Table of Content

CONTENTS	Page No.
Title Page	i
Certificate	iii
Declaration by the candidate	V
Copyright Transfer Certificate	vii
Dedication	ix
Acknowledgement	xi
Table of Content	xiii
List of Figures	xix
List of Tables	xxiii
List of Abbreviations	XXV
Preface	xxvii
CHAPTER 1 – PROLOGUE	
1.1 Introduction	1
1.2 Need of Condition Monitoring	1
1.2.1 General Over-view of fault-diagnosis systems	2
1.3 Induction Motor Faults and their Root Causes	4
1.3.1 Bearing Faults	8
1.3.2 Stator Faults	11

1.3.3 Rotor Faults	13
1.3.4 Other faults	14
1 4 Can dition Manitoring Tashnigues	1.5
1.4 Condition Monitoring Techniques	15
1.4.1 Vibration Monitoring	16
1.4.2 Motor Current Signature Analysis (MCSA)	16
1.4.3 Torque Monitoring	17
1.4.4 Temperature Monitoring	18
1.4.5 Noise/Acoustic Noise Monitoring	18
1.4.6 Speed Fluctuation Monitoring	20
1.4.7 Induced Voltage Monitoring	21
1.4.8 Surge Testing	21
1.4.9 Magnetic Flux Monitoring	22
1.4.10 Partial Discharge	22
1.4.11Motor Circuit Analysis	23
1.4.12 Gas Analysis	23
1.5 Advanced Diagnostic Techniques	24
1.6 Motor Diagnostic using Artificial Intelligence and Deep Learning	26
1.7 Motivation	30
1.8 Thesis Contribution	32
1.9 Thesis Organization	33
CHAPTER 2 – Thermal Model of Induction Motor and Parameters'	
Identification using PSO algorithm	
2.1 Introduction	35
2.2 Thermal Protection Theory	36
2.3 Motor Thermal Loadability	38

2.4 First-Order Thermal Model	40
2.5 Parameters' Identification as an Optimization Problem	44
2.6 Particle Swarm Optimization (PSO) Algorithm	45
2.7 Parameters' Identification using PSO Algorithm	49
2.8 Result and Discussion	51
2.9 Conclusion	52
CHAPTER 3 – Thermal Model Based Relaying Algorithm for Induction	
Motor Protection	
3.1 Introduction	53
3.2 Theoretical Background	54
3.2.1 Mechanical Overload and Voltage Unbalance on Induction Motors	54
3.2.2 Motor protection	55
3.3 Motor Protection Schemes	58
3.3.1 Modelling of Induction Motor Protection Schemes	60
3.3.2 Short-Time Fourier Transform (STFT)	69
3.3.3 Characteristics of the Blackman Window for STFT analysis	70
3.4 Result and Discussion	71
3.5 Conclusion	72
CHAPTER 4 –Inter-turn Fault Detection of Three Phase Induction	
Motor	
4.1 Introduction	73
4.2 Design of Three Phase Induction Motor Using Ansys Software	74
4.2.1 Performance Analysis of Three Phase Induction Motor in	75
Healthy Condition	
4.2.2 Performance Analysis of Three Phase Induction Motor in Faulty	79
Condition	
4.3 Experimental Set-up for Inter-turn Faults in Three Phase	82

Induction Motor	
4.4 Brief Explanation of Different Pattern Classification Schemes	93
4.4.1 ANN as a Pattern Classification Scheme	93
4.4.2 SVM as a Pattern Classification Scheme	94
4.4.3 Classification of signals by ANN and SVM	95
4.5 Result & Discussion	95
4.6 Conclusion	96
CHAPTER 5– Probabilistic Evaluation and Design Aspects for	
Reliability Enhancement of Induction Motor	
5.1 Introduction	97
5.2 Industrial Failure Modes of Induction Motors	100
5.2.1 Probabilistic Distributions for Reliability Estimation of Induction Motor	100
5.2.1.1 Exponential Distribution based Probabilistic Evaluation	101
5.2.1.2 Weibull Distribution based Probabilistic Evaluation	101
5.2.2 Hazard Model for Life Distribution of Induction Motor	102
5.2.3 Major Fault Modes of Induction Motor	103
5.3 Reliability Aspect and MTBF Evaluation using Industrial Data	108
5.3.1 Reliability Evaluation of Induction Motor	110
5.3.2 Reliability Improvement of Induction Motor	113
5.4 Motor Failures and Design Enhancement for Reliability Improvement	113
5.4.1 Rotor-stator Contact	115
5.4.2 Failure of Frame and End Covers	117
5.4.3 Failure of the Terminal Box	118
5.4.4 Failure of the Wiring Box	119
5.4.5 Failure of Fan	120

5.4.6 Failure of Bearings	121
5.4.7 Rotor Mass Unbalance	123
5.5 Conclusion	125
CHAPTER 6 – Conclusions and Future Scope	
6.1 Conclusions	127
6.2 Future Scope	128
REFERENCES	131