List of Figures

FIGURES

Page No.

Chapter-I	Introduction and Literature Review	1-31
Fig.1.1	A schematic image of metal ceramic crown	2
Fig.1.2	Dental restorations. (a) In-Ceram crown with standard crown design. (b). Lateral view of In-Ceram crown demonstrating underlying tooth structures. (c) Lateral view of ceramic crown on a titanium implant. d. Poreolain vancer resin bonded to tooth anomal	4
Fig. 1.3	Single leucite crystal (left) and crystal structure of tetragonal leucite (right); spheres- K^+ ions, tetrahedral- $[SiO_4]^{4-}$. $[AlO_4]^{5-}$	20
Fig. 1.4	The relationship among three polymorphs of the kalsilite	24
Chapter III	Experimental Techniques	35-62
Fig. 3.1	Flow chart of the preparation of leucite	36
Fig. 3.2	Flow chart for synthesis of LTF	38
Fig. 3.3	Flow chart for the preparation of kalsilite	39
Fig. 3.4	Flow chart for preparation of bioglass	41
Fig. 3.5	Overall flow chart	45
Fig. 3.6	Schematic diagram of X-ray diffractometer	46
Fig. 3.7	Image of pushrod dilatometer	48
Fig. 3.8	Working principle of SEM	49
Fig. 3.9	Image of Inspect FEI SEM	50
Fig. 3.10	Image of 3-point bend UTM	51
Fig. 3.11	A schematic representation of flame photometer	53
Fig. 3.12	Working principle of flame photometer	54

Fig. 3.13	Image of a flame photometer	56
Fig. 3.14	Image of FTIR	57
Chapter IV	Results and Discussion	
4.1	Mechanochemically Synthesized Leucite for Dental Veneering Glass	63-80
	Ceramics	
Fig. 4.1	X-ray diffraction patterns of 6 h milled leucite samples heat treated at	64
	different temperatures	
Fig. 4.2	X-ray diffraction patterns of leucite with 2 wt% of CaF_2 heat treated at	65
	different temperatures	
Fig. 4.3	Variation of crystallite size of the leucite samples with & without CaF_2	66
	with temperature	
Fig. 4.4	CTE curves of the compositions, LTF, MCL ₁₀₀₀ , MCL ₁₁₀₀ , MCL-C ₁₀₀₀	68
	and MCL-C ₁₁₀₀	
Fig. 4.5	SEM micrographs of samples fired at 800 °C at different magnifications	69
	(A, B) MCL ₁₁₀₀ and (C, D) MCL-C ₁₁₀₀	
Fig. 4.6	Flexural strength of MCL and MCL-C samples heated at different	71
	temperatures	
Fig. 4.7	Weight loss of the MCL and MCL-C samples after immersion in 4%	73
	acetic acid and pineapple juice	
Fig. 4.8	SEM micrograph of the leucite samples before immersion in acidic	76
	medium a) MCL _{20/80} ; b) MCL _{30/70} ; c) MCL-C _{20/80} and d) MCL-C _{30/70}	
Fig. 4.9	SEM micrograph of the leucite samples after immersion in 4% acetic	77
	acid for 168 hours at 80°C, medium a) MCL _{20/80} ;b) MCL _{30/70} ; c) MCL-	
	C _{20/80} and d) MCL-C _{30/70}	
Fig. 4.10	SEM micrograph of the leucite samples after immersion in pineapple	78
	juice for 168 hours, a) MCL _{20/80} ; b) MCL _{30/70} ; c) MCL-C _{20/80} and d)	
	MCL-C _{30/70}	

4.2	Mechanochemically Synthesized Kalsilite:	77-93
	Implementation as Dental Porcelain with Low Temperature Frit	
Fig. 4.11	XRD patterns of the kalsilite samples milled for 3h and heat treated at	82
	different temperatures	
Fig. 4.12	XRD patterns of kalsilite with 2 wt% of MgF_2 samples milled for 3h and	83
	heat treated at different temperatures	
Fig. 4.13	XRD patterns of kalsilite samples milled for 6 h and heat treated at	84
	different temperatures	
Fig. 4.14	XRD patterns of kalsilite with MgF2 samples milled for 6 h and heat	85
	treated at different temperatures	
Fig. 4.15	CTE curves of the MKL samples containing different wt% of	87
	kalsilite and LTF	
Fig. 4.16	CTE curves of the samples having different wt% of kalsilite and LTF	88
	and 2 wt% of MgF_2	
Fig. 4.17	Flexural strength of the MKL and MKL-M samples having different	89
	wt% of kalsilite and LTF	
Fig. 4.18	BD and AP of samples contains different wt% of kalsilite and LTF	90
Fig. 4.19	SEM micrographs of the samples, MKL-M1000 25/75 (A, B), MKL-M1000	91
	_{30/70} (C, D) at different magnification	
Fig. 4.20	SEM micrographs of the samples, $MKL_{1000\ 25/75}(E,F)$ and $MKL_{1000\ 30/70}$	92
	(G, H) at different magnification	
Fig. 4.21	Weight loss of MKL and MKL-M samples with different wt% of LTF	93
	after immersion in 4% acetic acid and pineapple juice	
Fig. 4.22	SEM micrograph of the kalsilite samples before immersion in acidic	95
	medium a) MKL _{20/80} ; b) MKL _{30/70} ; c) MKL-M _{20/80} and d) MKL-M _{30/70}	
Fig. 4.23	SEM micrograph of the kalsilite samples after immersion in 4% acetic	96
	acid for 168 hours at 80 °C, a) MKL _{20/80} ; b) MKL _{30/70} ; c) MKL-M _{20/80}	
	and d) MKL-M _{30/70}	

Fig. 4.24	SEM micrograph of the kalsilite samples after immersion in pineapple	97
	juice for 168 hours, a) MKL _{20/80} ; b) MKL _{30/70} ; c) MKL-M _{20/80} and d)	
	MKL-M _{30/70}	
4.3	Mechanochemically synthesized leucite/kalsilite based bioactive	99-116
	glass ceramic composite for dental veneering	
Fig. 4.25	XRD pattern of COMP-1 before and after heat treatment up to 960°C	99
Fig. 4.26	XRD pattern of COMP-2 before and after heat treatment up to 960°C	100
Fig.4.27	XRD pattern of COMP-3 before and after heat treatment up to 960°C	100
Fig. 4.28	XRD pattern of COMP-4 before and after heat treatment up to 960°C	101
Fig. 4.29	CTE curves of COMP-1, COMP-2, COMP-3 and COMP-4 along with	102
	commercial Dentine A2 and substrate	
Fig. 4.30	Flexural strength of COMP-1, COMP-2, COMP-3, COMP-4 and	104
	commercial dentine	
Fig. 4.31	SEM image showing the surface morphology of interface layer between	105
	the composites and the substrate	
Fig. 4.32	SEM images of the coated specimens of COMP-1 (a) before (b) after	106&107
	COMP-2 (c) before and (d) after immersion COMP-3 (e) before and (f)	
	after immersion COMP-4 (g) before and (h) after immersion for 7 days	
	in SBF showing HAp formation	
Fig. 4.33	FTIR absorbance bands of COMP-1 composite before and after	108
	immersion in SBF for 0, 7 and 14 days	
Fig. 4.34	FTIR absorbance bands of COMP-2 composite before and after	108
	immersion in SBF for 0, 7 and 14 days	
Fig. 4.35	FTIR absorbance bands of COMP-3 composite before and after	109
	immersion in SBF for 0 and7 days	
Fig. 4.36	FTIR absorbance bands of COMP-4 composite before and after	110
	immersion in SBF for 0 and7 days	

- Fig. 4.37Higher concentration of composite materials retards growth of SCC-25112cells. (A) Viability of SCC-25 cells in presence of COMP-1, COMP-2,
COMP-3 and COMP-4 glass-ceramic composites (B&C) Graphs show
concentration response of leucite and kalsilite glass-ceramic
compositematerials on tumor cell proliferation and growth (D) Direct
cellular cytotoxicity by composite materials against SCC-25 cells. Data
presented as mean \pm SD, n = 4. * p<0.5, ** p<0.01, *** p<0.001</td>
- Fig. 4.38 Microscopic analysis of induction of apoptosis SCC-25 cells were given 113 indicated treatment with COMP-1, COMP-2, COMP-3 and COMP-4 glass-ceramic composites materials at a concentration of 50mg/ml in complete RPMI 1640 medium for 8h at 37°C. FITC-conjugated Annexin V and Propidium iodide (PI) stained apoptotic cells were visualized under a fluorescence microscope (Nikon Eclipse 80i, Nikon, Japan) with Plan Fluor, 40X, NA 0.75 objective equipped with green and red filters for FITC and PI, respectively. n=3
- Fig. 4.39 SEM images of the surface of COMP-1showing the proliferation and 114 spreading of SCC-25 cells after 10 days of culture on COMP-1 glass– ceramic composites (image at same magnification and scale bar represent 30µm (inset)
- Fig. 4.40SEM images of the surface of COMP-2 showing the proliferation and115spreading of SCC-25 cells after 10 days of culture on COMP-2 (image
at same magnification and scale bar represent 30μm (inset)115
- Fig. 4.41SEM images of the surface of COMP-3 showing the proliferation and116spreading of SCC-25 cells after 10 days of culture on COMP-3 (image
at same magnification and scale bar represent 30μm (inset)116
- Fig. 4.42 SEM images of the surface of COMP-4 showing the proliferation and 116 spreading of SCC-25 cells after 10 days of culture on COMP-4 (image at same magnification and scale bar represent 30µm (inset)
- Fig. 4.43SEM images of the surface of commercial dentine showing proliferation117and spreading of SCC-25 cells after 10 days of culture on dentine(image at same magnification and scale bar represent 30μm (inset)

4.4	Effect of Al ₂ O ₃ on leucite based bioactive glass ceramic composite	118-131
	for dental veneering	
Fig. 4.44	XRD pattern of the composites containing different wt% of alumina	118
	before firing.	
Fig. 4.45	XRD pattern of the composites containing different wt% of alumina	119
	after heat treatment at 960 °C.	
Fig. 4.46	SEM morphology of the composite Al-0after heat treatment	120
Fig. 4.47	SEM morphology of the composite Al-4 after heat treatment	121
Fig. 4.48	SEM morphologyof the composite Al-8 after heat treatment	121
Fig.4.49	SEM and EDS spectrum of the composition Al-0	122
Fig. 4.50	SEM and EDS spectrum of the composition Al-8	122
Fig. 4.51	CTE curves of the composites along with commercial dentine	123
	(VITA VMK 2M2)	
Fig. 4.52	BD and AP of the bioactive glass ceramic composites with	124
	different wt. % of alumina	
Fig. 4.53	Flexural strength of composites and commercial dentine	125
Fig. 4.54	SEM image of the surface of (a) Al-0, (b) Al-2, (c) Al-4 and (d) Al-8	127-130
	composites. Showing the proliferation and spreading of SCC-25 cells	
	after 10 days of culture on composites (all images at same magnification	
	and scale bars represent 30µm (inset	