TABLE OF CONTENTS

Contents	Page No.
Certificate	
Acknowledgements	
Table of Contents	i-iv
List of figures	v-ix
List of tables	x
Nomenclatures	xi-xiv
Abstract	xv-xvi
1. Introduction	1
1.1 Background	1
1.2 Automotive Radiator	4
1.2.1 Radiator fin surfaces	5
1.2.2 Radiator fin materials	8
1.3 Radiator coolants	9
1.4 Aims and objectives	11
1.5 Outline of the thesis	13
2. Literature Review	15
2.1 Improvements based on radiator surfaces and coolants	15
2.1.1 Based on radiator fin surfaces	15
2.1.2 Improvements based on radiator coolants	22
2.1.3. Proposed new coolant	29
2.2 Improvements based on radiator fin materials and	
configurations	29
2.2.1 Radiator fin materials	29
2.2.2 Position of radiators	30
2.3 Research Gap	33
3. Characteristics of Radiator Coolants	34
3.1 Theoretical determination of thermophysical properties	34
3.1.1 Nanofluids	34

3.1.2 Hybrid nanofluids	35
3.1.3 Density of base fluids, nanofluids and hybrid	
nanofluids	35
3.1.4 Specific heat of base fluids, nanofluids and hnf	37
3.1.5 Thermal conductivity of base fluids, nanofluids and	
hybrid nanofluids	39
3.1.6 Dynamic viscosity of base fluids, nanofluids and hybrid	
nanofluids	41
3.2 Measurement of thermophysical properties and comparison	
with predicted data	42
3.2.1 Coolant preparation	42
3.2.2 Experimental procedure	43
3.2.2.1 Viscosity Measurement	43
3.2.2.2 Thermal Conductivity Measurement	44
3.2.2.3 Density Measurement	45
4. Theoretical Analysis for Radiator Performance	48
4.1 Performance analysis on the basis of various coolants	48
4.1.1 Mathematical Modelling	48
4.1.2 Simulation procedure and validation	57
4.1.3 Results and discussions	58
4.1.3.1 Wavy fin Radiator analysis with of various	
coolants	58
4.1.3.2 Louvered fin radiator performance with various	
coolants	70
4.1.3.3 Performance with rectangular fin for various	
coolants	80
4.2 Performance of radiator with different fin material	88
4.2.1 Mathemetical Modelling and simulation	89
4.2.2 Result validation	89
4.2.3.Results and discussions for radiator performance	90
4.3 Enhancement of cooling system using different configuration	
of automotive radiator	93

4.3.1 Arrangement of Radiator	94
4.3.2 Mathematical modelling and simulation	96
4.3.3 Results and discussions	99
4.3.3.1 Optimization of the counter flow volume	99
4.3.3.2 Optimization of angle of counter flow heat	
exchanger	101
4.3.3.3 Result validation	102
4.3.3.4 Performance comparison for various	
configurations.	103
5. Experimental Analysis of Automotive Radiator	108
5.1 Design and fabrication of Experimental set up	108
5.2 Description for the components of wind tunnel based radiator	
test rig	109
5.3 Experimental Set up and procedure	115
5.4 Experimental data Analysis for the radiator performance	116
5.5 Experimental Uncertainties	117
5.6 Results and Discussions	118
5.6.1 Performance comparisons of water and PG brine	118
5.6.2 Hybrid nanofluid preparation	124
5.6.3 Performance comparisons of PG brine based hybrid	
nanofluids	125
6. Experimental Analysis of Radiator with Engine Assembly	
using Various Coolants	130
6.1 Experimental set up with engine assembly	130
6.2 Experimental Methodology	131
6.3 Evaluation of radiator performance	134
6.4 Evaluation of engine performance	135
6.5 Uncertainty evaluation	135
6.6 Results and Discussions	136
6.6.1 Performance evaluation with water, PG brine and EG	
brine coolants	136
6.6.2 Performance evaluation with PG and EG brine based	

nanofluid and hybrid nanofluid coolants	140
6.7 Effect of cost, weight and space	143
6.8 Fuel energy distribution results	144
	146
7. CFD Analysis for Radiator with Proposed Coolants	
7.1 CFD Methodology	146
7.2 Meshing	148
7.3 Numerical Schemes	149
7.3.1 Governing Equations and boundary conditions	149
7.3.2 Material	151
7.3.2.1 Fin and tube material	151
7.3.2.2 Fluid material	151
7.4 Operating conditions	151
7.5 Results validation and discussions	152
7.6 Predicted simulated results for 25% EG and nanofluid	154
7.6.1 Pressure distribution in tube and fins	154
7.6.2 Temperature distribution in tube and fins	155
7.6.3 Temperature at section plane through the fin	156
7.6.4 Velocity Magnitude at a section of fin	157
7.6.5 Air exit section temperature profile for fins	158
8. Conclusions and Recommendation for Future Work	161
8.1 Conclusions	161
8.2 Recommendation for future work	164
References	165
Appendix A	181
Appendix B	182
Appendix C	185