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Galerkin approach to inward solid-
ification in simple body under most
generalized boundary condition

2.1 Introduction

Modern technology demands to prepare a high strength material with exception-

ally superior tensile properties, but at low cost. The most attractive method of

producing such materials is through unidirectional solidification. A desired type of

microstructure can be obtained by controlling the freezing conditions and adding

a small quantity of impurity elements. The microstructure of eutectic alloys also

depends on the rate of freezing. When ZrO2 − MgO eutectic freezes (Kennard

et al. (1974)) at growth rate 8.9 cm/hr, cellular structure is formed whereas at

growth rate 1 cm/hr, the microstructure of ZrO2 −MgO eutectic is fully aligned

with MgO rods in a cubic ZrO2 matrix. At slow growth rates Al2O3 − UO2 forms

a rod eutectic, but at higher growth rates, the UO2 rods tend to form a lamellar

structure. The rate of freezing which controls the structure depends on a number

of parameters. In order to determine the effect of these parameters on the rate of

freezing, it is desirable to develop a generalized theoretical model which may predict

transport phenomena during solidification.

Industrial thermal processes where energy availability and its utilization are

not coincident require a means of matching the use of energy with its availability.

One can include the sensible and latent heat concepts of energy storage. Because

of the large storage capacity and constant charge and discharge temperature, the
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latent heat concept is more attractive. The cool thermal storage systems include

liquid-solid phase change materials encapsulated in containers of different geomet-

rical shape understanding the thermal behaviour during phase change in the con-

tainer, it is important to design efficient storage systems. The solidification which

has immense technological importance mathematically occurs in a class of problems

commonly known as moving boundary problems. The study of these problems is

not simple as the freezing front is not known in advance and along the freezing

front temperature gradients are discontinuous. A good account of the analytical

and numerical solutions of these problems can be found in a book by Crank (1984).

Several researchers (Tien and Geiger (1967); Carslaw and Jaegar (1959); Ozisik

(1993); Hill (1987); Viskanta (1988); Barry and Goodling (1987)) also studied so-

lidification problems from a heat transfer point of view. None of these authors

studied inward solidification within a container filled with melt of phase change

material. Goodling and Khader (1974) obtained numerical solutions for one phase

one-dimensional inward solidification problem with radiation-convection boundary

condition. Gupta and Arora (1987) obtained analytical and numerical solutions of

inward spherical solidification of a superheated melt with the radiative-convective

heat transfer and density jump at the freezing front. Yan and Huang (1974) used a

perturbation solution for one-phase slab problem. Shih and Chou (1971) presented

an iterative method of successive approximations to study the solidification process

inside spherical geometry. Rai and Rai (2003) used finite difference method to solve

a problem of inward solidification of slabs, cylinder and sphere. The solution of this

problem is found in terms of eigenvalues and spectral component of the operator.

Hill and Kucera (1983) developed a semi-analytical method to study the solidifica-

tion inside spherical containers taking into account the effects of heat radiation on

the container surface. They estimated the time for complete solidification of the

sphere. Ismail and Henriquez (2000) presented a numerical study of the solidifica-

tion of phase change material (PCM) enclosed in a spherical shell. Bilir and Zafer

(2005) investigated the inward solidification problem of PCM encapsulated in cylin-

drical or spherical containers. Chan and Tan (2006) carried out an experimental

study of the solidification of an n- Hexadecane inside a spherical container. In case
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of inward solidification, the effect of shape factor of container containing melt and

the condition posed on boundary are not discussed in detail.

In this chapter, a model describing solidification of melt within a container

of geometrical configuration likes slab, circular cylinder or sphere when its surface

subjected to the most generalized boundary conditions is presented. Initially, the

melt is at its freezing temperature. Several assumptions have to be taken at the

surfaces from which solidification commences. Such as constant/time varying con-

tainer surface temperature, constant/time varying heat flux at the container surface

and constant convective heat transfer coefficient between the container surface and

surrounding medium. To solve this model, we have used finite element Legendre

wavelets Galerkin method (FELWGM) for finding the temperature and position of

moving interface. Furthermore, the effect of parameters such as Predvoditelev num-

ber, Kirpichev number, Biot number and Stefan number on moving layer thickness

is discussed in detail.

2.2 Formulation of Mathematical Model

A liquid phase change material contained either in a finite slab of thickness 2R or a

cylinder or a sphere of diameter 2R is initially at its freezing temperature Tf . After

time t > 0, the boundary is cooled by imposing on it the boundary condition of

first kind or second kind or third kind. Namely, one might assume either a constant

temperature Tw < Tf (subscript w stands for wall and f stands for freezing) or a

constant heat flux q or a constant heat transfer coefficient α. It is supposed that: (i)

heat transfer is only in the r- direction; (ii) the container walls are so thin and of a

low conductive material that the thermal resistance through the walls is negligible,

the fact which is confirmed experimentally by Tan and Leong (1999); (iii) mass

densities of solid and liquid phases are equal. The melt freezes inward and the

solidification shell grow in a symmetric manner. The finite region is divided into

two regions separated by solidification front r = s(t). The first region s(t) < r < R

in frozen form while the region 0 < r < s(t) in liquid form. The dynamics of
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freezing can be described by the following equations:

∂T

∂t
=

a

rΓ
∂

∂r

(

rΓ
∂T

∂r

)

, s(t) < r < R, t > 0, (2.1)

T is the temperature, a the thermal diffusivity, r the position of the solidification

material, and Γ = 0, 1, 2 for a slab, cylinder and spherical configuration respectively.

The initial condition and associated boundary conditions are

T (r, t) = Tf , t = 0, (2.2)

A0
∂T

∂r
+ B0T = f0(t), r = R, t > 0. (2.3)

Where

1. A0 = 0, B0 = 1, f0(t) = Tw,

2. A0 = −K0, B0 = 0, f0(t) = q,

3. A0 = −K0, B0 = α, f0(t) = −αT∞.

are defined in first, second and third kind of boundary condition respectively. The

energy balance at the solid-liquid interface is

d(s(t))

dt
=

K

ρL

∂T

∂r
, r = s(t), (2.4)

s(0) = 0, r = R, (2.5)

T (r, t) = Tf , r = s(t), (2.6)

where ρ is the density, L denote the latent heat of fusion and s(t) denote the

thickness of moving layer.

2.2.1 Dimensionless Analysis

Introducing the dimensionless variables

x =
r

R
, Ste =

c△T

L
, λ =

s(t)

R
, Fo =

at

R2
, θ =

(T − T0)

△T
. (2.7)
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where

△T = Tf − Tw, T0 = Tw, (2.8)

△T =
ql

K
, T0 = Tf −△T, (2.9)

△T = Tf − T∞, T0 = T∞, (2.10)

in first, second and third kind of boundary conditions respectively. Further

A
′

=
A0

R
, B

′

= B0, θc(Fo) =
f0(t)−B0T0

∆T
.

The system of Eqs. (2.1)-(2.5) reduce into the dimensionless form as follows:

∂θ

∂Fo
=

1

xΓ
∂

∂x

(

xΓ
∂θ

∂x

)

, λ(Fo) < x < 1, Fo > 0, (2.11)

A
′ ∂θ

∂x
+ B

′

θ = θc(Fo), x = 1, (2.12)

θ(x, Fo) = 1, x = λ, (2.13)

dλ

dFo
= Ste

∂θ

∂x
, x = λ, (2.14)

λ(0) = 0, (2.15)

θ(x, 0) = 1. (2.16)

Replacing the domain [0, 1]×[0,∞] by a rectangular grid of points (xi, Fo). We

first deal with the discretization in the space variable by using central differences,

Eqs.(2.11 - 2.13) and Eq. (2.16) can be written in vector matrix form as follows:

dθ̄

dFo
= Aθ̄ +B, (2.17)

and initial condition is

θ̄(0) =
[

1 1 · · · · · · 1
]T

. (2.18)

Here

θ̄(Fo) =
[

θ1 θ2 · · · · · · θk

]T

,

where,

θi(Fo) = θ(xi, Fo),
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,

and

B = 1
2h2Ste

[

20h
(

−Γh

x1
+2

)

θc(Fo)

20hB
′
−21A

′ 0 0 · · · · · · · · · 0
(

Γh
xk

+ 2
)

]T

.

2.3 Finite Element Legendre Wavelets Galerkin Method

To solve the differential Eq. (2.17) under initial condition defined in Eq. (2.18), let

us assume that
dθ̄

dFo
= Xψ, (2.19)

where X is unknown matrix of order 2k−1M × 2k
′
−1M ′ (M ′ ≤ M,k′ ≤ k) and ψ is

a vector of Legendre wavelets of order 2k−1M ′ × 1 given as follow:

ψ (Fo) = [ψ10(Fo), ψ11(Fo), . . . , ψ1M−1(Fo), ψ20(Fo), . . . , ψ2M−1(Fo), . . . ,

ψ2k−10(Fo)ψ2k−11(Fo), . . . , ψ2k−1M−1(Fo)]
T . (2.20)

The elements of ψ are defined in Eq. (1.87). Integrating the Eq. (2.19) from 0 to

Fo and using initial condition and Eq. (1.92), we get

θ̄(Fo) = θ̄(0) +XPψ, (2.21)

where P is operational matrix of integration of order 2k−1M × 2k−1M defined in

Eq. (1.93). Substituting the value of θ(Fo) in the differential Eq. (2.17), we get

Xψ = A(θ(0) +XPψ) +B, (2.22)

AXPψ −Xψ + Aθ(0)dTψ + BdTψ = 0, (2.23)
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where d is a vector coefficient determine by < ψnm, d
Tψ(x) > = < ψnm, 1 >, where

ψnm is defined in Eq. (1.87). The Eq. (2.23) reduces in the form of

AXP −X + (Aθ(0) +B)dT = 0. (2.24)

Let N = (Aθ(0) +B)dT , the above system reduces to

AXP −X +N = 0. (2.25)

We look for the generalized time Fo in which the interface moves a distance λ(Fo).

The region (1 − λ, 1) is divided into k equal subregions. Assuming a fix Fo∗ =

Fo > 0, the elements of matrix X are computed by solving the Sylvester Eq.

(2.25). The interface condition Eq. (2.14) is used to evaluate the generalized time

Fo∗. By replacing the space derivative by its average value and then integrating

with respect to Fo from 0 to Fo, we obtain

λ(Fo) =
1

20h

∫ Fo

0

(21− 13θk − 17θk−1 + 9θk−2)dFo. (2.26)

2.4 Numerical Computation and Discussion

The above solutions are of interest as they describe the inward solidification process

of melt in different geometries such as slab, circular cylinder or sphere when surface

subjected under most generalized boundary condition. To analyze the solution, we

consider particular cases of technical importance. In general, it is categorized into

the following three different modalities:

Case 1: The surface is subjected to boundary condition of first kind. In this case,

we take

A
′

= 0, B
′

= 1, (I) θc(Fo) = 0, (II) θc(Fo) = Pd ∗ Fo, (2.27)

where Pd is predvoditelev number defined as Pd = bR2

a∆T
.

Case 2: The second kind boundary condition consists in assigning heat flux at the

surface. In this case, we take

A
′

= 1, B
′

= 0, (I) θc(Fo) = 0, (II) θc(Fo) = Ki(Fo) = Kie(−PdFo), (2.28)
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where Ki is Kirpichev number defined as Ki = qR

K∆T
.

Case 3: The third kind boundary conditions generally characterize the law of

convective heat transfer between the surface of a body and its surrounding for a

constant heat flux. In this case, we take

A
′

= 1, B
′

= Bi, θc(Fo) = 0, (2.29)

where Bi is Biot number defined as Bi = αR
K

.

The computation has been made and the results are presented in tables and

eighteen figures. On the figures presented in this study, only the parameters whose

values different from the reference values are indicated. The selected reference values

include Pd = 1.0, Ki = 1.0, Bi = 1.0, Fo = 1.0. The dimensionless temperature θ,

at the end of solidification process, as a function of space coordinate for slab, circular

cylinder and sphere for boundary condition of first, second kind are shown in Figs.

(2.1), (2.2) and (2.3), (2.4) respectively. In third kind of boundary condition the

temperature θ for slab, circular cylinder and sphere are shown in Table (2.1). The

solid region thickness as a function of generalized time Fo for different Γ under

boundary condition of first and second kind are depicted in Figs. (2.5) and (2.6)

respectively. A slab takes time Fo = 0.0578, a circular cylinder Fo = 0.0644 and

a sphere Fo = 0.0736 when surface subjected to boundary conditions of first kind.

When the surface is subjected to boundary conditions of second kind, slab takes

Fo = 0.50, cylinder takes Fo = 0.82 and sphere takes Fo = 0.90. When the surface

is subjected to boundary conditions of third kind as shown in Table (2.2), slab takes

time Fo = 0.88, cylinder takes Fo = 0.90 and sphere takes Fo = 0.92. In basic

equation of heat conduction in a simple body like infinite plate, circular cylinder

and sphere, the term ∂T
∂t

represents the rate of change of temperature with respect

to time and can be replaced by δTt

t
. Similarly, ∂T

∂r
represents the rate of change of

temperature with respect to r and can be replaced by δTR

R
. The term ∂2T

∂r2
is the

square rate of change of T with respect to r and it can be replaced by δTR

R2
, where

the suffixes t and R denote the time rate and space rate change in temperature T .

Therefore, heat conduction equation reduces to

δTt

t
= a

(

δTR

R2
+
Γ

R

δTR

R

)

, (2.30)
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i.e.
1

(1 + Γ)

δTt

δTR
=

at

R2
. (2.31)

The right hand side of this equation being dimensionless quantity called Fourier

number Fo = at
R2

Thus, the Fourier number is defined as the ratio of time rate

change in temperature with the space rate change in temperature i.e.

Fo =
1

(1 + Γ)

δTt

δTR
. (2.32)

Thus, the ratio of time rate change in temperature with the space rate change in

temperature increases as shape factor Γ and Fourier number both increases. This

ratio is highest in a sphere and lowest in a plate. The temperature in sphere is

highest and lowest in plate for all type of boundary conditions. It is evident from

the Figs. (2.5) and (2.6) that the moving layer thickness in slab is highest while in

sphere is lowest and because of this the time taken for complete freezing in slab is

lowest and in sphere is highest. In boundary condition of first kind as Pd increases,

the solid layer thickness decreases and shown in Figs. (2.7 -2.9).

In case 2 when freezing starts due to assigning heat flux at the surface, solid

layer thickness increases as Kirpichev number Ki increases as shown in Figs. (2.13

-2.15). The Kirpichev number relates the intensity of external heat transfer to the

intensity of internal heat transfer. As ratio of intensity of external heat transfer

to the intensity of internal heat transfer increases, Ki increases, the solid layer

thickness increases as shown in Figs. (2.13 - 2.15). If Kirpichev number Ki varies

with time following the exponential law Ki(Fo) = Kie−PdFo, then solid layer thick-

ness decreases as Pd increases as shown in Figs. (2.10 - 2.12). The Predvoditelev

number Pd characterizes the discrete structure of a fluid and intensifies the addi-

tional mode of momentum transfer which takes place in such systems. The quantity

PdFo = bt
∆T

, increases with increase in time or decrease in ∆T . Thus, e−PdFo de-

creases as ∆T decreases. Hence as Pd increases, Ki(Fo) decreases and solid layer

thickness decreases as shown in Figs. (2.10 - 2.12). In boundary condition of first

kind too, as Pd increases, the solid layer thickness decreases as shown in Figs. (2.7

- 2.9) respectively.

In case 3, when surface subjected to boundary condition of third kind, as Biot
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number increases, the temperature of solid region decreases (Table-2.1) while solid

layer thickness increases (Table-2.2). The Biot number provides a way to compare

the conduction resistance within a solid body with the convection resistance external

to that body for heat transfer. It provides a way to use proper method of analysis

for appropriate situations. The process is fastest in boundary condition of first kind

in comparison to boundary condition of second and third kind. It is due to fact that

in boundary condition of first kind, Bi is infinity, in boundary condition of second

kind Bi = 1
θ

while in boundary condition of third kind, it is finite. The dynamics

of propagation of the freezing front during the freezing process for Bi is infinite

are different from those in the process with Bi is finite. In freezing process with

infinite Bi, the front starts advancing into the liquid with infinite speed, where

as in a freezing process with finite Bi the front starts advancing into the liquid

with vanishing front speed. This is the reason why the freezing process is fastest in

boundary condition of first kind in comparison to boundary condition of second and

third kind. As the Stefan number increases, the dimensionless solid layer thickness

increases and the time of complete solidification decreases. This time is minimum in

slab and maximum in sphere. When the Stefan number decreases and approaches

zero, the dimensionless solid layer thickness also decreases and tending to zero. The

Stefan number signifies the importance of sensible heat relative to the latent heat.

The higher value of heat capacity or higher ∆T (in boundary condition of first

kind ∆T = Tf − T0, in boundary condition of second kind ∆T = qR

K
, in boundary

condition of third kind ∆T = Tf − T∞) or lower value of latent heat, the faster

is the freezing process as shown in Figs. (2.16), (2.17) and (2.18) respectively. As

the Stefan number increases, the time required for complete solidification decreases

and approaches zero. In such situations the solidification process may be so rapid

that liquid molecules have no time to rearrange themselves into the usual crystal

structure and instead form an amorphous solid structure that is reminiscent of the

liquid phase. For this reason solid formed from a supercooled liquid have been

referred to as liquid of pause (NASA (2012)).
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Figure 2.1: Temperature distribution in b.c. of first kind (I).
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Figure 2.2: Temperature distribution in b.c. of first kind, Pd = 1.0 (II).
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Figure 2.3: Temperature distribution in b.c. of second kind, Ki = 1.0 (I).
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Figure 2.4: Temperature distribution in b.c. of second kind Ki = 1.0, Pd = 1.0

(II) .

51



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Dimensionless time (Fo)

M
o
v
in

g
 l
a
y
e
r 

th
ic

k
n
e
s
s
  
( 

λ
)

Γ=0 case I

Γ=1 case I

Γ=2 case I

Γ=0 case II

Γ=1 case II

Γ=2 case II

Figure 2.5: Moving layer thickness (λ) for b.c. of first kind,Ste = 1 (I).
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Figure 2.7: Effect of Pd on moving layer thickness (λ) for b.c. of first kind,Ste = 1

(II).
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Figure 2.8: Effect of Pd on moving layer thickness (λ) for b.c. of first kind,Ste = 1

(II).
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Figure 2.9: Effect of Pd on moving layer thickness (λ) for b.c. of first kind,Ste = 1

(I).
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Figure 2.10: Effect of Pd on moving layer thickness (λ) for b.c. of second kind,

Ki = 1.0, Ste = 1 (II).
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Figure 2.11: Effect of Pd on moving layer thickness (λ) for b.c. of second kind,

Ki = 1.0, Ste = 1 (II).
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Figure 2.12: Effect of Pd on moving layer thickness (λ) for b.c. of second kind,

Ki = 1.0, Ste = 1 (II).
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Figure 2.13: Effect of Ki on moving layer thickness (λ) for b.c. of second kind,

Pd = 1.0, Ste = 1.
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Figure 2.14: Effect of Ki on moving layer thickness (λ) for b.c. of second kind,Pd =

1.0, Ste = 1.

56



0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Dimensionless time (Fo)

M
o
v
in

g
 l
a
y
e
r 

th
ic

k
n
e
s
s
 (

 λ
)

Ki = 0.2 (Γ=2)

Ki = 0.6 (Γ=2)

Ki =1.0 (Γ=2)

Ki =2.0 (Γ=2)

Figure 2.15: Effect of Ki on moving layer thickness (λ) for b.c. of second kind,

Pd = 1.0, Ste = 1.
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Figure 2.16: Effect of Stefan number on moving layer thickness (λ) for b.c. of first

kind.
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Figure 2.17: Effect of Stefan number on moving layer thickness (λ) for b.c. of

second kind.
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Figure 2.18: Effect of Stefan number on moving layer thickness (λ) for b.c. of third

kind.
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Table 2.1: Temperature (θ) for third kind of b.c.

Γ 0 1 2

Fo 0.88 0.90 0.92

x θ θ θ

0 1 1 1

0.1 0.77751 0.78181 0.78613

0.2 0.55521 0.56137 0.56760

0.3 0.33328 0.33887 0.34448

0.4 0.11190 0.11449 0.11684

0.5 0.10873 0.11160 0.11528

0.6 0.10628 0.10937 0.11412

0.7 0.10454 0.10778 0.11335

0.8 0.10348 0.10683 0.11299

0.9 0.10309 0.10652 0.11305

1.0 0.09580 0.09580 0.09580

Table 2.2: Effect of Bi on moving layer thickness λ, Ste = 1.0.

Γ 0 0 0 1 1 1 2 2 2

Bi 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

Fo λ λ λ λ λ λ λ λ λ

0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.01 0.22019 0.22022 0.22026 0.21465 0.21468 0.21472 0.20916 0.20920 0.20923

0.02 0.44092 0.44099 0.44106 0.42985 0.42992 0.42999 0.41890 0.41896 0.41903

0.03 0.66210 0.66221 0.66232 0.64552 0.64562 0.64572 0.62911 0.62920 0.62929

0.04 0.88366 0.88380 0.88394 0.86158 0.86170 0.86183 0.83971 0.83983 0.83995

2.5 Conclusion

A continuum model for the inward solidification of melt in different geometries un-

der most generalized boundary condition has been presented. The finite element
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Legendre wavelets Galerkin (FELWG) method has been used to obtain the solution

of this moving boundary problem. It can be seen that the proposed method is effi-

cient and accurate to determine the solution of moving boundary problem. In view

of the excellent convergence of the Legendre wavelets series, only a few terms of the

series are needed to give satisfactory results. The finite element method minimizes

the error at each point. The exceptional accuracy prompts us to conclude that the

finite element Legendre wavelets Galerkin method may be excellent alternative of

other methods for solving boundary value problems containing two nonlinearities.

Our simulation show that

• during solidification the dimensionless temperature is highest in sphere and

lowest in slab while it is in between them in cylinder.

• the solidification process is fastest in slab and slowest in the sphere while it

is in between them in cylinder.

• the solidification process is fastest in boundary condition of first kind in com-

parison to boundary condition of second and third kind.

• the solidification process increases as predvoditelev number Pd decreases.

• the solidification process increases as Kirpichev number Ki or Biot number

Bi increases.

• the solidification process increases as Stefan number increases.
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