
 

 

Chapter 2 

 

Thermal Model of Induction Motor and Parameters’ Identification 

using PSO algorithm 

2.1 Introduction 

“Induction motors are the workhorses of industry”—this well-known statement reflects 

the overall trend to electrify an increasing number of industrial processes in the past 

two centuries. According to [115], despite reliability and successful operation of 

inductionmotors, their annual failure rate is estimated to be 3–5% up to even 12% in 

harsh applications. Statistics show [116] that motor bearing and stator winding 

insulation are the two components, which fail the most frequently. The major reason of 

stator damage is insulation failure, which is related to excessive heat and insufficient 

cooling. It is estimated that particularly in offshore applications, overheating and 

insulation breakdowns cause more than 30% of all stator winding failures [117]. Since 

downtime in operation is often more expensive than motor drive replacement 

(especially in the offshore industry), proper protection is required to prevent drivetrain 

failures, and to ensure both personnel safety and production objectives. Motor thermal 

protection has been an important aspect of condition monitoring of electric actuation 

systems—see, for instance, [118-120] and the references therein. Currently, there are 

numerous examples of estimation of motors’ lifetime expectancies based on their 

thermal performance [121], application of motor thermal protection strategies [122–

124], thermal modeling of electric drivetrains [125–127] and stator winding [128], 

thermal analysis in fault operating conditions [129], or design optimization driven by 

the need to reduce thermal overloads [130]. However, to the knowledge of the authors, 

there is limited work done in the area of thermal modeling of motor drives based on 
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allowable loadability data provided by equipment manufacturers. Although loadability 

curves are among fundamental design constraints of electric drivetrains, typically, there 

is not enough catalog information regarding permissible duration of overloads. Since 

one of the main design criteria is to prevent motor drives from reaching thermal 

protection limits [131], this has a critical impact on designing tailor-made electric 

actuation systems. Therefore, the current chapter presents a method to estimate motor 

temperature rise under various operating conditions and ambient temperatures to verify 

if a given drivetrain design does not violate thermal protection limits specified by the 

IEC standard [132]. 

 

2.2. Thermal Protection Theory 

According to [115], degradation of insulation of stator and/or rotor conductors are the 

two main thermal risks for an overheated machine. It is found [122] and references 

therein) that thermal aging of insulation can be represented as the chemical rate 

equation (Arrhenius equation), which has the following relationship for the life of 

insulation aged at elevated temperatures: 

                                              
 

                                                (2.1) 

Where L is life in time, F is constant which is determined by experiment,   is energy of 

actvation in Ev,   is absolute temperature in Kelvin and k = 0.8617      eV/K the 

Boltzman constant. The IEC standard [132] defines the permissible operating 

temperatures and maximum allowable temperature rises above the ambient for 

induction motors. Table 2.1 shows safety margins for different thermal classes. 

Typically, manufacturers use class F insulation with a class B rise to gain additional 

25
0
C safety margin [133]. The recommended maximum continuous temperature for 

class F is 155
0
 C, which in this example consists of a maximum ambient temperature of 
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40
0
C, permissible temperature rise of 105

0
C, and a hot spot temperature margin of 

10
0
C. Obviously, lowering the value of ambient temperature allows for higher 

temperature rise, as long as the maximum limit of 155
0
 C is not violated. Exceeding the 

thermal limit causes gradual degradation of the insulation expected lifetime. Figure 2.1 

illustrates the relationship Eq. (2.1) for different classes of insulation and based on the 

accepted rule that thermal life is halved for each increase of 10
0
C above the maximum 

thermal limit, according to [115] and [121]. Therefore, apart from checking if a given 

motor will satisfy mechanical specifications (in short— if it provides sufficient torque 

values at certain speeds), design engineers have to investigate if overloads do not 

violate thermal margins of the drivetrains they design. Motor and drive manufacturers 

provide guidelines and recommendations for maximum permissible thermal overload 

magnitudes and durations, but these suggestions are typically so general that they could 

only be applied in a few very specific scenarios [134–138]. To address this issue, the 

current chapter focuses on formulating a more general framework to examine 

drivetrains’ thermal performance, which allows us to estimate motor temperature under 

various operating conditions using the available limited catalog data. 

 

                                          TABLE  2.1: Composition of Insulation Classes [128] 
 

Thermal level  Class A Class B Class F Class H 

Max ambient temp. [ ] 40 40 40 40 

Permissible temp. rise [ ] 60 80 105 125 

Hot spot temp. margin [ ] 105 130 155 180 
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Figure 2.1:  Effect of thermal aging on insulation life of motor  [111]. 

 

 

2.3 Motor Thermal Loadability 

According to manufacturers’ guidelines [139] the continuous maximum load of a 

converter driven motor is mainly influenced by the modulation pattern and switching 

frequency of the converter and by the motor design. The practical solution that suppliers 

use is to display these guidelines in the form of loadability curves as Figure 2.2. where 

 

  
 represents the torque with respect to nominal torque and 

 

  
 represents the rotor speed 

with respect to nominal speed. 

Manufacturer guidelines present the maximum continuous load torque of a motor as a 

function of frequency (speed) to give the same temperature rise as with rated sinusoidal 

voltage supply at nominal frequency and full rated load [139]. They define the 

maximum load of a motor above its continuous rating as well as determine a safe level 

of loads that a motor can withstand during steady-state operation [140]. A standard 

induction motor is self-ventilated [141]; therefore, at low speeds where cooling is 

reduced, its thermal loadability is lowered. As a consequence, the continuous output 
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torque of the drive is derated for lower speeds, unless an external fan or other cooling 

method is used. 

 

 

Figure 2.2:  Induction motor’s loadability curve in a frequency controlled drive. 

 

The loadability curves do not specify thermal limits of a motor alone, but are applicable 

only to frequency controlled motors. Hence, they provide basic information about the 

thermal loadability of an inverter as well, which makes them a convenient tool to 

monitor the combined heating effect on both motor and drive. A significant drawback of 

loadability curves is the fact that they do not specify exactly for how long a motor drive 

can operate above its continuous rating. Suppliers give just rough estimates and rules of 

thumb, which define permissible loads only for a discrete set of operating conditions, 

e.g., an overload of 150% is allowed for 1min every 5 min at a given ambient 

temperature. Hence, investigation of drivetrain thermal performance in different 

operating points becomes impossible when using only the catalog data. We propose to 

overcome this limitation by formulating a motor thermal model, which is still based on 

loadability curves but which combines them with the temperature margins summarized 
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in Table 2.1 and allows us to freely specify overload conditions and capture the 

phenomenon of reduced torque availability at low motor speeds. 

 

2.4 First-Order Thermal Model 

There is evidence that relatively simple models can represent major phenomena 

associated with thermal behavior of electric motors and drives [127]. In addition, 

thermal limit curves of induction motors, which are widely adopted in industry and 

which define safe operating times for various levels of input currents, are 

fundamentally equivalent to thermal protection based on the first-order thermal model 

[142]. Therefore, we analyze a single time constant model to represent temperature 

changes of a motor drive over a duty cycle. According to [115], a single time constant 

thermal equation describes the thermodynamic behavior of homogeneous body at rest 

heated by electric current  

                               
      

  
         

                                                               (2.2) 

 
Where, 

                is machine temperature rise above the ambient temperature in 

Kelvin. 

     is temperature of ambient in Kelvin. 

      is current of motor in Ampere 

  is heat capacity J/K 

  is heat dissipation factor in running condition in W/K 

R is resistance in Ohm 

Eq. (2.2) considers only Joule losses; however, there exist other types of losses that 

contribute to the increased waste heat emission of induction motors, e.g., core losses, 

friction, and windage or no-load Joule stator losses. Stator winding is identified to be 
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the most critical component, which affects thermal life of motor’s insulation. 

Therefore, its average temperature rise is modeled by Eq. (2.2) to monitor thermal 

performance of the drivetrain. However, parameters of Eq. (2.2) are not those of the 

stator alone. Instead, they combine the effect of total losses to capture the overall 

heating of the induction motor drive. The overall heating capacity, on the other hand, is 

represented by loadability curves available in manufacturers’ catalogs. 

Normally, detailed parameters of motors (such as copper winding length or mass) are 

not available to customers, which makes it burdensome to determine fundamental 

thermal model parameters (R,C,H). Therefore, we further simplify the model so that it 

contains two unknown parameters: factor   
 

 
   [K/(s.A2 )], thermal time constant 

 =
 

 
  seconds. 

According to [111] and [122] 

      

  
 

 

 
       

  
 

 
                                                    (2.3) 

                               
      

  
         

  
 

 
                                                         (2.4) 

 

The parameter B includes the combined effect of electrical and thermal resistances as 

well as the heat capacity of the motor. 

Such a representation facilitates model identification, since what influences its response 

is not the individual values of parameters (R, C, H) but the ratio of electric resistance 

and heat capacity R/C and the thermal time constant   . Motor current could easily be 

obtained given motor torque and speed values, according to [143]. Below the field 

weakening point, the reactive and active current components of the induction motor can 

be approximated as, respectively. 
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Where, 

    ,    , and    are the motor’s maximum and rated torques and current, respectively, 

      is the load torque, and         is the motor’s power factor. In the field 

weakening region, the motor’s currents also depend on the motor speed n and can be 

approximated as (    is the rated motor speed) 

   
  
    

  
 
                   

    
  

 
 

      

          
    
  

 
  
 
 
 

  
     
  

 
 

  
 
 

  

 

 

 

 

 

(2.7) 

 
 

   
  
    

     

  
 
 

  
                                                          (2.8) 

 

Hence, the total motor current in each respective region is  

                    
     

                                                           (2.9) 

 

Reference values of thermal time constants  ref  are provided in [136] and reproduced in 

Table 2.2. They are treated as general guidelines when generating reference 

temperature rise profiles for model identification purpose. 
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TABLE 2.2: TypicalThermal Time Constant  ref  for IMs [26] 

Rated Power 

Pn [kW] 

2 Pole 

[min] 

4 Pole 

[min] 

6 Pole 

[min] 

8 Pole 

[min] 

0.09…101 7…10 11…10 12 - 

1.5…3.0 5…8 9…12 12 12…16 

4.0 14 11 13 12 

5.5…18.5 11…15 10…19 13…20 10…14 

22…45 25…35 30…40 40…50 45…55 

55…90 40 45…50 50…55 55…65 

110…132 45…50 55 60 75 

 

However, at this stage, it is sufficient to assume their values as listed in Table 2.2 to 

illustrate the practicality of the proposed thermal modeling and estimation method. 

Even though the single time constant model is not always adequate to represent 

detailed temperature changes in a motor [118] (e.g., in reality, there might be multiple 

time constants that describe temperature rise in the stator), it is still an effective method 

to quickly assess thermal protection levels of motor drives in industrial applications 

[115]. Therefore, the values presented in Table 2.2 are suitable to only roughly 

approximate thermal response of the stator. Although this is not an ideal approach and 

it requires further experimental validation, it is already by all means more practical 

(and equally accurate) than relying on a discretized set of allowable overload durations 

provided in catalogs. In addition, there are the following limitations of the proposed 

method. 

1) It is not applicable for checking the intermittent temperature rise caused by the 

motor starting current (i.e., a short-term overload with approximately 6    ). 

2) In general, parameters of the thermal model depend on speed, load (torque/current), 

and temperature. In this study, however, the parameter B depends only on the motor 

speed. 

3) Similarly, the thermal time constant  ref is constant for a given motor, whereas in 

reality, it depends on the operating speed as well. 
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2.5 Parameters’ Identification as an Optimization Problem 

Identification of unknown model parameters can be analyzed in the same way as an 

optimization problem where the cost function to be minimized is the error between the 

original and estimated signals with optimization variables being the model parameters 

[144]. In general, an optimization problem has the form [145]. 

  
minimize        

 

subject  to          ,          i=1,……,k            (2.10) 

 

 

The vector                is the optimization variable of the problem, the function 

    
    is the objective function, the functions     

   , i=1,……,k  are the 

(inequality) constraint functions, and the constants           are the limits for the 

constraints. A vector    is called optimal, or a solution of the Eq. (2.10), if it has the 

smallest objective value among all vectors that satisfy the constraints. An optimization 

problem of such a general form is called a nonlinear program [146]. Identification of 

parameters of the thermal model Eq. (2.4) is, therefore, represented as the following 

nonlinear optimization problem: 
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                                     (2.11) 
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where, 

x is the vector of parameters (x1 = B and x2  =   ), J is the cost function to be 

minimized, (    ,     ) are the constraint vectors, and  xinit is the vector of initial 

values of parameters. The estimated temperature        is obtained by solving Eq. (2.4) 

at each evaluation point j and time instant i. The length of the time vector r should be 

long enough for the motor temperature to settle at a steady-state value, whereas the 

final number of evaluation points m depends on how frequently we update the model 

with a new set of parameters. The reference temperature rise          corresponds to an 

increase in motor temperature at each point of motor continuous loadability curve 

illustrated in Figure 2.2 It follows the first-order model: 

                      
  

    
                                    (2.12) 

where the maximum operating temperature       is taken from Table 2.1 for a given 

motor insulation class, whereas the reference thermal time constant  ref reflects the size 

of the motor, as presented in Table 2.2. 

 

2.6 Particle Swarm Optimization (PSO) Algorithm 

Particle Swarm Optimization (PSO) algorithm is a stochastic optimization method 

which is based swarm and suggested by Eberhart and Kennedy [147]. It simulates 

social behavior of animals including fishes and birds. These swarms conform a 

collective way for finding food, and every member in the swarms keeps changing the 

pattern of search according to the learning experiences of its own and other members. 

In order to demonstrate invention background and improvement algorithm of the PSO, 

we first introduce the simple early model, Boid (Bird-oid) model [148]. This model is 

intended to simulate the birds’ behavior, and it is a direct source of the PSO technique. 
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The simplest model of PSO can be described as follows. Each entity of the birds is 

represented by a point in system of cartesian coordinate, and arbitrarily assigned with 

the initial position and velocity. Then run the program in agreement with “the nearest 

proximity velocity match rule,” so that one entity has the identical speed as its adjacent 

neighbor. With the same way the iteration going on, all the points will achieve the same 

velocity rapidly. Since this model is very simple and not fit for the real cases, in speed 

item  a random variable is added. That is to say, at each iteration, aside from meeting 

“the nearest proximity velocity match,” every speed will be added with a random 

variablemsuch that the simulation approaches to the real case. Heppner proposed a 

“cornfield model” for simulating the behavior of foraging of a group of birds [149]. Let 

us assume that there was a “cornfield model” on the plane, i.e., food’s location, and at 

the beginning birds sre randomly dispersed on the plane. For finding the location of the 

food, birds moved inaccordance with the subsequent rules. First, we suppose that 

cornfield position in the coordinate of the is (a0,bo), and position and velocity 

coordinates of individual bird are (a,b) and (va , vb ), respectively. For measuring the 

the performance of the recent position and speed the distance between the recent 

position and cornfield has been used. The extra the distance to the “cornfield”, the 

superior the performance, on the converse, the performance is inferior. Assuming that 

every bird has the memory skill and can memorize the best position it ever reached, 

denoted as pbest, m is velocity adjusting constant, rand denotes a random number in 

[0,1], change in the velocity item can be set according to the following rules:  

if a> pbest a, va = va ─rand ×m, otherwise, va = va + rand ×m                 (2.13) 

if b > pbestb, vb = vb ─rand ×m, otherwise, vb = vb +rand ×m                 (2.14) 

  Now assume that the swarm can communicate in some way, and each entity has its 

ability to know and remember the best location (i.e. gbest) of the total swarm so far. 
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And n is the velocity adjusting constant; then, after the velocity item was adjusted 

according to above rules, it must also update according to the following rules: 

if a > gbesta, va = va ─rand ×n , otherwise, va = va + rand ×n                  (2.15) 

if b > gbestb, vb = vb ─rand ×n, otherwise, vb = vb +rand ×n                   (2.16) 

 

Results shows by the computer simulation that if m/n  is relatively large, all individuals 

will group to the “cornfield” quickly; on the other way,  if m/n is small, the particles 

will group around the “cornfield” unsteadily and slowly. Through this simple 

simulation, it can be found that the swarm can find the optimal point rapidly. Inspired 

by this model, Kennedy and Eberhart [150] derived an evolutionary optimization 

algorithm, after a sea of trials and errors, they lastly fixed the basic algorithm as 

follows: 

va = va + 2   rand   (pbesta-a) + 2   rand   (gbesta-a)                   (2.17) 

a = a + va                                                            (2.18) 

 

Since they abstracted each individual to be a particle (without mass and volume) , with 

only position and velocity, so they called this algorithm as “particle swarm 

optimization algorithm. 

On the basis of this, PSO algorithm can be summarized as follows: PSO algorithm is a 

type of searching method which is based on swarm, in which each individual is called a 

particle defined as a potential solution of the optimized problem in D-dimensional 

search space, and it can memorize the swarm optimal position and that of its own, in 

addition to the velocity. In each generation, the particles information is collective 

together for adjusting the velocity of each dimension, which is used to calculate the 

particle’s new position. Particles change their states continuously in the search space 
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which is multi-dimensional, until they reach balance or optimal state, or beyond the 

calculating limits. Unique connection among different dimensions of the problem space 

is introduced via the objective functions. Many empirical evidences have showed that 

this algorithm is an effective optimization tool. Flowchart of the PSO algorithm is 

shown in Figure 2.3. 

Start

End

Intialization of swarm

Evaluate pbest for each particle

Assign pbest for gbest

Calculate Velocity

Target Reached ?

Is current position is

better than pbest?

Update the position of particle

Update the value of

pbest

Yes

No

Yes

No

 

Figure 2.3: Flowchart of the PSO algorithm  
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PSO algorithm has two versions, called global version and local version, respectively. 

In the global version, two extremes that the particles track are the optimal position 

pbest of its own and the optimal position gbest of the swarm. Accordingly, in local 

version, aside from tracking its own optimal position pbest, the particle does not track 

the swarm optimal position gbest, instead it tracks all particles’ optimal position nbest 

in its topology neighborhood. 

 

2.7 Parameters’ identification using PSO Algorithm 

The underlying assumption for constructing a loadability curve is that at each value of 

speed and the corresponding torque, the temperature rise is the same, as in section 2.3. 

Therefore, the loadability curve for a self-ventilated motor from Figure 2.2 is 

discretized into m points, such that the identified parameters of the thermal model Eq. 

(2.4) depend on the motor speed n. At each evaluation point, the thermal model is 

simulated, and its parameters (B, ) are adjusted until its response is as close to the 

reference temperature rise Eq, (2.12) as possible. Then, the optimization routine Eq. 

(2.11) saves those identified parameters, which yield the minimum error signal and 

moves on to the next evaluation point. In the current chapter, we use the PSO algorithm  

to achieve the best convergence of the model’s response so that the sum of squared 

errors between the reference and estimated temperatures is negligible. The motor which 

have used in parameter identification is 45 kW; specifications are given in Table 2.3. 
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Table 2.3: Specifications of IM for parameter identification 

Parameters Rated 

power 

   

Rated 

torque 

   

Max.Torque 

     

Rated 

speed 

   

Rated 

current 

   

Power 

factor 

   

Time 

constant 

 ref 

Value 45 kW 290 

N-m 
3.2    1480 

rpm 

81.3 0.85 40 min 

 

 

 

Figure 2.4: Temperature tracking using PSO 
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 Figure 2.5: Best cost Vs iteration using PSO 

 

2.8 Result and Discussion 

PSO algorithm is implemented in the processor, Intel® Core™ i5-6200U CPU 

@2.30GHz with memory (RAM) of 8 GB  and the value of the cognitive parameters  c1 

and c2 were 0.2 and  0.3 respectively. The formulation of the objective function as 

mentioned in equation number Eq. (2.10) and Eq. (2.11) subjected to the constraints was 

considered and final value of the optimized parameters B = 0.02 and         as 

obtained by PSO after 130 iterations with convergence error of            .Thus 

PSO is proved to be a suitable optimization technique in order to design the thermal 

relay for protection objective of induction motor. 

The Figure 2.4 reflects the tracking performance of the rise in temperature with that of 

estimated value of the rise in temperature. The above two curves concides with efficacy 

of PSO algorithm, in context of convergence which can be subsequently adapted for the 

design of thermal relay. 
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2.9 Conclusion 

The PSO being a strong candidate for the optimization scheme is explored in the above 

work in order to obtain the relevant parameter B and   respectively. The obtained result 

exhibits the satisfactory performance for the parameter identification scheme. The 

detailed protection scheme for proper discrimination of voltage unbalance with that of 

overload is discussed in next chapter. 


