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3.1 Introduction

Heat transfer problems involving phase change have wide applications in many fields

of scientific and technological endeavour and have been focus of extensive study by

Flemings (1974) and Crank (1984). The mathematical model for such problems are

the system of partial differential equation of parabolic type with moving boundaries.

Due to the moving boundary condition these problems are nonlinear even its sim-

plest form. The exact solution of such problems is possible in similarity form only in

limited case. Briozzo et al. (2007) studied the existence of an exact solution for one

phase Stefan problem with nonlinear thermal coefficients using Tirskii’s method.

An analytical study of the solidification in semi infinite porous medium was given

by Rai and Rai (1992). Tirskii (1959) studied a two exact solution of Stefan’s non-

linear problem. If thermal conductivity and specific heat of two regions are different

and temperature dependent, we have a double nonlinear problem. Such nonlinear

problems cannot be solved exactly. Many approximate and numerical methods have

been used for solution of such problems (Ang et al. (1998); Cho and Sunderland

(1974); Fredrick and Greif (1985); Goodman and Shea (1960); Prud and Hung

(1989); Singh et al. (2011)). Goodman (1958) used a heat-balance integral method
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to solve the phase change problem. The optical exponent heat balance and refined

integral method was used by Myers (2010) to solve Stefan problems. Numerical so-

lution of moving boundary problem in a finite domain was given by Rai and Singh

(1998). Rajeev et al. (2009a) used numerical solution for solving moving bound-

ary problem with variable latent heat. Rai and Singh (1998) used the variational

iteration method to solve inverse one-phase Stefan problem. Savovic and Caldwell

(2009) solved the Stefan problem with time-dependent boundary condition by us-

ing variable space grid method. Singular perturbation theory for solving melting or

freezing problems in finite domains was used by Weinbaum and Jiji (1977).

There are two types of solidification problems that have been considered: one

where the liquid is initially above the freezing temperature and in which the tem-

perature in both solid and liquid must be determined (two-phases). Oliver and

Sunderland (1987); Rai and Singh (1998); Singh et al. (2011) solved such problems

and the other where the liquid is always at the freezing temperature (one-phase)

studied by Briozzo et al. (2007); Natale and Tarzia (2003); Rai and Singh (1998);

Rajeev et al. (2009b); Yang et al. (2003). For two phases problem, the significant

progress in a finite domain was reported by Weinbaum and Jiji (1977). Cooling

process was by an isothermal wall below freezing temperature while the other end

was either adiabatic or isothermal. The problem was solved by method of matched

asymptotics. Oliver and Sunderland (1987) considered a two phases moving bound-

ary problem in which thermal conductivity and specific heat of two regions varies

linearly with temperature. This problem was solved using a numerical method.

Singh et al. (2011) solved the same problem by using variational iteration method

when thermal conductivity and specific heat of two regions varies (1) linearly and

(2) exponentially with temperature. No solution is provided when thermal conduc-

tivity and specific heat of two regions varies with temperature in a general manner

and their densities are also different. To the best of authors knowledge solution

of the two phases moving boundary problem with temperature dependent thermal

conductivity and specific heat and different densities of two regions has not been

solved yet using wavelet Galerkin or wavelet collocation method. In this study, the

proposed method is used to obtain the solution of a two phases moving boundary

62



problem when thermal conductivity and specific heat of two regions are tempera-

ture dependent and densities of two regions are different. The two regions moving

boundary problem of partial differential equation have been transferred into a two

regions fixed boundary problem of nonlinear ordinary differential equations. Fur-

ther, the wavelet Galerkin and wavelet collocation method have been used to solve

them.

3.2 Formulation of Mathematical Model

A semi infinite medium consisting of a melt is initially at a temperature Ti which

is slightly above the freezing temperature of the melt Tf . The surface r = 0 is kept

at a temperature T0 slightly below the freezing temperature of the material. The

freezing starts at the surface r = 0 and the solid-liquid interface r = s(t) moves in

the positive r- direction. The dynamics of freezing can be described by the following

differential equations:

[ρ1c1(T1)]
∂T1

∂t
=

∂

∂r

[

K1(T1)
∂T1

∂r

]

, 0 < r < s(t), t > 0, (3.1)

[ρ2c2(T2)]
∂T2

∂t
+ (ρ1 − ρ2)c2(T2)

ds

dt

∂T2

∂r
=

∂

∂r

[

K2(T2)
∂T2

∂r

]

, r > s(t), t > 0, (3.2)

subjected to the initial and boundary conditions

T1(r, 0) = Ti, (3.3)

T1(0, t) = T0. (3.4)

On the moving interface, the condition of temperature continuity and energy bal-

ance equation are

T1(s(t), t) = T2(s(t), t) = Tf , (3.5)

K1(T1)
∂T1

∂r
−K2(T2)

∂T2

∂r
= ρ1L

ds(t)

dt
, r = s(t), (3.6)

s(0) = 0. (3.7)

respectively. As r →∞ the temperature of material is equal to initial temperature

i.e.,

lim
r→∞

T2(r, t) = Ti. (3.8)
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The thermal conductivity and specific heat in two regions varies with temperature

and are assumed to be:

K1 = K01g1(θ1),

K2 = K02g2(θ2),

c1 = c01f1(θ1),

c2 = c02f2(θ2), (3.9)

respectively.

3.2.1 Dimensionless Analysis

Introducing the dimensionless variables and similarity criteria

θk =
Tk − T0

Ti − T0
, k = 1, 2, f, a12 =

a02

a01
, a01 =

K01

c01ρ1
, a02 =

K02

c02ρ2
, K12 =

K02

K01

ρ21 =
ρ2

ρ1
, Fo =

a01t

l2
, Ste =

c01(Ti − T0)

L
, y =

r

l
, λ =

s(t)

l
, (3.10)

and using transformation

x =
y

λ
, λ = 2λ0

√

F0, (3.11)

the system of Eqs. (3.1 - 3.8) reduce in to the form

d

dx

[

g1(θ1)
dθ1

dx

]

+ 2λ20xf1(θ1)
dθ1

dx
= 0, 0 < x < 1, (3.12)

d

dx

[

g2(θ2)
dθ2

dx

]

+
2λ20
a12

f2(θ2)(1 + x− ρ21)
dθ2

dx
= 0, x > 1, (3.13)

θ1(0) = 0, (3.14)

θ1(1) = θ2(1) = θf . (3.15)

Interface equation is

g1(θ1)
dθ1

dx
−K12g2(θ2)

dθ2

dx
=

2λ20
Ste

, x = 1, (3.16)

lim
x→∞

θ2(x) = 1. (3.17)

Under the transformation

z = e1−x, (3.18)
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the region [1,∞) reduces into region [0, 1], the Eqs. (3.13), (3.15 - 3.17) reduce in

the form of

z
d

dz

[

g2(θ2)z
dθ2

dz

]

− 2λ20
a12

f2(θ2)(2− ρ21 − logz)z
dθ2

dz
= 0, (3.19)

θ2(1) = θf , (3.20)

lim
z→0

θ2(z) = 1, (3.21)

g1(θ1)
dθ1

dx
−K12g2(θ2)

dθ2

dx
=

2λ20
Ste

, x = 1, (3.22)

where
dθ2

dx
= −z dθ2

dz
, z = 1. (3.23)

3.3 Wavelet Galerkin and wavelet Collocation Method

To obtain the solution of system of Eqs. (3.12), (3.14), (3.15) and Eqs. (3.19)-

(3.23), we will use wavelet Galerkin and wavelet collocation method.

Phase (1)

Let us assume
d2θ1

dx2
= CT

1 ψ1(x), (3.24)

where Ledendre wavelets ψ1(x) and unknown vector C1 of order 2k−1M × 1 are

defined as

ψ1 (x) = [ψ10(x), ψ11(x), . . . , ψ1M−1(x), ψ20(x), ψ21(x), . . . , ψ2M−1(x), . . . , ψ2k−10(x),

ψ2k−11(x), ψ2k−12(x), . . . , ψ2k−1M−1(x)]
T .

C1 = [c110, c
1
11, ..., c

1
1M−1, c

1
20, c

1
21, ...., c

1
2M−1, c

1
2k−10, c

2
2k−11, ...., c

1
2k−1M−1]

T .

Integrating Eq. (3.24) from 0 to x and using Eq. (1.92) we get

dθ1

dx
− dθ1(0)

dx
= CT

1 Pψ1(x), (3.25)

where P is operational matrix of integration of order 2k−1M × 2k−1M defined in

Eq. (1.93). Again integrating Eq. (3.25) from 0 to x, we get

θ1(x) =
dθ(0)

dx
dTPψ1(x) + CT

1 P
2ψ1(x), (3.26)

where d is a vector coefficient determine by < ψnm, d
Tψ1(x) > = < ψnm, 1 >, where

ψnm is defined in Eq. (1.87). Put x = 1 in Eq. (3.26) and using boundary condition
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defined in Eq. (3.15), we get

dθ1(0)

dx
= θf − CT

1 P
2ψ1(1), (3.27)

Now, substitute Eq. (3.27) in Eq. (3.26) we get

θ1(x) = (θf − CT
1 P

2ψ1(1))d
TPψ1(x) + CT

1 P
2ψ1(x). (3.28)

Phase (2)

Let us assume
d2θ2

dz2
= CT

2 ψ2(z), (3.29)

where, Ledendre wavelets ψ2(z) and unknown vector C2 of order 2k−1M × 1 are

defined as

ψ2 (z) = [ψ10(z), ψ11(z), ψ12(z), . . . , ψ1M−1(z), ψ20(z), ψ21(z), . . . , ψ2M−1(z), . . . ,

ψ2k−10(z), ψ2k−11(z), . . . , ψ2k−1M−1(z)]
T .

C2 = [c210, c
2
11, ..., c

2
1M−1, c

2
20, c

2
21, ...., c

2
2M−1, c

2
2k−10, c

2
2k−11, ...., c

2
2k−1M−1]

T .

Integrating the Eq. (3.33) from 0 to z two times and using Eq. (1.92) and boundary

condition defined in Eq. (1.20), we get

θ2(z) = 1 + (θf − 1− CT
2 P

2ψ2(1) + CT
2 Pψ2(z))d

TPψ2(z) + CT
2 P

2ψ2(z). (3.30)

Particular cases: Here we consider three particular cases as follows:

Case 1

When thermal conductivity and specific heat are temperature independent we take,

g1(θ1) = f1(θ1) = 1. (3.31)

Using the Eqs. (3.24), (3.28) in Eq. (3.12) we get the residual

R1(x, λ0, C1) = CT
1 ψ1(x)+k

T
0 ψ1(x)((θf−CT

1 P
2ψ1(1))d

Tψ1(x)+C
T
1 Pψ1(x)), (3.32)

where kT0 ψ1(x) = 2λ2ox.

For phase 2, we have used similar process as used in phase 1 for obtaining the

residual. We get

R2(z, λ0, C2) = kT1 ψ2(z)C
T
2 ψ2(z)+k

T
2 ψ2(z)(θf−1−CT

2 P
2ψ2(1)+C

T
2 Pψ2(z)), (3.33)
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where kT1 ψ2(z) = z, kT2 ψ2(z) = (1− 2λ2o
a12

(2− ρ21 − logz)).

For minimizing these residuals (R1(x, λ0, C1) andR2(z, λ0, C2)), using the Galerkin

approach defined in Eq. (1.65). In Galerkin approach, we have taken the test func-

tion as Legendre wavelets defined in Eq. (1.87). Therefore, we get the system of

linear equations for both the phases as follows:

A1C1 = B1, (3.34)

and

A2C2 = B2. (3.35)

Where

A1 = I − k̂0dψ
T
1 (1)P

2T + k̂0P
T ,

A2 = k̂1 − k̂2dψ
T
2 P

2T + k̂2dk̂
T
2 (1)P

T ,

B1 = θf k̂0d,

B2 = (1− θf )k̂2d.

A1, A2 and B1, B2 are known matrices of order 2k−1M × 2k−1M and 2k−1M × 1

respectively. I is the identity matrix of order 2k−1M × 2k−1M . For determining the

unknown vectors Cj, j = 1, 2 we are using Gauss elimination technique in Eq. (3.34)

and Eq. (3.35), provided the determinant A1, A2 are not vanishes. Substituting the

value of Cj, j = 1, 2, we obtained the value of θ1 and θ2 for phase 1 and phase 2

respectively.

Case 2

When specific heat and thermal conductivity varies exponentially with temperature

i.e.,

f1(θ1) = eα1θ1 ,

f2(θ2) = eα2θ2 ,

g1(θ1) = eβ1θ1 ,

g2(θ2) = eβ2θ2 . (3.36)
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Similarly, the residuals obtained for phase 1 and phase 2 are given as

R3(x, λ0, C1) = CT
1 ψ1(x) + β1(θf − CT

1 P
2ψ1(1) + CT

1 Pψ1(x))
2 + 2λ20x×

e[(α1−β1)(θf−C
T
1
P 2ψ1(1)x+CT

1
P 2ψ1(x))](θf − CT

1 P
2ψ1(1) + CT

1 Pψ1(x)).

(3.37)

R4(z, λ0, C2) = CT
2 ψ2(z) + θf − 1− CT

2 P
2ψ2(1) + CT

2 Pψ2(z) + β2z(θf − 1− (1)

CT
2 P

2ψ2 + CT
2 Pψ2(z))

2 − 2λ20
a12

e[(α2−β2)(1+(θf−1−C
T
2
P 2ψ2(1))z+CT

2
P 2ψ2(z))]

(θf − CT
2 P

2ψ2(1)C
T
2 Pψ2)(2− log(z)− ρ21). (3.38)

Case 3

When specific heat and thermal conductivity varies linearly with temperature i.e.,

f1(θ1) = 1 + α1θ1,

f2(θ2) = 1 + α2θ2,

g1(θ1) = 1 + β1θ1,

g2(θ2) = 1 + β2θ2. (3.39)

Similarly, the residuals obtained for phase 1 and phase 2 are given as

R5(x, λ0, C1) = CT
1 ψ1(x) + β1(θf − CT

1 P
2ψ1(1))xC

T
1 ψ1(x) + β1C

T
1 P

2ψ1(x)C
T
1 ψ1(x)

+β1(θf − CT
1 P

2ψ1(1) + CT
1 Pψ1(x))

2 + 2λ20x
2α1(θf − CT

1 P
2ψ1(1))

2

+2λ20x(θf − CT
1 P

2ψ1(1) + CT
1 Pψ1(x)) + 2λ20xα1(θf − CT

1 P
2ψ1(1))×

CT
1 Pψ1(x) + 2λ20x

2α1(θf − CT
1 P

2ψ1(1))C
T
1 Pψ1(x) + 2λ20xα1C

T
1 Pψ1(x).

(3.40)

R6(z, λ0, C2) = zCT
2 ψ2(z) + β2z(1 + (θf − 1− CT

2 P
2ψ2(1))z + CT

2 P
2ψ2(z))C

T
2 ψ2(z)

+(θf − 1− CT
2 P

2ψ2(1)) + CT
2 Pψ2(z) + β2(z(θf − 1− CT

2 P
2ψ2(1))

+CT
2 P

2ψ2(z) + 1)× (θf − 1− CT
2 P

2ψ2(1) + CT
2 Pψ2(z))

−2λ20
a12

(2− ρ21 − logz)(θf − 1− CT
2 P

2ψ2(1) + CT
2 Pψ2)

+β2z(θf − 1− CT
2 P

2ψ2(1) + CT
2 Pψ2)

2 − 2λ20
a12

(2− ρ21 − logz)α2 ×

(1 + (θf − 1− CT
2 P

2ψ2(1)z) + CT
2 P

2ψ2(z))

(θf − 1− CT
2 P

2ψ2(1) + CT
2 Pψ2(z)). (3.41)
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In both the cases, we have taken 2k−1M collocation points xnm in interval (0, 1)

such that

Ri(xnm, λ0, Cj) = 0, i = 3, 4, 5, 6, j = 1, 2.

Therefore, we get 2k−1M system of nonlinear equations for each i. For determining

the unknown vector Cj, we are using the Newton Raphson method. Substituting

the value of Cj in Eqs. (3.28), (3.30), we get θ1and θ2 for both phases respectively.

3.3.1 Moving Layer Thickness

For determining the moving layer thickness λ0 for each cases, substitute the obtained

θ1, θ2 in Eq. (3.22) we get non linear equation in λ0 and solve it by Newton-Raphson

method.

3.4 Convergence Analysis

Let θ(x) be a continuous function defined on interval [0, 1] and let θN(x) be an

approximate solution of Eq. (3.28) which can be written in the form of

θN(x) =
N−1
∑

n=0

anψ1n. (3.42)

Where an is an unknown constant and {ψ1n : n = 0, 1, 2........N−1} be an orthonor-

mal set of Legendre wavelets.

Let us assume that

‖θ(x)− θN(x)‖2 = ‖E(x)‖2, (3.43)

where,

E(x) =
∞
∑

n=N

(|an|2)1/2,

and an is defined as

an =

∫ 1

0

θ(x)ψ1ndx.

Therefore,

‖θ(x)− θN(x)‖2 ≤M

∫ 1

0

ψ1ndx, (3.44)
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where, M = sup θ(x), xǫ[0, 1]. Since,

∫ 1

0

ψ1ndx =











1, n = 0

0, otherwise.

(3.45)

From Eq. (3.44) and (3.45), we get ‖θ(x) − θn(x)‖2 = 0. Hence, it shows that

‖E(x)‖2 = 0 for large value of N.

3.5 Numerical Computation and Disscussion

In case (1), the exact solution of Eqs. (3.12 - 3.13) comes out to be

θ1 = θf
erf(λ0x)

erf(λ0)
(3.46)

θ2 =
1

2
+

1

2

[

erf(λ0x)− erf(λ0)

1− erf(λ0)

]

, (3.47)

where, erf is error function and defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt. (3.48)

The computation has been made and the results thus obtained by present method

are compared with exact result. Fig. (3.1) and Fig. (3.2) show the moving layer

thickness (λ) and temperature distribution respectively in two regions which are

exactly the same as the exact result for case (1). During the solidification process,

the motion of moving front is proportional to the parameter λ0 which is expressed

by Eq. (3.11) and also depend on dimensionless parameters such as K12, ρ21, Ste,

specific heat coefficients α1, α2 and thermal conductivity coefficients β1, β2. Fig.

(3.3) and Fig. (3.4) also show the temperature distribution in two regions for case

(2) and case (3) respectively. From Figs. (3.3) and Fig. (3.4), we observed that the

dimensionless temperatures increases and then become constant as dimensionless

space co-ordinate increases. The dimensionless moving layer thickness increases as

the ratio of densities of liquid region and solid region ρ21 and dimensionless time

Fo increases, which is shown in Fig. (3.5). The density difference between the solid

and liquid is one of the four factors that can lead to macro segregation in ingots.

During the solidification of Al−Cu alloys the copper rejected into the liquid raises
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its density and causes it to settle down (Porter (2009)). The effect of variability

of the ratio of thermal conductivity of two regions on moving interface is shown

in Fig. (3.6). From this Fig. we observed that, the dimensionless moving layer

thickness decreases as ratio of thermal conductivity (K12) increases. A higher value

of K12 is because of lower conductivity of solid region relative to liquid region and

slower freezing as shown in Fig. (3.6). The effect of variability of specific heat

with temperature is shown in Fig. (3.7) and Fig. (3.8) for both cases. As α1, α2

increases, the thickness of moving interface decreases. The effect of variability of

thermal conductivity with temperature is shown in Fig. (3.9) and Fig. (3.10). As

β1, β2 increases, the thickness of moving interface increases. Further, the effect of

thermal conductivity is more pronounced than heat capacity. The Stefan number

signifies the importance of sensible heat relative to the latent heat. The higher

value of Stefan number, the higher value of heat capacity or lower value of latent

heat, the faster is the freezing as shown in Fig. (3.11). For large Stefan numbers,

the dimensionless moving layer thickness approaches a constant value. In case of

solidification of super cooled melt Stefan number is large and because of this the

solidification process may be so rapid that liquid molecules have no time to rearrange

themselves into the usual crystal structure and instead form an amorphous solid

structure that is reminiscent of the liquid phase. For this reason solids formed from a

super cooled liquid have been referred to as liquids on pause (NASA (2012)). As the

Stefan number decreases, the dimensionless moving layer thickness decreases. At

the low values of Stefan number, the variation in thermal conductivity is important,

but the effects of specific heats diminish.
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Figure 3.1: Compare the exact result of moving layer thickness (λ) with WGM.
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Figure 3.3: Dimensionless temperature distribution (θ) of phase 1 and phase (2).
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Figure 3.5: Effect of density (ρ21) on moving layer thickness (λ).
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Figure 3.6: Effect of thermal conductivity (K12) on moving layer thickness (λ).
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Figure 3.7: Effect of specific heat coefficients (α1, α2) on moving layer thickness (λ)

in case (2).
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Figure 3.8: Effect of specific heat coefficients (α1, α2) on moving layer thickness (λ)

in case (3).
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Figure 3.9: Effect of thermal conductivity coefficients (β1, β2) on moving layer thick-

ness (λ) in case (2).
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Figure 3.10: Effect of thermal conductivity coefficients (β1, β2) on moving layer

thickness (λ) in case (3).
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Figure 3.11: Effect of Stefan no. (Ste) on moving layer thickness (λ).

3.6 Conclusion

A mathematical model describing the process of freezing in a semi-infinite region

has been analysed. The wavelet Galerkin and wavelet collocation methods are used

to find the solution of moving boundary problem. The errors can be minimized and

approaches to zero as the number of basis functions increase. This methodology is

extremely efficient to provide the analytical solutions of moving boundary problems.

The exceptional accuracy, prompts us to conclude that wavelet Collocation method

may be excellent alternative to other methods for solving moving boundary prob-

lems. The temperature distribution in two regions and solid layer thickness can be

accurately predicted with the wavelet Galerkin/wavelet Collocation solution. Our

simulations show that

• as the ratio of thermal conductivity of liquid region to that of solid region

increases, the moving layer thickness decreases while the ratio of density of

liquid region to that of solid region increases, the moving layer thickness

increases.
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• the moving layer thickness increases as thermal conductivity increases with

the temperature while decreases as heat capacity increases with temperature.

The effect of thermal conductivity is more pronounced than heat capacity.

• as Stefan number increases, the thickness of solid layer increases and ap-

proaches to a constant value.
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