List of Figures

Figure No	Title	Page No
Figure 1.1	Energy distribution in a vehicle	1
Figure 1.2	Pump circulating cooling system	4
Figure 1.3	Carbon foam fin	9
Figure 3.1	Density variation for base fluids	36
Figure 3.2	Density variation for 25% PG &EG brine based nanofluids	36
Figure 3.3	Density variation for 25% PG based hybrid nanofluids	37
Figure 3.4	Specific heat variation for base fluids	38
Figure 3.5	Specific heat variation for 25% PG &EG brine based nanofluids	38
Figure 3.6	Specific heat variation for 25% PG based hybrid nanofluids	39
Figure 3.7	Thermal conductivity variation for base fluids	39
Figure 3.8	Thermal conductivity variation for 25% PG &EG brine based nanofluids	40
Figure 3.9	Thermal conductivity variation for 25% PG based hybrid nanofluids	40
Figure 3.10	Dynamic viscosity variation in base fluids	41
Figure 3.11	Dynamic viscosity variation for 25% PG &EG brine based nanofluids	41
Figure 3.12	Dynamic viscosity variation for 25% PG brine based hybrid nanofluids	42
Figure 3.13	Brookfield DV1 Viscometer for viscosity measurement	43
Figure 3.14	KD2 Thermal properties analyzer	44
Figure 3.15	Weighing Balance for density measurement	45
Figure.4.1	Geometric parameters for wavy fin radiator	49
Figure.4.2	Geometric construction details of louvered fin	50
Figure 4.3	Geometric construction of rectangular fin	51
Figure 4.4	Validation of simulation code with experimental data	57
Figure 4.5	Variation of heat transfer coefficient with temp.	58
Figure 4.6	Heat transfer rate with coolant flow rate	59
Figure 4.7	Effectiveness with coolant flow rate	59
Figure 4.8	Pumping power with coolant flow rate	60
Figure 4.9	Performance index with coolant flow rate	60
Figure 4.10	Second law efficiency with coolant flow rate	61

Figure 4.11	Heat transfer rate and pumping power variation	61
Figure.4.12	Heat transfer variation with particle volume fraction	63
Figure.4.13	Effectiveness variation with particle volume fraction	63
Figure 4.14	Pressure drop variation with particle volume fraction	64
Figure 4.15	Pumping power variation with particle volume fraction	64
Figure.4.16	Second law efficiency with particle volume fraction	65
Figure.4.17	Performance graph (heat transfer rate with pumping power)	65
Figure 4.18	Comparison for same heat transfer rate and radiator size	66
Figure 4.19	Comparison for same heat transfer rate and mass flow rate	66
Figure 4.20	Heat transfer variation with (0-1%) Al ₂ O ₃ hnf	67
Figure 4.21	Effectiveness variation with (0-1%) Al ₂ O ₃ hnf	68
Figure 4.22	Pressure drop variation with (0-1%) Al ₂ O ₃ hnf	68
Figure 4.23	Pumping power variation with (0-1%) Al ₂ O ₃ hnf	69
Figure 4.24	Comparison for same heat transfer rate and radiator size	69
Figure 4.25	Comparison for same heat transfer rate and mass flow	70
Figure 4.26	rate Variation of heat transfer rate with coolant volume flow rate	71
Figure 4.27	Variation of heat exchanger effectiveness with CFR	71
Figure 4.28	Variation of pumping power with CFR	72
Figure 4.29	Variation of performance index with CFR	73
Figure 4.30	Variation of second law efficiency with CFR	73
Figure 4.31	Performance graph (heat transfer rate with pumping power	73
Figure 4.32	Variation of heat transfer rate and effectiveness for brines	74
Figure 4.33	Comparison for same heat transfer rate and radiator size	76
Figure 4.34	Comparison for same heat transfer rate and mass flow rate	76
Figure 4.35	Heat transfer variation with (0-1%) Al ₂ O ₃ hnf	77
Figure 4.36	Effectiveness variation with (0-1%) Al ₂ O ₃ hnf	78
Figure 4.37	Pressure drop variation with (0-1%) Al ₂ O ₃ hnf	78
Figure 4.38	Pumping power variation with (0-1%) Al ₂ O ₃ hnf	79
Figure 4.39	Comparison for same heat transfer rate and radiator size	79
Figure 4.40	Comparison for same heat transfer rate and mass flow rate	79
Figure.4.41	Heat transfer rate and pumping power with brine concentration	81

Figure 4.42	Performance index and effectiveness with brine concentration	82
Figure 4.43	Heat transfer rate and pumping power with CFR	83
Figure 4.44	Effectiveness and performance index with CFR	83
Figure 4.45	Irreversibility and exergetic efficiency with CFR	84
Figure 4.46	Variations of irreversibility and Second law efficiency with air velocity	85
Figure 4.47	Variations of performance index and effectiveness	85
Figure 4.48	Heat transfer rate for various coolants	86
Figure 4.49	Effectiveness for various coolants	87
Figure 4.50	Pumping power for various coolants	87
Figure 4.51	Porous media heat exchangers for radiators	88
Figure 4.52	Validation of graphite foam fin radiator	90
Figure 4.53	Heat transfer rate with air velocity	91
Figure 4.54	Air exit temperature with air velocity	91
Figure 4.55	Coolant exit temperature with air velocity	91
Figure 4.56	Airside pressure drop with air velocity	92
Figure 4.57	Entropy change with air velocity	92
Figure 4.58	Fan power with frontal air velocity	93
Figure 4.59	Arrangement of cross flow and counter flow confg.	95
Figure 4.60	Variation of overall heat transfer coefficient (Config.II)	100
Figure 4.61	Variation of effectiveness with height (Config. II)	100
Figure 4.62	Variation of cooling capacity with height (Config. II)	101
Figure 4.63	Heat transfer rate with radiator position (Config. II)	102
Figure 4.64	Validation results for counter flow configuration	103
Figure 4.65	Heat transfer rate with velocity of air	104
Figure 4.66	Heat transfer rate with mass flow rate of coolant	104
Figure 4.67	Pumping power with mass flow rate of coolant	105
Figure 4.68	Heat transfer rate with ratio of counter flow /cross flow air velocity	106
Figure 5.1	Schematic of experimental set up with wind tunnel	109
Figure 5.2	Designed test section	110
Figure 5.3	Designed contraction cone	110
Figure 5.4	Designed diffuser	111
Figure 5.5	Designed Settling chamber	112

Figure 5.6	Designed honeycomb structure	112
Figure 5.7	Other components for the radiator experimental setup	114
Figure 5.8	Geometric construction of rectangular fin and tube	114
Figure 5.9	Photograph of the fully instrumented radiator experimental setup in wind tunnel	115
Figure 5.10	Heat transfer coefficient variation	119
Figure 5.11	Friction factor variation with Reynold number	119
Figure 5.12	Viscosity variation of PG mass fraction	119
Figure 5.13	Heat transfer rate with PG mass fraction	120
Figure 5.14	Heat transfer rate variation (Expt. and Theo.)	121
Figure 5.15	Coolant exit temperature variation (Expt. and Theo.)	121
Figure 5.16	Air exit temperature. variation (Expt. and Theo)	121
Figure 5.17	Effectiveness with CFR (Expt. and Theo.)	122
Figure 5.18	Effectiveness with air velocity (Expt. and Theo.)	122
Figure 5.19	Air side pressure drop with air velocity	123
Figure 5.20	Coolant side pressure drop with CFR	123
Figure 5.21	Photograph of prepared hybrid nanofluids	124
Figure 5.22	Friction factor and Nusselt number variation with Reynold number	125
Figure 5.23	Coolant pressure drop and effectiveness variations	126
Figure 5.24	Heat transfer rate and coolant exit temperature	127
Figure 5.25	Air exit temperature and effectiveness variation	127
Figure 5.26	NTU and heat transfer coefficient variation with air velocity	128
Figure 5.27	Heat transfer rate and air pressure drop variation	128
Figure 5.28	Air and coolant exit temperature variation	129
Figure 6.1	Schematic of Expt. Setup of engine cooling system	131
Figure 6.2	Photograph of Cooling System with Engine	132
Figure 6.3	Coolant Temp. measurement	133
Figure 6.4	Fin side Temp. measurement	133
Figure 6.5	Indicated Power from Willian's line	137
Figure 6.6	Engine brake power with coolants effectiveness	137
Figure 6.7	Engine indicated power with radiator heat transfer	138
Figure 6.8	Coolant side heat transfer with engine η_m	139
Figure 6.9	Coolant exit temperature with engine thermal efficiency	139

Figure 6.10	Air side heat transfer rate with BSFC	139
Figure 6.11	Engine brake power with coolants effectiveness	140
Figure 6.12	Engine indicated power with radiator heat transfer	141
Figure 6.13	Coolant side heat transfer with Engine η_m	142
Figure 6.14	Coolant exit temperature with engine thermal efficiency	142
Figure 6.15	Air side heat transfer with BSFC	142
Figure 6.16	Comparison of coolant heat transfer rate with IP	143
Figure 6.17	Radiator size variation for different coolants	144
Figure 6.18	Fuel energy distribution water as coolant	144
Figure 6.19	Fuel energy distribution PG brine based nanofluid	145
Figure 6.20	Fuel energy distribution PG brine based hybrid nanofluid	145
Figure 7.1	Rectangular fin radiator	147
Figure 7.2	Design of fin and tube for radiator	148
Figure 7.3(a)	Meshing for the radiator geometry	148
Figure 7.3(b)	Mesh elements variation	149
Figure 7.4	Validated results of air exit temperature	153
Figure 7.5	Validated results of coolant exit temperature	153
Figure 7.6 (a)	Predicted pressure results for 25% EG brine and 25% EG brine based nanofluid	154
Figure 7.6 (b)	Validated pressure results for 25% PG brine	155
Figure 7.7 (a)	Predicted temperature results for 25% EG brine and 25% EG brine based nanofluid	155
Figure 7.7 (b)	Validated temperature results for 25% PG brine	156
Figure 7.8 (a)	Predicted temperature results for 25% EG brine and 25% EG brine based nanofluid	157
Figure 7.8 (b)	Validated temperature results for 25% PG	157
Figure 7.9 (a)	Predicted velocity results for 25% EG brine and 25% EG brine based nanofluid	158
Figure 7.9 (b)	Validated velocity results for 25% PG	158
Figure 7.10	Predicted air exit temperature results for 25% EG brine and 25% EG brine based nanofluid	159
Figure 7.11	Coolant pressure drop for predicted and validated results	159