of singularity becomes 
different for an interfacial crack. The occurrence of the interfacial cracks at the surface of struc-
tural components, due to thermal and mechanical loading, became an important research topic in 
fracture mechanics. For analyzing interfacial cracks, many studies were conducted under thermal 
steady-state conditions for orthotropic composite materials.

Sih [1] determined the stress intensity factor (SIF) of a crack in an infinite plate when 
the heat flows perpendicular to the crack surface. Later, Sekine [2] determined the SIF of a 
crack due to heat flux. The thermal stresses in an infinite plate due to the heat flux, for two 
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cracks have been determined by the same author [3]. The SIF around the two collinear cracks 
were evaluated by Chen and Zhang [4] in an orthotropic plate under the heat flux. Thermal 
stress for a single crack in an infinite elastic layer and thermal stress around two parallel cracks 
had been determined by Itou and Rengen [5]. Chen and Zhang [6] have determined the thermal 
stress in an orthotropic strip containing two collinear cracks. Itou [7] evaluated SIF for two 
parallel cracks in an infinite orthotropic plate due to the heat flux. Baksi et al. [8] have solved 
the problem of determining the thermal stresses and displacement fields in an orthotropic plane 
containing a pair of equal collinear Griffith cracks using the integral transform technique based 
upon displacement potential under steady-state temperature field. Zhong et al. [9] examined the 
behavior of two collinear cracks embedded in an orthotropic solid, using the Fourier integral 
transform technique, under uniform heat flux and mechanical loading on the cracked surfaces. 
Problems related to thermal stress and strain can also be found in the research articles [10-15].

In the present article the authors have made an endeavor to determine the SIF at the 
tips of a pair of collinear Griffith cracks situated at the interface of two orthotropic thermo-elas-
tic half planes subjected to a uniform heat flux and also to determine the energy required for 
creating two new surfaces and plastic deformation of the cracks under the steady-state tempera-
ture field. The problem has been reduced to a pair of second kind Fredholm integral equations, 
which are solved numerically using Jacobi polynomials. Numerical values of the SIF at the tips 
of the cracks for different prescribed crack lengths are presented through graphs for different 
particular cases. Numerical values of other physical quantity crack energy, obtained through 
different forms of the displacement potential functions, are also presented graphically.

Problem formulation

Let us consider a mathematical model of two bonded homogeneous orthotropic elastic 
half planes, 0 ≤ y < ∞ and –∞ < y ≤ 0, containing a pair of collinear Griffith cracks situated sym-
metrically at the interface y = 0, when Cartesian co-ordinate axes coincide with the axes of sym-
metry of the elastic material. When thermal conditions are applied to the surface of an arbitrary 
2-D orthotropic half planes, then the temperature field only depends on in-plane co-ordinates 
under the steady-state condition. The temperature distribution functions T(i)(x,y) are assumed to 
satisfy the following heat conduction equation in the orthotropic media.

	
2

2 ( ) 2 ( )
( )

2 2 0
i i

iT TK
x y

∂ ∂
+ =

∂ ∂
 	 (1)

where (K(i))2 = K(i)
y  / K(i)

x and K(i)
y and K(i)

x, (i = 1, 2) are the thermal conductive coefficients along 
y- and x-directions, respectively, for each half plane. 

The general solution of T(j)(x, y) is (c. f., Clements and Tauchert [16]):
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where i = (–1)1/2, j = 1, 2 and A(j)(p) and Ā (j)(p) are the arbitrary functions of p. 
Here we have assumed that 

	 T(i)(x, 0) = h(i)(x)	 (3) 

and hence the Fourier integral form of temperature distribution may be written:
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From eqs. (2) and (4), we get:
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From eqs. (2) and (5), the temperature distribution T(i)(x, y) is obtained: 
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If we consider                             h(i)(x) = δ(x) 				              (7)
where h(i)(x) is the prescribed temperature distribution become line source along y-axis and δ(x) 
is the Dirac delta function, the resultant temperature distribution is obtained:
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The relations between the plane stress, induced by the distribution of temperature, and 
displacement components u(i)(x, y) and ν (i)(x, y) along x- and y-directions are given by:
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where C(i)
jk are the elastic constants, β(i)

x and β(i)
ν  are the stress temperature coefficients. The dis-

placement equations of equilibrium are given by:
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The quantities with superscripts i = 1, 2 refer to those for the half plane-(1) and half 
plane-(2), respectively. It is assumed that at the interface y = 0, the cracks defined by a < |x| < b 
are opened by internal normal and shearing tractions p1(x) and p2(x), respectively, fig. 1. For the 
described problem the boundary conditions on y = 0 are given by:

	 (1)
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(1) (2)( ,0) ( ,0),yy yyx xσ σ= x−∞ < < ∞ 	 (18)

    
(1) (2)( ,0) ( ,0),xy xyx xσ σ= x−∞ < < ∞ 	 (19)

Solution of the problem

During the solution of the problem, 
we first introduce displacement potentials 
ψ(i) (x, y) and ϕ(i)

j  (x, y) as, Sharma [17]:
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Potential functions for the half planes are given by:
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The displacement components u(i) and ν(i) are written:
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The corresponding thermal stresses are: 
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The displacement eqs. (12) and (13) are satisfied by eq. (20) for non-trivial ϕ(i)
j  if:

	
( ) ( ) ( )2 ( ) ( ) ( ) ( ) ( )2

66 11 12 66( )
( ) ( ) ( )2 ( ) ( ) ( ) ( )

22 66 12 66

i i i i i i i i
y xi

i i i i i i i
x y

C K C C C K

C K C C C

β β
η

β β

   − + +   =
   − − +   

	 (27)

	

( ) ( ) ( )2 ( ) ( ) ( ) ( )
22 66 12 662 2 ( )2

2( ) ( )2 ( ) ( )2 ( ) ( ) ( )
22 66 66 11 12 66

i i i i i i i
x yi

i i i i i i i

C K C C C
p B p B K k

C K C C K C K C C

β β   − − +   = = =
     − − + +     

	 (28)

Here, the potential functions ϕ(i)
j  satisfies the following differential equations:
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Figure 1. Geometry of the problem
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where µ(i)
1 and µ(i)

2 are the real roots of the equation:
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Boundary conditions (16) and (17), with the help of the previous equations, give rise to:
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and after lengthy process of mathematical manipulations, boundary conditions (14) and (15) 
finally lead to the following singular integral equations:
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Equations (31) and (32) are reduced to the following singular integral equations for 
the determination of unknown functions fi(x):
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1 1ln
2 1π −

with ckn as unknown constants. Now, using eq. (33), we get:
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which implies Ck0 = 0, k = 1, 2. 
From eqs. (31) and (32), we get:
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Multiplying the previous equation by Pj
(αk, βk)(x)

 
and integrating from –1 to 1, we get: 
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and the principal value of 
1

–1

d /x x∫ is considered as zero. 
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Finally, the stress intensity factors at the crack tips x = a and x = b are calculated:

	 (1) (1)
1 1 1 1 1 1 1 1/ / lim ( ) ( ) [ / ( ,0) / ( ,0)]k ka a

I k II yy k xyx a
b a K ir d c K x a x a b a x ir d c xα β σ σ− −
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+ = − + + =
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The crack energy is calculated:

	 (1) (2)
1( )[ ( ,0) ( ,0)]d

b

a

W p x v x v x x= −∫ 	 (40) 

Results and discussion

In this section, the numerical computations have been done to find physi-
cal quantities viz., SIF and the crack energy for two collinear cracks situated at the in-
terface of two pairs of orthotropic materials with first one as α-uranium and epoxy bo-
ron, and the second one as beryllium and epoxy boron. In each case first type of material 
is taken as half plane-1 and second type of material as half plane-2. During the compu-
tations the crack length is considered as b=1 and a = 0.1 (0.1) 0.9 and also the load-
ings are considered as p1(x) = p, p2(x) = 0. The ratios of the stress temperature coefficients  
β(1)

y  / β(1)
x  

and β(2)
y  / β(2)

x   are taken as 0.67 and 0.5, respectively, for the first pair of materials, and 0.7 
and 0.5, respectively, for second pair of materials. The elastic constants of the orthotropic material  
α-uranium have been taken as C11 = 21.47⋅106 psi (148.03 GPa), C12 = 4.65⋅106 psi (32.06 GPa),  
C22 = 19.36⋅106 psi (133.48 GPa), C66 = 7.43⋅106 psi (51.22 GPa), Das and Patra [18].The 
elastic constants of the other considered orthotropic material boron-epoxy has been taken as  
C11 = 30.3⋅106 psi (208.91 GPa), C12 = 3.78⋅106 psi (26.06 GPa), C22 = 4.04⋅106 psi (27.85 GPa), 
C66 = 1.13⋅106 psi (7.79 GPa), (Sih and Chen [19]), and those of orthotropic material beryllium 
are taken as C12 = 8.88⋅106 psi (61.22 GPa), C22 = 36.49⋅106 psi (251.58 GPa), C66 = 11.24⋅106 psi 
(77.4 GPa), Das and Patra [18]. For the first and second pair of materials, the SIF at the tip x = a are 
described through fig. 2 and 3, respectively, for different values of a/b, whereas the physical quan-
tities at the tip x = b for both the pair of materials are depicted through figs. 4 and 5 for various a/b.  
The numerical values of crack energies for the two pairs of materials are shown through figs. 6 
and 7 for different values of a/b. 

It is seen from fig. 2 that as the length of the crack decreases, both Ka
I and Ka

II decrease. 
Same nature is followed for the second pair of materials, fig. 3, with only difference is that the 
values of SIF change as it completely depends on material constants.

As the lengths of the cracks decrease, figs. 4 and 5, i. e., cracks separation distance 
increases, then Kb

I decreases, Kb
II increases under thermo-mechanical loading for both pairs of 

materials. This shows that there is a least possibility of crack propagation at x = b, even when 
the tips of the cracks come very close to each other. The decreases of Mode II stress intensity 
factor justifies that as the distance between two cracks decreases, the effect of their propagation 
tendency in sliding mode will be decreased.
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Figure 2. Plots of Ka
I /a1/2p and Ka

II /a1/2p  vs. a/b for the first pair of materials
Figure 3. Plots of Ka

I /a1/2p and Ka
II /a1/2p  

vs. a/b for the second pair of materials
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Figure 4. Plots of Kb
I /a1/2p and Kb

II /a1/2p  
vs. a/b for the first pair of materials

Figure 5. Plots of Kb
I /a1/2p and Kb

II /a1/2p  
vs. a/b for the second pair of materials
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Figure 6. Plot of W/ap vs. a/b for the first  
pair of materials

Figure 7. Plot of W/ap vs. a/b for the second  
pair of materials

The nature of behavior of crack energy for first pair of materials is same as the second 
pair of materials with the difference is that in first case the nature of the decrease is very fast as 
compared to the gradually decrease of the second case.

In the numerical computation it is also given special emphasis to determine other 
physical quantity crack energy, W, to determine the energy required by the crack per unit in-
crease in area. Figures 6 and 7 show that the crack energy increases with the increase of crack 
length. The increment of crack energy represents that as crack advances then plastic zone size 
becomes large due to which more energy will be required for the crack propagation after attain-
ing its critical value. 

It is seen from the figs. 2-5 that first pair of materials can sustain more stress intensity 
compared to second pair of materials without fracture and it is also justified from figs. 6 and 
7 that for the first pair of materials the crack energy is higher compared to the second pair of 
materials due to formation of large plastic zone at the crack tips with increase of crack length.
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Conclusion

In the present article the authors have achieved four important goals. The first one is 
the investigation of a pair of collinear Griffith cracks at the interface of two orthotropic media 
under thermo mechanical loading. Second one is finding the analytical form of the stress inten-
sity factors at the vicinity of the crack tips. Third one is the successful presentation of variations 
of the SIF with crack separation distance. Fourth one is the increase of crack energy due to 
increase of length of the cracks showing the possibility of the formation of large plastic zone at 
the vicinity of the crack tip.
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