List of Figures

Figure No.	Title	Page#
Fig. 1.1	Odorant receptors and organization of the olfactory system	4
Fig. 1.2	A comparison of the biological and artificial olfactory systems	7
Fig. 1.3	Photo image of compact hand-held device developed by NASA for space application	7
Fig. 1.4	Basic configuration of Taguchi (Figaro products) gas sensor	15
Fig 1.5	Classification scheme of the multivariate pattern analysis techniques applied to e-nose data	20
Fig. 2.1	Crystalline structure of SnO ₂ unit cell	38
Fig. 2.2	Band diagram for SnO ₂ (left) and the projection of the density of states (right)	40
Fig. 2.3	Schematic band diagram of SnO_2 , donor level E_{D1} =0.03 eV, E_{D2} =0.15 eV	40
Fig. 2.4	Potential energy and atomic distance at the adsorption of a	43
	dissociative chemisorption oxygen on tin oxide	
Fig. 2.5	Adsorption process of oxygen on a SnO ₂ surface. Two Sn-O bondings are developed from one chemical bonding in the oxygen molecule on the surface	43
Fig. 2.6	Surface charge layers on the surface of n-type semiconductor with a wide band gap (a) Distribution of charges (b) Band scheme near conduction band edge (c) Concentration $n(z)$ of electrons in the conduction band	46
Fig. 2.7	Energy diagram of various oxygen species in the gas phase adsorbed at the surface and bound within the lattice of a binary metal oxide.	48
Fig. 2.8	Model of inter-grain potential barrier in the absence of gases (left) and in the presence of gases (right)	49
Fig. 2.9	Schematics indicating the mechanisms leading to SnO ₂ sensor response to oxidizing and reducing gases	50
Fig. 2.10	Effect of doping on SnO ₂ as Chemical (Left) and Electronic (Right) Sensitization	51
Fig. 2.11	Flow chart for thick film sensor array fabrication	54
Fig. 2.12	Patterns for fabricating sensor array (a) Heater (b) Interdigitated electrode (c) Sensor patterning mask	56

Fig. 2.13	Schematic diagram of mesh of screen	56
Fig. 2.14	(a) Manual screen preparation tool (b) Prepared screens	58
Fig. 2.15	Schematic diagram of snap off process	60
Fig. 2.16	Essential part of a screen printer	61
Fig. 2.17	Photograph of screen printing machine	62
Fig. 2.18	Variation of viscosity of a typical thick-film at different stages	62
E' 2.10	during the printing cycle	<i>(</i> 2
Fig. 2.19	Conventional box oven used for drying process	63
Fig. 2.20 Fig. 2.21	Schematic of cross section of thick film furnace Photograph of thick film furnace	64 65
_		
Fig. 2.22	Photo image of fabricated sensor array (a) Heater, (b)	66
	Interdigitated electrodes (c) Fabricated sensors array	
Fig. 2.23	The response and recovery analysis for a thick film sensor	68
Fig. 2.24	(a) Locally developed test chamber used for sensor array	70
	characterization (b) Sensor array connections	
Fig. 2.25 (a)	Response graphs of sensor array upon exposure of LPG	71
Fig. 2.25 (b)	Response graphs of sensor array upon exposure of $N_2\mathrm{O}$	71
Fig. 2.25 (c)	Response graphs of sensor array upon exposure of Acetone	72
Fig. 2.25 (d)	Response graphs of sensor array upon exposure of 2-Propanol	72
Fig. 2.26	Response bars for sensor array upon exposure of LPG, N2O,	73
	Acetone and 2-Propanol at 600 ppm	
Fig. 2.27 (a)	Sensitivity variation with time for LPG	74
Fig. 2.27 (b)	Sensitivity variation with time for N ₂ O	74
Fig. 2.27 (c)	Sensitivity variation with time for Acetone	75
Fig. 2.27 (d)	Sensitivity variation with time for 2-propanol	75
Fig. 2.28 (a)	Response and recovery plots for single cycle for LPG	76
Fig. 2.28 (b)	Response and recovery plots for single cycle for N ₂ O	76
Fig. 2.28 (c)	Response and recovery plots for single cycle for Acetone	77
Fig. 2.28 (d)	Response and recovery plots for single cycle for 2-propanol	77
Fig. 2.29	Variation in response and recovery time of sensor with change in	79
	concentration of test gas	
Fig. 2.30	Validation of the experimental results with tin oxide thick film	80
	sensor model	
Fig. 3.1	Schematic of Sensor Array-1 fabricated by Mishra and Agarwal	84
	(1998)	

Fig. 3.2	Steady state responses of Sensor Array-1 upon exposure to (a)	85
	LPG, (b) H_2 (c) CH_4 (d) CO	
Fig. 3.3	Schematic of the sensor array (Sensor Array-2) fabricated by the	86
	author	
Fig. 3.4	Steady state responses of Sensor Array-2 upon exposure to LPG, N_2O , Acetone and 2-Propanol	87
Fig. 3.5	3-D Scatter plot of the raw data obtained from response of the Sensor Array-1	89
Fig. 3.6	Scatter plot of the raw data obtained from response of the Sensor Array-2	89
Fig. 3.7	The extracted data using the LDA and PCA model with the Gaussians fitted by the Maximum-Likelihood for the first dimension for Dataset-1	95
Fig. 3.8	The extracted data using the LDA and PCA model with the Gaussians fitted by the Maximum-Likelihood for the first two dimensions of Dataset-1	96
Fig. 3.9	The extracted data using the LDA and PCA model with the Gaussians fitted by the Maximum-Likelihood for the first two dimensions of Dataset-2	97
Fig. 3.10	Typical Multilayer Feed Forward Neural Network	98
Fig. 3.11	Neuron 'j' being fed by a set of signals from a previous layer of neurons	100
Fig. 3.12	Classification accuracy vs. number of neurons in the single	107
	hidden layers for BPNN trained with raw data (Dataset-1)	
Fig. 3.13(a)	Classification accuracy vs. number of hidden layers for BPNN trained with PCA transformed data (Dataset-1)	108
Fig. 3.13(b)	Classification accuracy vs. number of neurons in the single	108
	hidden layer for BPNN trained with PCA preprocessed data	
	(Dataset-1)	
Fig. 3.14(a)	Classification accuracy vs. number of hidden layers for BPNN	109
	trained with LDA transformed data (Dataset-1)	
Fig. 3.14(b)	Classification accuracy vs. number of neurons in the single	109
8.0(0)	hidden layer for BPNN trained with LDA transformed data	
	(Dataset-1)	
Fig. 4.1	The method followed for the gases/odors classification using	116
	ASM	
Fig. 4.2	The thick film gas sensor array device used for generating dynamic responses	117

Fig. 4.3	Response–recovery plot of the sensor array for different	110
Fig. 4.3	concentrations of (a) LPG and (b) CCl ₄ Response–recovery plot of the sensor array for different	118
11g. 4.3	concentrations of (c) CO and (d) C_3H_7OH	119
Fig. 4.4	2-D scatter plot of raw data extracted from dynamic responses for	121
C	25 ppm concentration band	
Fig. 4.5	3-D scatter plot of raw data extracted from dynamic responses for	122
	25 ppm concentration band	
Fig. 4.6	Average slope calculation method used for dynamic responses	122
Fig. 4.7	Average slope values of response of each sensor for different	123
	gases/odors plotted on 2-D scatter graph for 25-ppm conc. band	
Fig. 4.8	2-D scatter plot of ASM transformed data for 25-ppm conc. band	123
Fig. 4.9	3-D scatter plot of ASM transformed data for 25-ppm conc. Band	124
Fig. 4.10	Typical multilayer feed forward neural network used as classifier	125
Fig. 4.11	Variation in classification accuracy of raw data with (a)	127
	Momentum (b) Learning rate (c) Number of neurons in the	
	hidden layer	
Fig. 4.12	Variation in classification accuracy with ASM data with (a)	127
	Momentum (b) Learning Rate (c) Number of neurons in the	
	hidden layer	
Fig. 4.13	Variation in classification accuracy with PCA preprocessed ASM	127
	data with (a) Momentum (b) Learning Rate (c) Number of	
	Neurons in the hidden layer	
Fig. 4.14	Neural network architecture-1 (NNA-1) adopted for	129
	quantification	
Fig. 4.15	Neural network architecture-2 (NNA-2) adopted for	129
	quantification	
Fig. 4.16	The method followed for the gases/odors classification cum	132
D:- 51	quantification for response and recovery data individually	120
Fig. 5.1	Schematic of methods used for gases/odors mixture analysis.	138
Fig. 5.2	Schematic of fabricated sensor array with common electrode (a)	140
T' 50	Sensor electrodes (a) Heater pattern (b) Sensor printing mask	1.40
Fig. 5.3	Combinations of selected Acetone and 2-propanol concentrations	140
	in their mixture used in the gas sensing	
Fig. 5.4	Response of sensor array for (a) acetone and (b) 2-propanol	141

Fig. 5.5	(a)-(b) Response of sensor array for acetone and 2-propanol	142
	mixture in different proportions	
Fig. 5.5	(c)-(d) Response of sensor array for Acetone and 2-propanol	143
	mixture in different proportions (Continued on next page)	
Fig. 5.5	(e)-(f) Response of sensor array for Acetone and 2-propanol	144
	mixture in different proportions	
Fig. 5.6	2-D scatter plot of raw data considering two of the four sensors	146
	data at a time.	
Fig. 5.7	The 2-D scatter plot of first two principal components obtained	147
	after applying the PCA to the raw dataset.	
Fig. 5.8	BPNN architecture for classification of individual and binary	149
	mixture of VOCs	
Fig. 5.9	Predicted against true concentration of (a) acetone alone, (b) 2-	157
	propanol alone (c) acetone in mixture, (d) 2-propanol in mixture	