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Polar flock in the presence of random quenched rotators
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We study a collection of polar self-propelled particles (SPPs) on a two-dimensional substrate in the presence of
random quenched rotators. These rotators act like obstacles which rotate the orientation of the SPPs by an angle
determined by their intrinsic orientations. In the zero self-propulsion limit, our model reduces to the equilibrium
XY model with quenched disorder, while for the clean system, it is similar to the Vicsek model for polar flock.
We note that a small amount of the quenched rotators destroys the long-range order usually noted in the clean
SPPs. The system shows a quasi-long range order state upto some moderate density of the rotators. On further
increment in the density of rotators, the system shows a continuous transition from the quasi-long-range order to
disorder state at some critical density of rotators. Our linearized hydrodynamic calculation predicts anisotropic
higher order fluctuation in two-point structure factors for density and velocity fields of the SPPs. We argue that
nonlinear terms probably suppress this fluctuation such that no long-range order but only a quasi-long-range

order prevails in the system.
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Flocking of self-propelled particles (SPPs) is an ubiquitous
phenomenon in nature. The size of these flocks ranges from a
few microns to the order of a few kilometers, e.g., bacterial
colony, cytoskeleton, shoal of fishes, animal herds, where the
individual constituent shows systematic movement at the cost
of its free energy. Since the seminal work by Vicsek et al.
[1], numerous works are done to understand the flocking
phenomena of SPPs [2-6]. One of the interesting features of
these kinds of out-of-equilibrium systems is the realization
of true long-range order (LRO) even in two dimensions (2D)
[7,8]. Most of the previous analytical and numerical studies
of SPPs were restricted to homogeneous or clean systems
[1,7-10]. However, natural systems in general have some kind
of inhomogeneity. Therefore, some of the recent studies focus
on the effects of different kinds of inhomogeneities present
in the systems [11-15]. The study in Ref. [11] shows the
breakdown of the flocking state of artificially designed SPPs
in the presence of randomly placed circular obstacles. In
Ref. [12], Chepizhko et al. model obstacles such that the SPPs
avoid those obstacles. They note a surprising nonmonotonicity
in the isotropic to flocking state transition of the SPPs in the
presence of the obstacles. They also report a transition from
LRO to quasi-long-range order (QLRO) state at some nonzero
but finite density of obstacles. While commenting about these
studies, the authors of Ref. [16] stress upon the understand-
ing of the flocking phenomena in the presence of different
kinds of inhomogeneities. In the same spirit, we study the
effect of rotator type obstacles on the nature of ordering in
polar SPPs. Moreover, we propose a minimal model for SPPs
in inhomogeneous medium, the results for which could easily
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be compared with its well-studied equilibrium counterpart
[17,18].

In this Rapid Communication, we consider a Vicsek-like
model [1] of polar SPPs in the presence of obstacles in the
medium. The obstacles are modeled as random quenched ro-
tators which rotate the orientation of neighboring SPPs by an
angle determined by the intrinsic orientations of the rotators.
The model can be visualized as a large moving crowd, amid
which some random “road signs” have been placed. Individual
road sign dictates the neighboring people to take a roundabout
by a certain angle from their direction of motion. The specific
issue we address here is the correlation of this collective
motion in the presence of these random road signs.

In the limit of zero self-propulsion speed, our model re-
duces to the XY model [19] with random quenched obstacles.
In the XY model, any finite amount of quenched random-
ness is enough to destroy the orientationally ordered state in
dimension d < 4 [17,18]. Therefore in 2D, an equilibrium
system with quenched obstacles does not have any ordered
state. Analogous to this, we show that in a two-dimensional
self-propelled system, quenched rotators destroy the LRO,
usually found in the clean polar SPPs.

In our numerical study, we note that small density of
quenched rotators leads the system to a QLRO state. In this
state, the absolute value of average normalized velocity V
decreases algebraically with the system size. Also, fluctuation
in the orientations of the SPPs increases logarithmically with
system size. Moreover, below a critical density of rotators ¢,
both V and fluctuation in orientations of SPPs show nice scal-
ing collapse with scaled system size. However, with further
increase in density of rotators c,, the system shows a contin-
uous QLRO to disorder (QLRO-disorder) state transition. We
also write hydrodynamic equations of motion for density and
velocity fields of the SPPs in the presence of quenched inho-
mogeneities. A linearized study of these equations predicts an
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anisotropic divergence of O(1/g*) in the equal-time spatially
Fourier transformed correlations for the hydrodynamic fields
for small g. However, neglected nonlinear terms probably
suppress these fluctuations to make the QLRO possible in the
system.

We consider a collection of N polar SPPs distributed over
a 2D square substrate. Each particle moves with a fixed speed
vy along its orientation ¢. An individual SPP tries to reorient
itself along the mean orientation of all the neighboring SPPs
(including itself) within an interaction radius R,. However,
ambience noise leads to orientational perturbation. Moreover,
there are N, immobile rotators randomly distributed on the
substrate. Each rotator possesses an intrinsic orientation ¢,
which can take any random value in the range [—m, 7] and
remains fixed. Therefore, the rotators are quenched in time,
and we call these random quenched rotators (RQRs). Each
RQR rotates the orientations of the SPPs within an interaction
radius R, by an angle determined by ¢ and SPP-RQR inter-
action strength w. The update rules governing position r; and
orientation ¢; of the ith SPP are as follows:

ri(t+ 1) =ri(t)+vi(), (D

$it + 1) = (¢;(1)) jer, + 1{@))jer, + AV, 2

where v;(t) = vg(cos ¢; (1), sin;(¢)) is the velocity of the
particle i at time ¢, and (¢)g, and (p)g, represent the mean
orientation of all the SPPs and the RQRs, respectively, within
the interaction radii. Fluctuation in orientation of SPPs be-
cause of ambience noise is represented by an additive noise
term At distributed within n[—m, ], where noise strength
n € [0, 1]. We call this model “active model with quenched
rotators (AMQR),” which reduces to the celebrated Vicsek
model [1] for 4 = 0 or in the clean system, i.e., N, = 0.

We numerically simulate the collection of Ny SPPs spread
over the L x L (L € [50,300]) 2D substrate with periodic
boundary condition. Initially the particles are chosen to have
random velocity, but with constant speed v;. The density of
the SPPs and the RQRs are defined as ¢, = N,/L? and ¢, =
N,/L?, respectively. We distribute these rotators uniformly
on the substrate, and randomly assign intrinsic orientation
¢ € [—m, ]. In this system, the position and the velocity of
all the SPPs are updated simultaneously following Eqgs. (1)
and (2). At every time step, we use OpenMP Application
Program Interface for a parallel updating procedure of all the
SPPs.

In this Rapid Communication, we consider ¢; = 1.0, vy =
1.0, and u = 1.0. Moreover, we take R, = R, = 1 for sim-
plicity. In the absence of the rotators [1], the system shows
disorder to order transition with decreasing noise strength 7.
The ordering in the system is measured in terms of the con-
ventional absolute value of the average normalized velocity

> 3)

of the entire system [1]. Here (-) indicates an average over
many realizations and time in the steady state. V varies from
zero to unity for disorder to order state transition. For the
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FIG. 1. V versus 1/N; plots in the (a) ordered and (b) disordered
state for n = 0.10. The error bars indicate standard error in mean.
The solid lines show the respective algebraic fits. (c) Plot of V versus
scaled system size N;/N! on log-log scale, where y is a function of
¢,. The data shows good scaling for 0 < ¢, < 0.0125, but deviates
for ¢, > 0.0125.

reported data, we start the averaging of observables after 3 x
10° updates to assure reaching the steady state, and averaging
is done for the next 5 x 10° updates. Up to 30 realizations are
used for better averaging.

For a fixed n, we calculate V for different c,, and study its
variation with system size. As shown for n = 0.1 in Fig. 1(a),
in the clean system, V does not change with system size;
consequently, the system possesses a nonzero V in the ther-
modynamic limit. Therefore, the clean system remains in the
LRO state, which is a well-known phenomenon [8]. However,
in the presence of the RQRs, V decreases algebraically with
N; following the relation

V = A(c, )N, )

as shown in Figs. 1(a) and 1(b). Here both A and v are
functions of ¢, for a fixed 1. Therefore, in the thermodynamic
limit, V of the system with RQRs reduces to zero. We stress
that for small ¢, the system remains in a QLRO state, beyond
which the AMQR shows a continuous QLRO-disorder state
transition, as we will see shortly. In Fig. 2, we show snapshots
of the orientation and the local density of the SPPs for n = 0.1
and different c¢,. For ¢, = 0, all the particles are in highly
ordered state. RQRs perturb the LRO flocking as shown for
¢, = 0.005, 0.01. For high density ¢, = 0.02, the SPPs remain
highly disordered.

We further study the fluctuation in the orientation of the
SPPs. The width of a normalized distribution P(¢) of orien-
tation of the SPPs provides a measure of this fluctuation. It
is calculated by averaging over the distributions at every time
step in the steady state, and also over many realizations. While
averaging, we set the mean orientation of all the distributions
at¢p = 0.

0.5 g

FIG. 2. Steady-state snapshots are shown for n = 0.10, L = 150
and different ¢, as indicated on the respective panels. The color bar
indicates orientation of the SPPs. The rotators with random intrinsic
orientation are not shown for the clarity of the figure.
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FIG. 3. (a) Distribution P(¢) of the orientation of the SPPs is
shown for n = 0.10 and ¢, = 0.005. The curves are zoomed into
the range ¢ € [—m/2, /2] for better visibility. The solid lines
show the respective fits with Voigt profile. (b) Plot of the FWHM
f of P(¢) versus N;. In the presence of quenched rotators, f
increases logarithmically with N,. The dashed lines show respective
fits. (c) Plot of shifted FWHM f — g,(c,) with scaled system size
N,/NT, where both g; and I are functions of c,. The scaling holds
good for ¢, < 0.0125.

We note that P(¢) widens with the increasing density of
RQRs. This is quite intuitive since the degree of disorder in-
creases with ¢,. We fit these distributions with a Voigt profile,
which is defined as the convolution of the Gaussian and the
Lorentzian functions [20]. A brief discussion of the Voigt
profile and the procedure used to fit P(¢) with it are provided
in the Supplemental Material [21]. From the respective fits,
we calculate the full width at half maximum (FWHM) f of
the distributions.

We note that, in the clean system, P(¢) does not change
with system size. However, for any fixed ¢, > 0, P(¢) widens
with increasing system size, as shown in Fig. 3(a) for (, ¢,) =
(0.10, 0.005) (also see the Supplemental Material [21]). In
Fig. 3(b), we show the variation of f with system size for dif-
ferent c,. For ¢, = 0, f does not change with N;. Therefore,
in the clean system, the fluctuation in the orientation of the
SPPs does not depend on the system size, and the system is in
the LRO state. However, for ¢, > 0, FWHM of P(¢) follows
the relation f = g;(c,) + g2(c,) In(Ny), where both g, and g;
are functions of ¢,. Since g, > 0, f increases logarithmically
with Ny, which further confirms the QLRO in the AMQR.

In Fig. 1(c), we plot V versus scaled system size N, /N’
for n = 0.1 and different c¢,. Here y(c,) >~ 1 — kc,, where k
is a positive constant. Moreover, v = z(1 — y), where z is a
nonmonotonic function of 7. We note nice scaling collapse for
¢, < 0.0125. This predicts that, for ¢, < 0.0125, the system
can be divided into subsystems of size N7 ) \yithin which
the SPPs remain ordered. Since y = 1 for ¢, = 0, V does not
depend on system size, and therefore the clean system remains
in the LRO state. However, in the presence of RQRs, the
system remains in the QLRO state. Moreover, the scaling pre-
dicts self-similarity of the system for different ¢, < 0.0125.
As shown in Fig. 3(c), we also find nice scaling collapse of
f — gi(c,) with scaled system size N,/NI) for different
¢r < 0.0125, where I' = 1 — g, that varies linearly with c,,
for small c,. Similar scaling holds for other n values in the
QLRO state.

In Fig. 4(a), we show the variation of V with ¢, for n = 0.1
and different system sizes. Starting from the value of V close
to 1 for small ¢,, V shows a transition to smaller values with
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FIG. 4. (a) Variation of V with ¢, shown for different system
sizes and n = 0.10. (b) Variance x of V plotted with c,. The peaks
in the curves indicate the critical density of the rotators c,.(L) for the
QLRO-disorder transition for the respective system sizes.

increasing c,. Therefore, with increasing c,, QLRO-disorder
transition occurs in the system. We further calculate the
variance x of V for different system sizes, and plot these as
a function of ¢, in Fig. 4(b). Data shows systematic variation
in x as a function of ¢,, and a peak appears at ¢, = ¢,.(L)
where the fluctuation in V is large. This suggests a continuous
QLRO-disorder state transition in the AMQR. We consider
cre(L) as the critical density for the QLRO-disorder state
transition for system size L. The position of the peak shifts
from ¢, = 0.016 to 0.0125 as L is increased from 100 to 300.
However, we note that c,.(L) flattens on increasing L for
all n values. Using the extrapolated values c¢,.(L — 00), we
construct a phase diagram in the n—c, plane. We stress that in
the presence of RQRs, the system remains in the QLRO below
the phase boundary shown in Fig. 5.

Long-distance and long-time properties of the SPPs with
quenched obstacles can also be characterized using a hydro-
dynamic description of the model. The relevant hydrodynamic
variables for this model are (i) SPP density p(r,t) which
is a globally conserved quantity and (ii) velocity wv(r,t)
which is a broken-symmetry parameter in the ordered state.
These variables can be obtained by suitable coarsening of
corresponding discrete variables in the microscopic model
[7,8,22-25]. Following the phenomenology of the system, we
write the hydrodynamic equations of motion for the density
and the velocity fields as

dhp + V- (vp)=D,V’p, (5)

v+ A (v-VIv+ (V- 0)v 4+ A3V(0?)
= (o; — 020> v — VP + D V(V - v)

4+ DV + Dr(v- V)0 + %c +f (6

Disorder

FIG. 5. Phase diagram in noise strength versus density of rotator
plane. For small ¢,, the QLRO state prevails, beyond which the
system continuously goes to the disorder state.
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f represents the annealed noise term that provides a random
driving force. We assume this to be a white Gaussian noise
with the correlation

(fitr, ) ;' 1)) = A8;8(r —r)3(t — 1), (7

where A is a constant, and dummy indices i, j denote Carte-
sian components. The effect of obstacles is contained in the
term %; in Eq. (6), where p, represents obstacle density, and
¢ (r, t) signifies the obstacle field. We assume the correlation

(Gi(r, (' 1)) = £28,;8(r — 1), )

which contains no time dependence, and therefore represents
a quenched noise. Equations (5)—(8) represent the Toner-Tu
[8] model for ¢ = 0.

We check whether a broken-symmetry state of the SPPs in
the presence of the obstacle field survives to small fluctuation
in the hydrodynamic fields. In the hydrodynamic limit, a
linearized study of Eqgs. (5) and (6) gives spatially Fourier
transformed equal-time correlation functions for the density

£*psan(6)

rorEr AR B

1
Cop(q, 1) = —{
124 qz

and the velocity

L[ play®)
Colg, 1) = ?{bwyﬂ +d)

The parameters a, ., A, ,, b, and d depend on the specific
microscopic model and the angle 6 between the wave number
¢q and the flocking direction. A detailed calculation for Egs. (9)
and (10) is given in the Supplemental Material [21]. Our
result matches with the earlier prediction by Toner and Tu
[8] for ¢ =0, where the two structure factors diverge as
1/g* for small q. However, the linearized theory suggests
Cppov ~ 1/q* for ¢ # 0, provided d(#) = 0. In general for
a Vicsek-like model as our AMQR, d(6) vanishes for certain
directions 6 = 6, or w — 6., where 6. depends on the model
parameters. We stress that although the quenched inhomo-
geneities increase fluctuation in the system as compared to the
clean case, the neglected nonlinearities suppress these higher
order fluctuations so that a QLRO state can prevail. Although
an exact nonlinear calculation is not practically feasible for
the 2D polar flock [26], presumption of convective nonlin-
earities as relevant terms offers a way out [3,8]. A nonlinear
calculation [26] following this presumption renormalizes dif-
fusivities as 1/g so that the term b(6)g? in Egs. (9) and (10)
approaches a finite value, and therefore, a QLRO state exists
in the system. This explanation is consistent with the giant
number fluctuation [4] in the AMQR. We have checked that
inclusion of the RQRs increases the fluctuation in the system
as compared to the clean case. This enhanced fluctuation

+ AAU(G)}. (10)

destroys the usual LRO of the clean system. However, we note
that the fluctuation decreases with further increase in ¢, which
disagrees with Eq. (9), as the linearized hydrodynamics pre-
scribes an increase in the effect of quenched inhomogeneity
with p,. Therefore, the neglected nonlinearity indeed plays a
pivotal role in stabilizing the QLRO state in the system. A
detailed discussion of these phenomenologies is given in the
Supplemental Material [21].

In summary, we have studied the effect of random
quenched rotators on the flocking state of polar SPPs. These
rotators are one kind of obstacle that rotate the orientation of
the SPPs. We find that, for small density of the rotators, the
usual LRO of the clean polar SPPs is destroyed, and a QLRO
state prevails. With further increase in density of the rotators,
a continuous QLRO to disorder state transition takes place in
the system. Our linearized hydrodynamic analysis predicts an
anisotropic higher order fluctuation which destroys the usual
LRO of the clean SPPs. However, the neglected nonlinearities
suppress these fluctuations yielding a QLRO in the system.
In equilibrium systems with random quenched obstacles, an
ordered state does not exist below four dimensions [17,18].
However, as compared to the equilibrium systems, in our
model for polar SPPs with quenched rotators, we find QLRO
in two dimensions. Our prediction of the QLRO in the polar
SPPs in the presence of quenched obstacles agrees with recent
observations [12,26].

In contrast to the LRO and the QLRO reported in Ref. [12],
we note QLRO only, because of the basic difference in the
nature of obstacles. The SPP-obstacle interaction in Ref. [12]
depends on the angle between their relative position vector
and the orientation of the SPP. Therefore, this force is a
continuous function of the orientation distribution of the SPPs.
On the contrary, the quenched force offered by the obstacles
in our model is random and discrete. However, similar to their
results, we note the existence of an optimal noise for which
the system attains the maximum ordering in the presence of
quenched rotators (see the Supplemental Material [21]). Our
model can be applied in natural systems like a shoal of fishes
moving in the sea in the presence of vortices. An experiment
on a collection of fishes living in a shallow water pool
[27-30], in the presence of uncorrelated artificial vortices,
may verify our predictions.
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