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Abstract – We study the generalized uncertainty principle (GUP) modified simple harmonic
oscillator (SHO) in the operator formalism by considering the appropriate form of the creation
and annihilation operators A, A†. The angular-momentum algebra is then constructed using
Schwinger’s model of angular momentum with two independent GUP modified SHOs. With
the GUP modified angular-momentum algebra, we discuss coupling of angular momentum for a
two-particle composite system. Further, we calculate the Clebsch-Gordan (CG) coefficients for
a two-particle system explicitly. Our results show that the CG coefficients do not receive any
corrections up to quadratic GUP.

Copyright c© EPLA, 2018

Introduction. – Using the Heisenberg uncertainty
principle, we may infer that for detecting an arbitrarily
small scale, tools of sufficiently high energy (high momen-
tum) are required. Thus, essential quantum phenomena
must be probed at high energies. Interestingly, gravity
also becomes important at high energies. Therefore, we
must resort to quantum gravity theories when trying to
address fundamental areas of physics. One of the major
aims of physics has always been to reconcile gravity and
quantum mechanics in the same framework and possibly
arrive at a consistent and complete theory of quantum
gravity. In this regard, many theories such as string the-
ory, canonical quantum gravity, etc., have been formulated
that have emerged as strong candidates for the same.

Interestingly, all theories of quantum gravity and black-
hole physics predict the existence of a minimum length
scale called the Planck length (lpl ≈ 10−35 m) [1–7]. This
leads to the modification of the usual Heisenberg uncer-
tainty principle. The new uncertainty relation that we get
from these theories is called the generalized uncertainty
principle (GUP) [4,8–12]. The GUP as derived from string
theory and black-hole physics is given as

ΔpΔx ≥ �

2

[
1 + β0

l2pl

�2 Δp2
]
, (1)

where lpl =
√

G�

c3 = 10−35 m is the Planck length and β0 is
a constant, assumed to be of the order of unity. Evidently,
the new second term on the RHS of the above equation is

important only when Δx ≈ lpl or Δp ≈ ppl ≈ 1016 TeV/c
(Planck momentum), i.e., at very high energies/small
length scales.

The commutator algebra between xi, pj from string
theory and double special relativity can be reconciled
into [11,13]

[xi, pj] = i�

[
δij − α

(
pδij +

pipj

p

)

+ α2(p2δij + 3pipj)
]
, (2)

where α = α0
Mplc

= α0lpl

�
. Here α0 is normally assumed to

be of the order of unity. Both Δxmin and Δpmin arise as
an implication of the above algebra. In one dimension, it
leads to the following form of GUP [7]:

ΔxΔp ≥ �

2
[1 − 2α〈p〉 + 4α2〈p2〉]. (3)

The above-mentioned modified Heisenberg algebra can be
derived if we represent the position and momentum oper-
ators in the following way [7]:

xi = x0i, pi = p0i(1 − αp0 + 2α2p2
0), (4)

where x0i and p0j satisfy the usual canonical commu-
tation relations [x0i, p0j ] = i�δij and are interpreted as
low-energy position and momenta, respectively. On the
other hand xi and pi are the position and momentum at
high energy, respectively. Since α0 is of the order of unity,
α-dependent terms become important only at energy
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(momentum) scales comparable to the Planck energy
(momentum) scale. The GUP and its effects have been
studied extensively over the past decade [14–35]. Apart
from its important implications in cosmology [15–17]
and black-hole physics [18,19], Klein-Gordan [30] and
Dirac equations [21,31] have also been modified to
include quantum gravity effects. Various non-relativistic
quantum systems such as particle in a box, SHO, Landau
levels [7,32], coherent and squeezed states [26–29,33],
PT symmetric non-Hermitian systems [23–25] have been
investigated in the framework of GUP to note the effects
of quantum gravity therein. A particularly interesting
case with a probable observable effect has been devel-
oped in [7] by studying variations in the current of a
scanning tunnel microscope (STM) when the tunnelling
phenomenon is subject to GUP corrections.

Recently, GUP modified angular-momentum algebra
has been constructed and the corrections in CG coeffi-
cients due to GUP are obtained [34]. However, their
results are ambiguous (as mentioned by the authors them-
selves) as the CG coefficients obtained by applying J− to
the highest Jm value state and is different from that ob-
tained by applying J+ to the lowest Jm value state. This
motivates us to revisit the coupling angular momentum in
the framework of GUP. In this work, we construct GUP
modified angular-momentum algebra by using Schwinger’s
model of angular momentum (SMAM) [36]. In the first
step we develop the operator formulation for the GUP
modified SHO. By modifying the creation/annihilation op-
erators appropriately, we write the GUP modified SHO
Hamiltonian as �ω

2 [A†A+ AA†] with the commutation re-
lation between A and A† as [A, A†] = 1 + O(α). Angular-
momentum algebra is then constructed by considering two
such independent oscillators. This GUP modified algebra
is then used to study a two-particle angular-momentum
system. We explicitly calculate the CG coefficients. We
found that CG coefficients obtained by applying J− and
J+ are the same unlike the case in ref. [34]. We fur-
ther found that CG coefficients remain unaffected up to
quadratic GUP, even though the angular-momentum al-
gebra gets modified. This is a very interesting result in
the GUP framework. However, it is not surprising as the
GUP modified angular-momentum algebra can be mapped
to the usual angular-momentum algebra by redefining the
Planck constant.

We now present the plan of the paper. In the next
section, we develop the complete GUP modified formalism
of SHO in the operator formulation and then use SMAM
to derive GUP modified angular-momentum algebra in the
third section. We discuss angular-momentum coupling in
a composite two-particle system in the GUP framework in
the fourth section. In the fifth section, CG coefficients are
calculated explicitly for two particles system. Finally, the
sixth section is for the concluding remarks.

GUP modified harmonic oscillator. – In this sec-
tion, we discuss the operator formulation of SHO in the

framework of GUP using both high-energy and low-energy
momentum variables.

Using low-energy momentum. The corrections to the
harmonic oscillator model due to GUP have been ad-
dressed mostly using perturbation theory [7] and also
treated in phase space [35]. In the present work, we
formulate the operator formalism for the GUP corrected
SHO. The GUP modified harmonic-oscillator Hamiltonian
is given as

H = �ω

(
x2

x′2 +
p2

p′2

)
(5)

where x and p are the high-energy position and momen-
tum operators. This GUP corrected Hamiltonian can be
written in terms of low-energy operators up to O(α2) as

H = H0 + H1 = �ω

(
x2

0

x′2 +
p2
0

p′2

)

+ �ω

(
− 2αp3

0

p′2 +
5α2p4

0

p′2

)
, (6)

where

H0 = �ω

(
x2

0

x′2 +
p2
0

p′2

)
,

H1 = �ω

(
− 2αp3

0

p′2 +
5α2p4

0

p′2

)
.

(7)

Here, H1 is the correction due to GUP, x′ =
√

2�

mω and

p′ =
√

2m�ω and x0 and p0 are the usual low-energy po-
sition and momentum operators, respectively.

Now we modify the usual creation (a†) and annihilation
(a) operators of a 1d harmonic oscillator in the following
manner:

A† =
x0

x′ − i
p0

p′ (1 − αp0 + 2α2p2
0)

+ αβ†
1(x0, p0) + α2β†

2(x0, p0), (8)

A =
x0

x′ + i
p0

p′ (1 − αp0 + 2α2p2
0)

+ αβ1(x0, p0) + α2β2(x0, p0) (9)

in which the usual creation/annihilation operators
a† = x0

x′ − i p0
p′ and a = x0

x′ + i p0
p′ are modified by replacing

p = p0(1 − αp0 + 2α2p2
0) and x = x0 and including correc-

tions to the order α (β1(x0, p0)) and α2 (β2(x0, p0)).
We demand the Hamiltonian in eq. (6) to be in the

following form:

H =
�ω

2
(AA† + A†A) (10)

by constructing appropriate β1 and β2 as given by

β1 = iap′, β†
1 = −ia†p′, (11)

β2 = p2
0 − p′2

2
a, β†

2 = p2
0 − p′2

2
a†. (12)
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We now calculate the commutator [A, A†], which comes
out up to O(α3) as

[A, A†] = 1 − 2αp0 + 6α2p2
0

≡ 1 − C, (13)

where C is the correction due to GUP. In the absence of
GUP corrections, i.e., when α = 0, this formulation re-
duces to the usual operator formulation of 1d SHO. We
now wish to redefine the creation/annihilation operators
in GUP corrected formalism. For this purpose, we hence-
forth consider the GUP corrections as 〈C〉 rather than C.
This has been considered under the assumption that, in
experimental conditions, a GUP correction to any opera-
tor manifests as expectation value. In the next section, we
will use the GUP modified creation/annihilation operators
to generate the angular-momentum algebra. Therefore,
〈C〉 is the averaged value of GUP corrections and our as-
sumption stands correct (see eq. (36) in ref. [34]). Hence,
eq. (13) is rewritten as

[A, A†] = 1 − 〈C〉. (14)

We may now assume two new operators Ã and Ã†
such that

[Ã, Ã†] = 1. (15)

Here, Ã = A/
√

1 − 〈C〉 and Ã† = A†/
√

1 − 〈C〉. If
|1〉, |2〉, . . . , |N〉 are eigenvectors of the Hamiltonian in
eq. (10), then, in a general momentum regime, we
can write,

Ã|N〉 =
√

N |N − 1〉, (16)

Ã†|N〉 =
√

N + 1 |N + 1〉 (17)

or equivalently,

A|N〉 =
√

1 − 〈C〉
√

N |N − 1〉, (18)

A†|N〉 =
√

1 − 〈C〉 √
N + 1 |N + 1〉, (19)

where 〈C〉 = 2α〈p0〉 − 6α2〈p2
0〉 such that commutation re-

lation in eq. (14) is satisfied. In the above equations and
in the later sections, we have expressed GUP effects solely
in terms of expectation value of C based on the aforemen-
tioned arguments.

Using high-energy momentum. Now, we would like
to show that the conclusion of the previous section can
also be achieved while remaining in the high-momentum
regime (i.e., GUP modified momentum). The GUP modi-
fied creation/annihilation operators A and A† are defined
in terms of high-energy variables (x, p) as

A† =
x

x′ − i
p

p′ , (20)

A =
x

x′ + i
p

p′ , (21)

where x and p are in the high-momentum regime and

x′ =
√

2�

mω and p′ =
√

2m�ω. Then the GUP modified

Hamiltonian is written as H = �ω
2 [AA† + A†A] and the

commutator [A, A†] in the regime is obtained as

[A, A†] = 1 − 2αp + 4α2p2 (22)

which is exactly the same as in eq. (13) when p is expressed
in terms of low-energy variables as p = p0(1−αp0+2α2p2

0).
In the general momentum regime, similar to the discussion
for low-energy momentum, we have

A|N〉 =
√

1 − 〈C〉
√

N |N − 1〉, (23)

A†|N〉 =
√

1 − 〈C〉 √
N + 1 |N + 1〉, (24)

where 〈C〉 = 2α〈p〉 − 4α2〈p2〉.
GUP modified angular-momentum algebra us-

ing Schwinger’s model of angular momentum. – In
this section, we would like to calculate the GUP modified
angular-momentum algebra by considering two such GUP
modified harmonic oscillators. Two uncoupled SHOs (we
call them type 1 and type 2) are considered with num-
ber states denoted as n1 and n2 with their usual indepen-
dent algebra. Then the general eigenket is constructed in
SMAM as

N1,2|n1, n2〉 = n1,2|n1, n2〉, (25)

a†
1|n1, n2〉 =

√
n1 + 1|n1 + 1, n2〉, (26)

a1|n1, n2〉 =
√

n1|n1 − 1, n2〉 (27)

and similar relations are obtained when a†
2 and a2

act on these states. Next, in SMAM the following
angular-momentum operators are constructed [36]:

L+|n1, n2〉 ≡ � a†
1a2|n1, n2〉

= �[n2(n1 + 1)]1/2 |n1 + 1, n2 − 1〉, (28)

L−|n1, n2〉 ≡ � a†
2a1|n1, n2〉

= �[n1(n2 + 1)]1/2 |n1 − 1, n2 + 1〉, (29)

Lz|n1, n2〉 ≡ �

2
(N1 − N2)|n1, n2〉

=
�

2
(n1 − n2)|n1, n2〉 (30)

which satisfy the angular-momentum algebra [Lz, L±] =
± �L±, [L+, L−] = 2�Lz. We now make a canonical trans-
formation to n1 and n2 in the above,

n1 → l + m, n2 → l − m. (31)

Then, eqs. (28), (29), (30) reduce to the usual form
of angular-momentum algebra as shown in eqs. (32),
(33), (34)

L+|l + m, l − m〉 = λ+|l + m + 1, l − m − 1〉, (32)
L−|l + m, l − m〉 = λ−|l + m − 1, l − m + 1〉, (33)
Lz|l + m, l − m〉 = � m|l + m, l − m〉, (34)

where λ± = � [(l ∓ m)(l ± m + 1)]1/2 and the eigenvalues
of the quadratic operator �L2 become

�L2|l + m, l − m〉 = �
2l(l + 1)|l + m, l − m〉. (35)

Thus, we see that angular-momentum algebra is con-
structed using two SHO algebra when eigenstates are

30009-p3
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re-labelled by replacing |l + m, l − m〉 by |l, m〉. We fol-
low the same technique now for a GUP modified harmonic
oscillator in the high-energy momentum regime. Repeat-
ing the same steps of SMAM (eqs. (32), (33), (34), (35))
with GUP modified SHO algebra (eqs. (22), (23), (24)),
we obtain

L+|l, m〉 = � (1 − 〈C〉) λ+|l, m + 1〉, (36)
L−|l, m〉 = � (1 − 〈C〉) λ−|l, m − 1〉, (37)
Lz|l, m〉 = � (1 − 〈C〉) m |l, m〉, (38)
�L2|l, m〉 = �

2 (1 − 〈C〉)2 l(l + 1) |l, m〉. (39)

The forms Lx, Ly are then constructed using

Lx =
L+ + L−

2
, Ly =

L+ − L−
2i

. (40)

We now find the various commutation relations between
L±, Lz, L2:

[Lz, L+]|l, m〉 = (LzL+ − L+Lz)|l, m〉
= �

2(1 − 〈C〉)2λ+|l, m + 1〉. (41)

Thus, we have

[Lz, L+]|l, m〉 = �(1 − 〈C〉)L+|l, m〉. (42)

Similarly, on calculation using eqs. (36), (37), (38), (39),
we get the following equations:

[Lz, L−]|l, m〉 = −�(1 − 〈C〉)L−|l, m〉, (43)
[L2, L±]|l, m〉 = 0, (44)
[L+, L−]|l, m〉 = 2�Lz(1 − 〈C〉)|l, m〉, (45)
[Lx, Ly]|l, m〉 = i�Lz(1 − 〈C〉)|l, m〉. (46)

The commutation relation given by eq. (44) implies that
the ladder operator does not change the magnitude of the
total angular momentum (l). Also, due to the occurrence
of the correction factor term, the spacing between consec-
utive eigenvalues of Lz changes,

LzL±|l, m〉 = L±[Lz ± �(1 − 〈C〉)]|l, m〉
= �(1 − 〈C〉)[m ± 1]L±|l, m〉. (47)

Also, eq. (47) implies that L±|l, m〉 is an eigenstate of Lz.
Now, using

L−L+ = L2 − Lz[Lz + �(1 − 〈C〉)],
L+L− = L2 − Lz[Lz − �(1 − 〈C〉)], (48)

we can calculate the norm of the raised lowered states
L±|l, m〉 as

||L±|l, m〉||2 = 〈l, m|L∓L±|l, m〉
= �

2(1 − 〈C〉)2[l(l + 1) − m(m ± 1)]
≥ 0. (49)

Therefore, as in the usual quantum mechanics [36] we
have limits on the values of m, which we denote mmax

(maximum m value or upper bound) and mmin (minimum

m value or lower bound). Application of the raising op-
erator L+ on the state characterised by mmax and the
lowering operator L− on the state characterised by mmin

would both give zero, i.e.,

L+|l, mmax〉 = 0, L−|l, mmin〉 = 0. (50)

Clearly, we observe that if we consider � → �(1 − 〈C〉) in
the usual QM, we get the GUP modified formalism, where
〈C〉 = 2α〈p〉 − 4α2〈p2〉.

Effect on two-particle system. – Till now all
the algebra derived above involves single particle. In
this section, the effect of GUP on multi-particle alge-
bra will be examined. We will start with two-particle
angular-momentum algebra and the results can be ex-
tended for N -particle systems accordingly.

Consider the addition of angular momentum including
GUP for a system of two particles with li and mi (i = 1, 2)
the azimuthal and magnetic quantum numbers of the par-
ticles. The total angular momentum and the z-component
for the composite system are

J = j1 + j2, Jz = j1,z + j2,z . (51)

We have two alternative choices of the basis for represent-
ing the combined system as

1) with simultaneous eigenkets of J2
1 , J2

2 , J1,z , and J2,z

denoted by |j1, j2; m1, m2〉 or,

2) with simultaneous eigenkets of J2, J2
1 , J2

2 , and Jz

denoted by |j1, j2; j, m〉.
We chose the latter one and the combined state in Hilbert
space is represented as

|j1, j2; j, m〉 =∑
m1

∑
m2

|j1, j2; m1, m2〉〈j1, j2; m1, m2|j1, j2; j, m〉

≡
∑

m1+m2=m

Cj1,j2,j
m1,m2,m|j1, j2; m1, m2〉, (52)

where |j1, j2; m1, m2〉 = |j1, m1〉 ⊗ |j2, m2〉 and
Cj1,j2,j

m1,m2,m ≡ 〈j1, j2; m1, m2|j1, j2; j, m〉 are the Clebsch-
Gordan coefficients. The CG coefficients may be calcu-
lated by applying J−. To discuss the addition of angular
momentum for this composite system further, we need the
following equations. Operating Jz on the combined state
we obtain

see eqs. (53) and (54) on the next page

The following point may be noted in analogy to ordinary
quantum mechanics and as done in [34]:

|j1 − j2| ≤ J ≤ |j1 + j2|. (55)

Now, let us consider the ladder operator for a two-particle
system.

J± = j1,± + j2,±. (56)

30009-p4



Schwinger’s model of angular momentum with GUP

Jz|j1, j2; j, m〉 =
∑
m1

∑
m2

[〈j1, j2; m1, m2|j1, j2; j, m〉]�[(1 − 〈C1〉)m1|j1, j2; m1, m2〉 + (1 − 〈C2〉)m2|j1, j2; m1, m2〉], (53)

Jz|j1, j2; j, m〉 =
∑

m1+m2=m

Cj1,j2,j
m1,m2,m�[(1 − 〈C1〉)m1 + (1 − 〈C2〉)m2]|j1, j2; m1, m2〉]. (54)

From the commutation relations (42), (43) we find that

[j1,z , j1,±] = ±�j1,±(1 − 〈C1〉), (57)
[j2,z , j2,±] = ±�j2,±(1 − 〈C2〉), (58)
[j1,z , j2,±] = 0, [j2,z, j1,±] = 0. (59)

From this one gets

JzJ±|j1, j2; m1, m2〉 =
(J±Jz ± �(j1,±(1 − 〈C1〉)
± j2,±(1 − 〈C2〉)))|j1, j2; m1, m2〉
= �

[
j1,±[(1 − 〈C1〉)(m1 ± 1) + (1 − 〈C2〉)m2]

+ j2,±[(1 − 〈C2〉)(m2 ± 1)
+ (1 − 〈C1〉)m1]|j1, j2; m1, m2〉, (60)

where 〈C1〉, 〈C2〉 are the correction factors due GUP for
the |j1, j2; m1, m2〉 state for first and second particles, re-
spectively. Also, for any state expressed as in eq. (52),
we have found the operation of JzJ± on the RHS states.
As for the LHS of eq. (52), the solution is easy to calcu-
late. Equation (60) shows that the RHS is no longer an
eigenstate of Jz , unlike the α = 0 case.

The above discussions on the two-particle system can
be also generalised for a system of N -particles on similar
lines as done above.

Clebsch-Gordan coefficients: two particles. – In
this section we calculate the Clebsch-Gordan coefficients
explicitly for two particles. We start with the highest
m value state in the highest multiplet and apply J−
which lowers the m value. We now resort to the notation
|j1, j2; j, m〉 ≡ |J, M〉; |j1, j2; m1, m2〉 ≡ |m1; m2〉, where
J = j, M = m.

1) For J = Jm, M = Jm, where Jm stands for Jmax =
j1 + j2,

|Jm, Jm〉 = |m1 = j1; m2 = j2〉. (61)

The coefficient is 〈j1; j2 | Jm, Jm〉 = 1 by normaliza-
tion.

2) For J = Jm,M = Jm − 1:
by applying J− we calculate,

|Jm, Jm−1〉 =
(1 − 〈C1〉)
(1 − 〈C〉)

√
j1√

j1 + j2
|j1−1; j2〉

+
(1 − 〈C2〉)
(1 − 〈C〉)

√
j2√

j1 + j2
|j1; j2 − 1〉. (62)

Normalization of |Jm, Jm − 1〉 in eq. (62) provides,[
(1 − 〈C1〉)2
(1 − 〈C〉)2

][
j1

j1 + j2

]

+
[
(1 − 〈C2〉)2
(1 − 〈C〉)2

][
j2

j1 + j2

]
= 1. (63)

3) For J = Jm,M = Jm − 2:
applying J− again we obtain

see eq. (64) on the next page

The normalization of |Jm, Jm−2〉 in eq. (64) provides

see eq. (65) on the next page

In the same manner we can find the coefficients for all
other states in this (highest) multiplet. The normalization
condition in the above states implies 〈C1〉 = 〈C2〉 = 〈C〉.
This condition is further consistent with the normalization
of all other states. This, in turn, implies that the CG
coefficients are independent of 〈C1〉, 〈C2〉 and 〈C〉. CG
coefficients for states in other multiplets then are obtained
by using the standard method and naturally are found to
be independent of 〈C1〉, 〈C2〉 and 〈C〉.

Now we proceed to find the coefficients using J+. Let
us start with the initial lowest m value state in the highest
multiplet. We obtain the following results.

1) For J = Jm,M = −Jm, where Jm stands for Jmax =
(j1 + j2):

|Jm, Jm〉 = |m1 = −j1; m2 = −j2〉. (66)

The coefficient is 〈−j1; −j2 | Jm, Jm〉 = 1 by
normalization.

2) For J = Jm,M = −Jm + 1:
We get

|Jm, −Jm + 1〉 =
(1 − 〈C1〉)
(1 − 〈C〉)

√
j1√

j1 + j2
| − j1 + 1; −j2〉

+
(1 − 〈C2〉)
(1 − 〈C〉)

√
j2√

j1 + j2
| − j1; −j2 + 1〉. (67)

On normalization of |Jm, −Jm +1〉 in eq. (67), we get
the following condition:[

(1 − 〈C1〉)2
(1 − 〈C〉)2

][
j1

j1 + j2

]

+
[
(1 − 〈C2〉)2
(1 − 〈C〉)2

][
j2

j1 + j2

]
= 1. (68)
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|Jm, Jm − 2〉 =
[
(1 − 〈C1〉)2
(1 − 〈C〉)2

]√
j1(2j1 − 1)

(j1 + j2)(2(j1 + j2) − 1)
|j1 − 2; j2〉

+
[
(1 − 〈C2〉)2
(1 − 〈C〉)2

]√
j2(2j2 − 1)

(j1 + j2)(2(j1 + j2) − 1)
|j1; j2 − 2〉

+
[
2(1 − 〈C1〉)(1 − 〈C2〉)

(1 − 〈C〉)2
]√

j1j2
(j1 + j2)(2(j1 + j2) − 1)

|j1 − 1; j2 − 1〉. (64)

[
(1 − 〈C1〉)4
(1 − 〈C〉)4

]
j1(2j1 − 1)

(j1 + j2)(2(j1 + j2) − 1)
+

[
(1 − 〈C2〉)4
(1 − 〈C〉)4

]
j2(2j2 − 1)

(j1 + j2)(2(j1 + j2) − 1)

+
[
4(1 − 〈C1〉)2(1 − 〈C2〉)2

(1 − 〈C〉)2
]

j1j2
(j1 + j2)(2(j1 + j2) − 1)

= 1. (65)

|Jm, 2 − Jm〉 =
[
(1 − 〈C1〉)2
(1 − 〈C〉)2

]√
j1(2j1 − 1)

(j1 + j2)(2(j1 + j2) − 1)
|2 − j1; − j2〉

+
[
(1 − 〈C2〉)2
(1 − 〈C〉)2

]√
j2(2j2 − 1)

(j1 + j2)(2(j1 + j2) − 1)
| − j1; 2 − j2〉

+
[
2(1 − 〈C1〉)(1 − 〈C2〉)

(1 − 〈C〉)2
]√

j1j2
(j1 + j2)(2(j1 + j2) − 1)

|1 − j1; 1 − j2〉. (69)

[
(1 − 〈C1〉)4
(1 − 〈C〉)4

]
j1(2j1 − 1)

(j1 + j2)(2(j1 + j2) − 1)
+

[
(1 − 〈C2〉)4
(1 − 〈C〉)4

]
j2(2j2 − 1)

(j1 + j2)(2(j1 + j2) − 1)

+
[
4(1 − 〈C1〉)2(1 − 〈C2〉)2

(1 − 〈C〉)2
]

j1j2
(j1 + j2)(2(j1 + j2) − 1)

= 1. (70)

3) J = Jm,M = −Jm + 2, which on calculation gives
see eq. (69) above

Again, on normalization of |Jm, −Jm +2〉 in eq. (69),
we get the condition given in

see eq. (70) above

The solution of normalization conditions in eqs. (68)
and (70) implies that 〈C1〉 = 〈C2〉 = 〈C〉. This condi-
tion is further consistent with normalization of all other
states. This further implies that the 〈C1〉, 〈C2〉 and 〈C〉
dependence is dropped out from the eqs. (67) and (69)
and hence all the CG coefficients are independent of
〈C1〉, 〈C2〉 and 〈C〉.

The above results can be verified explicitly with specific
examples. We have verified them for J1 = 1

2 = J2, J1 =
1 = J2 and J1 = 1

2 , J2 = 3
2 . However, the results for two

spin-(1/2) particles only are presented as follows:

|1, 1〉 =
∣∣∣∣12;

1
2

〉
,

|1, 0〉 =
1√
2

[
1 − 〈C1〉
1 − 〈C〉

∣∣∣∣ − 1
2
;
1
2

〉

+
1 − 〈C2〉
1 − 〈C〉

∣∣∣∣12 ; −1
2

〉]
,

|1, −1〉 =
(1 − 〈C1〉)(1 − 〈C2〉)

(1 − 〈C〉)2
∣∣∣∣ − 1

2
; −1

2

〉
,

|0, 0〉 =
1√
2

[
−1 − 〈C1〉

1 − 〈C〉
∣∣∣∣ − 1

2
;
1
2

〉

+
1 − 〈C2〉
1 − 〈C〉

∣∣∣∣12 ; −1
2

〉]
. (71)

The normalization to the states |1, 0〉 and |1, −1〉 provides
the condition similar to eqs. (63), (65) and they are now
written as

(1 − 〈C1〉)2 + (1 − 〈C2〉)2 = 2(1 − 〈C〉)2, (72)
(1 − 〈C1〉)2(1 − 〈C2〉)2 = (1 − 〈C〉)4. (73)

Solving both the equations simultaneously, we get, 〈C〉 =
〈C1〉 = 〈C2〉. This condition is consistent with the nor-
malization of the state |0, 0〉. Also, if the starting state
is considered as the normalized state |J = 1, M = −1〉 =
| − 1/2; −1/2〉, we obtain from eqs. (68), (70), the same
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Table 1: Calculated CG coefficients for two spin-(1/2)
particles.

States
|J, M〉 |m1; m2〉 Using J+ Using J−

|1, 1〉 |1/2; 1/2〉 (1−〈C1〉)(1−〈C2〉)
(1−〈C2〉) 1

= 1
|1, 0〉 | − 1/2; 1/2〉 (1−〈C2〉)√

2(1−〈C〉) = 1√
2

(1−〈C1〉)√
2(1−〈C〉) = 1√

2

|1, 0〉 |1/2; −1/2〉 (1−〈C1〉)√
2(1−〈C〉) = 1√

2
(1−〈C2〉)√
2(1−〈C〉) = 1√

2

|1, −1〉 | − 1/2; −1/2〉 1 (1−〈C1〉)(1−〈C2〉)
(1−〈C2〉)

= 1

conditions as eqs. (63), (65) and hence obtain the same
condition on C, C1, C2. With this information, we find the
CG coefficients for the specific case where j1 = j2 = 1/2
and m1 (or m2) = ±1/2 from eqs. (62), (64), (67), (69)
and list them in table 1.

In the case of standard QM, the CG coefficients for a
particular state are always the same irrespective of the
method of calculation, i.e., using J+ or J−. The same
thing is true for GUP modified quantum mechanics, too.
This resolves the anomaly reported in [34] where CG co-
efficients obtained by applying J− to the highest Jm value
state are different from those when calculated by apply-
ing J+ to the lowest Jm value state in the same multiplet.
We further showed that CG coefficients do not receive any
correction due to quadratic order GUP and any angular-
momentum coupling remains unaffected even though the
angular-momentum algebra gets modified. Explicit exam-
ples were also considered to support our claim. Further,
this result can be generalized for all composite systems in
a straightforward manner.

Conclusion. – We have developed the operator for-
malism of SHO using the creation and annihilation oper-
ators in the framework of GUP. This formalism may find
applications in a wide variety of problems in QM, one
of which we have tried to address in this paper. Using
this formalism and SMAM, we have derived GUP mod-
ified angular-momentum algebra. While the GUP SHO
may be useful in its own right, the angular-momentum al-
gebra developed may be used to investigate GUP-induced
effects in hydrogen atoms, quantum rotor and other mod-
els involving the angular-momenta operators. As such, a
wide number of problems in atomic and molecular physics
can be approached using the algebra developed. Further,
using this GUP modified angular-momentum algebra, we
have studied the effect of GUP on the coupling of angular
momentum for an arbitrary two-particle composite sys-
tem. We have also found the associated CG coefficients in
the GUP modified systems. Some anomalies in calculat-
ing CG coefficients reported in the literature are removed

in our formulation. Interestingly, we observe that CG
coefficients receive no corrections up to quadratic GUP.
This has been verified explicitly for two-particle systems.
The coupling of angular momentum remains unaffected
by quantum gravity effects, which is indeed an important
result and may have very important consequences in the
study of Black holes and many other astro-physical prob-
lems where gravity plays an important role.
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