
1| Introduction

1.1 Moving Boundary Problems

Heat transfer problems can be modeled as phase change problems or moving bound-

ary problems. Moving boundary problems are defined as a set of partial differential

equations that are to be solved for a domain whose boundaries are not known priori

but it has to be determined as a part of solution. Even though the set of partial

differential equations are linear, the above problems are highly nonlinear due to

presence of moving interface condition. The position of the moving boundary is

an important part in the required solution from theoretical and practical point of

views. The moving boundary problems are naturally occur in physical and indus-

trial processes like melting and freezing, solidification of alloys, chemical reaction,

preservation of human blood, solar energy storage, casting and welding of metals

and alloys, fluid flow in porous media with diffusion, aerodynamic ablation, energy

storage, crystal growth and food processing and many others.

Moving boundary problems are often called Stefan problems or classical moving

boundary problems. Generally the term classical is used to distinguish the classical

formulation from weak formulation. The characteristic features of Stefan problem

can be described as follows;

• the heat transfer governed by parabolic equations.

• both the phases are separated by a sharp interface.

• at interface, the known temperature and energy balance are prescribed.

• heat flux is discontinuous across the interface and the latent heat is absorbed

and released at interface.
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Solidification of an alloy is distinctly different in many respects from the phase

change of pure substances. The basic physical phenomena for solidification of al-

loys was introduced by Flemings (1974); Kurz and Fisher (1989); Beckermann and

Viskanta (1993); Beckermann and Wang (1995) and many others. In pure sub-

stances, the phase changes isothermally and the smooth interface exist between the

phases, which is coincident with the isotherm corresponding to the phase change

temperature Tf . Fig. 1.1(a) shows the solidification of pure substances. In this

figure, the solid and liquid phases of pure substances are in equilibrium with each

other at unique temperature, while Fig. 1.1(b) shows that the solid and liquid

phases of an alloy may be in equilibrium with each other over a temperature range.
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Figure 1.1: Solidification systems for (a) pure substance and (b) a binary substance.

An equilibrium phase diagram of binary eutectic system (A-B) is shown in Fig.

(1.2). The phase diagram defines the temperature of regions and composition in

which two or more phases may exists in equilibrium with each other. The tempera-

ture above the liquidus line, a single liquid phase exists as a solution of constituents

A and B. The regions between liquidus and solidus lines, a solid-liquid mixture

exists over a range of temperature up to a eutectic point. As the temperature of

the solid-liquid interface is lowered, the composition of the solid and liquid at the
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interface continuously change. At the eutectic point (lowest freezing/melting point

than that of other alloy or mixture of the same ingredients), there is a three-phase

of mixture of liquid and two solid phases exist. The two solid phases (α and β) of

different composition form simultaneously and isothermally, such that the average

composition is equal to the eutectic composition. Pure substances are represented

along the left and right edges of the equilibrium phase diagram (i.e. 0%B and

100%B) where the solidus and liquidus temperatures coincide. The temperature

also coincide at eutectic composition fB
e . However, for all other alloy compositions,

freezing will occur over a temperature range defined by corresponding liquidus and

solidus temperatures. Therefore, the solid-liquid region also known as mushy region

exists and separates fully solidified and melted region during solidification.
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Figure 1.2: Equilibrium phase diagram of binary eutectic system (A-B).

The structure and extent of the mushy region, depends on several factors, such

as the specific initial and boundary conditions. During solidification process, the

latent heat is released at the interfaces which separates both the phases within the

mushy region. The distribution of this energy depends on the specific structure of

the multi-phase region. In solidification process, latent heat is transformed in the

form of conduction in solid phase while in the liquid phase, it is transformed by the
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combined effects of conduction and advection. The motion of fluid may be induced

by external means and may be occur by thermal or solutal buoyancy forces, and it

may be caused by expansion or contraction of the system due to the phase trans-

formation. In mushy region, the flow can be estimated in two ways. The mushy

region can be treated as a porous media where the solid is stationary and the liquid

flows through the porous structure (Voller (1987b)). This behavior is convincing

when solidification progresses in columnar mode. On the other hand, the mushy

region can be considered as a mixture of solid and liquid. In this case the move-

ment of both the solid and liquid is acceptable and this depiction is closer to the

equiaxed mode of solidification. These two physical situations represent two edges.

In many cases, however, solidification process takes place through columnar as well

as equiaxed, i.e. in the beginning of solidification the columnar structure form and

after that equiaxed structure form. In such cases, a morphological evolution from

columnar to equiaxed takes place during the track of solidification. Therefore, an

accurate depiction of mushy region can be through a combination of Darcy’s law

and variable viscosity formulation. Such depiction would also require a condition

for columnar to equiaxed transition (CET) under transitory convection which is not

willingly accessible. Moreover, at high solid fractions the equiaxed grains combined

and solid phase can be treated as stationary with respect to mould. If the casting

is moving with respect to inertial frame of reference, the solidified region, colum-

nar structure of the mushy region, and combined equiaxed zone will move with a

prescribed velocity (Us).

The driving force for the flow in mushy region and liquid region can be shrinkage

and forced convection, thermal and solutal buoyancy. From the above discussion, it

is noticed that during equiaxed solidification, solid grains in the mushy region can

have independent velocity especially at low solid fraction and this requires the condi-

tion of an equation of motion for its resolution (Beckermann and Wang (1995)). An

important results of the flow of solid and liquid in the mushy region is the large-scale

transport of the solute components and as a result in addition to solute variations

over the small scale representative volume element (REV) (microsegregation) the

solute varies over the domain as a whole (macrosegregation).
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1.2 Basic Definition of Thermodynamic Variables

In melting/solidification process, the phase change involves heat transfer, mass

transfer, supercooling, absorption and release of latent heat, surface effects and

change in thermo-physical properties (specific heat, thermal conductivity and den-

sities) etc. This phase change process occur at macroscopic level. In case of tran-

sition from one phase to the other, the absorption or release of latent heat occurs

at some temperature at which the stability of one phase breaks down in favour of

other according to the available energy. The phase transition region where the solid

and liquid coexist is called the interface and its thickness varies from few angstroms

to few millimetres. The microstructure of interface thickness is much complex and

depends on several factors such as rate of cooling, surface tension, temperature

gradient in the liquid and material itself.

In material there are three possibilities of heat transfer i.e. conduction, convec-

tion and radiation. In conduction, the kinetic energy transfer between the atoms

by any number of ways, the movement of electrons from one atom to another atom

or collision of neighbouring atoms. In this case, there is no flow or mass transfer

of the material. In convection process, heat can also be transferred by the flow of

particles in liquid form. In radiation, the heat transfer is in the form of electro-

magnetic wave. In conduction and convection medium is require but in radiation

there is no requirement of medium. In phase change process heat and mass trans-

fer by conduction, convection and radiation with gravitational, chemical, elastic

and electromagnetic effects. If we take classical Stefan problem the heat transfer

is isotropically by conduction only and assumes that interface structure is planner

and sharp.

1.2.1 First Law of Thermodynamic

The internal energy of the system is the sum of all kinetic energy of motion and

energy of interaction between the particles in the system. The internal energy can
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be transformed to do work and produce heat

dU = dQ− dW, (1.1)

where, dU is the change of internal energy of the system during the change of state

p to another equilibrium state q. dQ is the heat flow into the system during the

change of state. dW is the work done by the system changes its equilibrium state

from p to q.

1.2.2 Fourier’s Law

Fourier’s law of heat conduction gives a linear relationship between the heat flow

and temperature gradient and is given as

~q = −K∇T, (1.2)

where, ~q is heat flux defined as the amount of heat crossing a unit area per unit

time. The heat flux is a vector pointing in the direction of heat flow. In general it

is a tensor with positive components varying with temperature. We shall assume

isotropic conduction i.e. K is a scalar and K > 0. In one space dimension Fourier’s

law is expressed by

~q = −K∂T

∂r
. (1.3)

1.2.3 Single Phase Lagging Heat Conduction

Most of the available work in phase change literature assume that the heat transfer

in solid and liquid region are described by classical Fourier law. In Fourier law, heat

is propagate with infinite speed when ultra fast pulse heating on metal film. In this

case, heat conduction appears with high heat flux and high unsteadiness. Cattaneo

(1958) and Vernotte (1958, 1961) proposed a constitutive relation defined as

q(r, t+ τq) = −K
∂T (r, t)

∂r
. (1.4)

It is commonly known as CV constitutive relation or single-phase-lagging (SPL)

heat conduction model. Here τq > 0 is called the relaxation time. According to
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which the temperature gradient established at a point r at a time t gives rise to

a heat flux at r at later time t + τq. The CV model gives rise to a wave type of

heat conduction equation called the hyperbolic heat conduction equation. The first

order Taylor’s expansion of q(r, t+ τq) in Eq. (1.4) is defined as

q(r, t) + τq
∂q(r, t)

∂t
= −K∇T (r, t). (1.5)

The one-dimensional energy conservation equation for such problem is given as

ρc
∂T

∂t
= −∂q

∂r
. (1.6)

Elimination of q between Eq. (1.5) and Eq. (1.6) leads to a hyperbolic heat con-

duction equation

ρcτq
∂2T

∂t2
+ ρc

∂T

∂t
= −K∂2T

∂r2
. (1.7)

1.2.4 Thermal Conductivity

Thermal conductivity is the property of materials to conduct heat. It is evaluated

primarily in terms of Fourier’s law of heat conduction. Thermal conductivity can

be defined as the quantity of heat transmitted through a unit thickness of material

in a direction normal to a surface of unit area due to a unit temperature gradient

under steady state condition. It is measured in watts per meter kelvin (W/mK).

1.2.5 Thermal Diffusivity

Thermal diffusivity of material indicates the rate of cooling and heating of a material

under transient condition. When thermal conductivity considered constant, then

the thermal diffusivity is defined as

a =
K

ρc
. (1.8)

The general heat equation can be written in form

Tt = a∇2T + F. (1.9)

Which is now a linear parabolic equation. In one-dimension when no internal sources

are present, the Fourier law, general heat conduction equation, and heat equation
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takes the forms

q = −K∂T

∂r
, (1.10)

ρc
∂T

∂t
= K

∂2T

∂r2
, (1.11)

∂T

∂t
= a

∂2T

∂r2
. (1.12)

1.2.6 Latent Heat

When a solid metal piece is heated, then temperature rises and reaches an equi-

librium temperature Tm. When more heat is supplied, the heat is first absorbed

without changing the temperature of metal piece. The heat absorbed is called latent

heat of melting. It is expressed as the ratio of the heat absorbed per unit mass of

the substances under going the phase change.

This heat is absorbed because in solid metals, the free atoms are packed closely.

The atomic arrangement is disordered in liquids as compare to that in solids. So

the latent heat of fusion is the energy required to pull the atoms apart to the more

openly packed structure of the liquid.

In general, when solid convert into liquid or liquid convert into vapour or solid

convert into vapour, the system absorbs heat. In phase change transformations,

the absorb heat is called the latent heat of fusion or latent heat of vaporization or

latent heat of sublimation respectively. If a liquid solidifies latent heat is released.

Latent heat released per unit mass is taken as positive and denoted by L.

1.2.7 Specific Heat Capacity or Specific Heat

If no phase change take place in a process, then the heat capacity c at any temper-

ature is defined by the equation

dQ = cdT. (1.13)

dQ is the quantity of heat added to the system which changes its temperature by

dT . The process may be reversible or irreversible. If there is no change in volume

the system does not change in the process, then c is denoted by cV and is called
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heat capacity at constant volume dV = 0. From the first law of thermodynamic

dQ = dU + PdV =

(

∂U

∂T

)

V

dT +

[(

∂U

∂V

)

T

+ P

]

dV =

(

∂U

∂T

)

V

dT, (1.14)

where the work is done by the pressure P in changing the volume. From Eq. (1.14)

we get,

cV =

(

∂U

∂T

)

V

. (1.15)

It may be assumed that Q is not a function of temperature. Therefore, c is not

derivative of Q with respect to T but it is the ratio of dQ and dT or the ratio of

very small amount of heat supplied and the change in temperature. The specific

heat may be defined as the amount of heat per unit mass required to raise the

temperature by 1 ◦C and denoted by c.

1.2.8 Interface Condition

Consider a region Ω occupied by the phase change material. If melting starts, the

region Ω will be subdivided into two region i.e. liquid and solid, separated by a

sharp interface
∑

of zero thickness. According to the conservation of energy in

each region demands that a heat conduction Eq. (1.12) must be satisfied there.

The specific heat and thermal conductivity are assumed in the solid region c1 and

K1 and in the liquid region, c2 and K2 respectively. The interface comprises part

of the boundary of both the liquid and solid regions. Hence, we need a boundary

condition from each side in order to complete the initial boundary value problem

in each phase. At T = Tm, the temperature must be continuous, and interface is

an isotherm. Therefore, we have taken

lim
r→interface

rǫliquid

T (r, t) = Tm and lim
r→interface

rǫsolid

T (r, t) = Tm. (1.16)

If the interface location were known we would have enough conditions to deter-

mine the temperature inside the liquid and the solid region. Since the location is

unknown therefore, we need an additional condition to determine it and obtained

from energy conservation across the interface. Now, for one-dimensional case, the

Stefan condition derives directly from global energy balance. Consider a slab of
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material 0 < r < l, of constant cross sectional area A. Heat is input and output at

the faces r = 0 and r = l by some means, the liquid region 0 < r < s(t) and the

solid region s(t) < r < l are separated by a sharp interface at r = s(t), at each time

t > 0. We assumed that the density in each phase are constant. The total enthalpy

in the slab at time t > 0, referred to the melt temperature Tm is

E(t) = A

[

∫ s(t)

0

{ρc2(T (r, t)− Tm) + ρL}dr +
∫ l

s(t)

{ρc1(T (r, t)− Tm)}dr
]

, (1.17)

Global heat balance demands,

dE

dt
= net heat flow into the slab = Aq(0, t)− q(l, t), (1.18)

Where q(0, t) and −q(l, t) are the heat fluxes into the slab through the faces r = 0

and r = l respectively. Leibnitz’s rule enables us to compute

1

A

dE

dt
= ρc2{(T (s(t), t)− Tm)}s′(t) +

∫ s(t)

0

ρc2(Tt(r, t))dr + ρLs′(t)

−ρc1{(T (s(t), t)− Tm)}s′(t) +
∫ l

s(t)

ρc1(Tt(r, t))dr. (1.19)

Using T (s(t), t) = Tm and substituting the heat Eq. (1.11) for each phases, we

obtain

1

A

dE

dt
= K2Tr(s(t)

−, t)−K2Tr(0, t) + ρLs′(t) +K1Tr(l, t)−K1Tr(s(t)
+, t). (1.20)

Where Tr(s(t)∓, t) denotes the values of Tr(r, t) as r → s(t)∓, i.e. from the left or

right and −K2Tr(0, t) and +K1Tr(l, t) are precisely the fluxes q(0, t) and −q(l, t).
Therefore, Eq. (1.18) yields the Stefan condition (Interface condition)

ρLs′(t) = K1Tr(s(t)
+, t)−K2Tr(s(t)

−, t). (1.21)

Expressing energy conservation across the interface r = s(t) in the one-dimensional

case as follow

(q2 − q1)s(t) = K1Tr(s(t)
+, t)−K2Tr(s(t)

−, t), (1.22)

Where, q1, q2 are heat flux in solid and liquid region respectively. Stefan condition

says that the rate of change in latent heat ρLs′(t) equals the amount by which the

heat flux jumps across the interface.
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1.3 Classification of Moving Boundary Problems

In melting and solidification process, the moving boundary problems can be clas-

sified in three types (one phase; two phase and multiphase). The classification of

melting and freezing depends on the properties of the phase change material and the

initial condition. The melting/solidification of single components occurs at a single

temperature. For example pure water melts at a uniform temperature of 0◦C while

pure n- octadecane (C18H38) melts at 28◦C. For the solidification (meting) process,

if the initial temperature Ti equal to the freezing temperature Tf , the temperature

in the liquid (solid) phase remains uniformly equal to the freezing point through-

out the process. In this case, the temperature in solid (liquid) phase needs to be

determined. Thus, the temperature only in one phase is unknown and the problem

is called one phase problem. In solidification process the surface temperature T0 is

below the freezing temperature Tf and in melting process the surface temperature

T0 is greater than the melting temperature Tm.

If the initial temperature Ti is above (below) the freezing temperature Tf (melt-

ing temperature Tm), the temperature distribution in both solid and liquid region

must be determined and the problem is called two phase solidification (melting)

problem.

For multi-component phase change material, the phase change occurs over a

range of temperature (Tf1 , Tf2) instead of a single temperature. The phase change

material is liquid if its temperature is above Tf2 and solid when its temperature

is below Tf1 . Between the solid and liquid phases there is a mushy zone where

the temperature falls within the phase change temperature range (Tf1 , Tf2). The

temperature distribution in solid region, mushy region and liquid region must be de-

termined therefore, the problem is referred to as multi phase solidification problem.

The mathematical model for one phase; two-phase and multi-phase are described

as follows:
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1.3.1 One Phase Moving Boundary Problem

Consider a semi infinite medium consisting of melt is initially kept at freezing tem-

perature Tf . At time t > 0, the surface r = 0 is cooled at a temperature T0 below

than the freezing temperature. Therefore, the freezing process starts at the surface

r = 0 and liquid-solid interface moves in the positive r- direction. The temperature

in the solid phase is unknown and the liquid phase being at a constant tempera-

ture. Hence, the problem is one phase problem. The mathematical formulation of

classical Stefan problem can be described by following differential equation:

ρc
∂T

∂t
= K

∂2T

∂r2
, 0 < r < s(t), t > 0, (1.23)

and associated initial and boundary conditions are

T (r, 0) = Tf , (1.24)

T (r, t) = T0, r = 0, (1.25)

T (r, t) = 0, r = s(t), (1.26)

where ρ is density, c is specific heat, K is thermal conductivity and are assumed to

be constant.

The energy balance equation at the interface is

−K∂T

∂r
= ρL

ds

dt
, r = s(t), (1.27)

s(0) = 0, (1.28)

where L is latent heat.

1.3.2 Two Phase Moving Boundary Problem

Consider a semi infinite medium consisting of a melt initially kept at temperature Ti

which is greater than the freezing temperature Tf . At time t > 0, the surface r = 0

is cooled at a temperature T0 which is below the freezing temperature. The freezing

starts and solid-liquid interface moves in positive r-direction. The region is divided

into two regions; 0 < r < s(t) is solid region and s(t) < r < ∞ is liquid region
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which are shown in Fig. (1.3). The heat occurs in both solid and liquid region. Let

T1(r, t) and T2(r, t) are the temperature of solid and liquid region respectively.

liquidSolid

Figure 1.3: Two phase diagram

The dynamics of freezing can be described by the following equations:

In solid region

ρ1c1
∂T1
∂t

= K1
∂2T1
∂r2

, 0 < r < s(t), t > 0. (1.29)

In liquid region

ρ2c2
∂T2
∂t

= K2
∂2T2
∂r2

, s(t) < r <∞. (1.30)

The initial and boundary conditions are

T1(r, 0) = Ti, (1.31)

T1(r, t) = T0, r = 0, (1.32)

on moving interface the temperature continuity and energy balance equations are

defined as

T1(r, t) = T2(r, t) = Tf , (1.33)

K1
∂T1
∂r

−K2
∂T2
∂r

= ρL
ds(t)

dt
, r = s(t), (1.34)
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as r →∞, the temperature of material is equal to the initial temperature Ti.

T2(r, t) = Ti, r →∞, (1.35)

where ρ1, ρ2 are densities, c1, c2 are heat capacities and K1 and K2 are thermal

conductivities of solid and liquid respectively. There is no volume change due to

densities on freezing hence, assumed constant i.e. ρ1 = ρ2 = ρ.

1.3.3 Multi Phase Moving Boundary Problem

When a binary alloy is cooled and solidified, an interface formed and separating

the solid and liquid region. The crucial point for solidification is that the heat

is continuously remove from the interface, first to cool the liquid to its freezing

temperature Tf , then to enable the solidification to proceed. The solidification

interface deform with the local velocity of propagation which depends on the local

temperature gradients on both sides of the interface. In the case of solidification of

binary alloy, the composition of forming solid is different from the composition of

the liquid ahead of the interface. Hence, at the interface boundary, one component

must be rejected from the system and then removed away from the interface. This

removal is enhanced near protrusions of solid into the liquid and solid is growing

faster. Therefore, the solidification interface is morphologically unstable and highly

complicated.

Consider a line heat sink of strength Q, is kept at r = 0 in a large body of liquid

which is initially at uniform temperature Ti higher than the liquidus temperature

Tl. The heat sink is activated at time t = 0 and absorbs heat continuously for time

t > 0. The solidification process start and propagate in positive r-direction. Since,

we have considered a binary system in which the two phase region consisting of

solid and liquid mixture exist between purely solid and purely liquid region shown

in Fig. (1.4). All the thermo-physical properties are constant and different from

different phases. When solid is continuously formed with in two phase region, the

heat released during solidification is treated as a volumetric heat generation term

and expressed as

A = ρL
dfs
dt
, (1.36)
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where fs is solid fraction present in mushy region. Thus, the rate of change of solid

fraction with respect to the time with in mushy region provides a heat generation

effect.

Solid Solid-liquid
liquid

Figure 1.4: Multi phase diagram

The solid fraction depends on various physical parameters such temperature

dependent and distance dependent. The solid fraction temperature relationship was

given by Tien and Geiger (1968). Özisik and Uzzell (1979) considered two models

for determining the solid fraction in mushy region.

Model I: In this model, a linear relationship is assumed between the solid fraction

and temperature in mushy region and defined as

fs = fsu

(

1− T2 − Tl
T2 − Tf

)

. (1.37)

Model II: In this model, the solid fraction present in mushy region has a linear

relationship with distance and defined as

fs = fsu(1−R), R =

(

r − s1(t)

s2(t)− s1(t)

)

. (1.38)

The differential equations of heat conduction for the solid, mushy and liquid regions

are given as
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In solid region,

ρ1c1
∂T1
∂t

= K1
1

r

∂

∂r

(

r
∂T1
∂r

)

, 0 < r < s1(t). (1.39)

In mushy region,

ρ2c2
∂T2
∂t

= K2
1

r

∂

∂r

(

r
∂T2
∂r

)

+ A, s1(t) < r < s2(t). (1.40)

In liquid region,

ρ3c3
∂T3
∂t

= K3
1

r

∂

∂r

(

r
∂T3
∂r

)

, s2(t) < r <∞. (1.41)

The heat sink at origin should satisfy the energy balance equation

lim
r→∞

(

2πrK1
∂T1
∂r

)

= Q. (1.42)

The boundary conditions at the solidus front are

T1(r, t) = T2(r, t) = Tf , r = s1(t). (1.43)

The energy equation at solid-mushy boundary

K1
∂T1
∂r

−K2
∂T2
∂r

= ρL(1− fsu)
ds1(t)

dt
, r = s1(t). (1.44)

T2(r, t) = T3(r, t) = Tl, r = s2(t). (1.45)

The energy equation at mushy-liquid boundary

K2
∂T2
∂r

= K3
∂T3
∂r

, r = s2(t). (1.46)

As r →∞, the liquidus temperature is equal to initial temperature i.e.

T3(r, t) = Ti, as r →∞. (1.47)

1.3.4 Two Dimensional Moving Boundary Problem

The two-dimensional moving boundary problem is described by following differential

equation:

ρc
∂T

∂t
= K

(

∂2T

∂x2
+
∂2T

∂y2

)

, 0 < r < s(t), t > 0. (1.48)

The energy balance equation defined for one dimensional case is now generalized

for multidimensional case. For the two-dimensional problem involving the (x, z, t)
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variables, if the position of the solid-liquid interface is specified by the relation

F (x, z, t) = z − s(x, t) = 0, then the interface condition is described by
(

1 +

(

∂s

∂x

)2
)

(

K1
∂T1
∂z

−K2
∂T2
∂z

)

= ρL
∂s

∂t
, z = s(x, t). (1.49)

The initial and boundary conditions are defined in Eqs.(1.24-1.26).

1.3.5 Three Dimensional Moving Boundary Problem

The three dimensional moving boundary problem is defined as

ρc
∂T

∂t
= K

(

∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)

, 0 < r < s(t), t > 0. (1.50)

In case of three dimensional region, the solid-liquid phases are separated by a sharp

interface defined by the equation

F (x, y, z, t) = 0. (1.51)

The temperature continuity at the interface becomes

T1(x, y, z, t) = T2(x, y, z, t) = Tf , at F (x, y, z, t) = 0. (1.52)

The interface energy-balance equation is written as

K1
∂T1
∂n

−K2
∂T2
∂n

= ρLvn, (1.53)

where ∂
∂n

denotes the derivative at the interface along the normal direction vector n

at any location p on the interface and pointing towards the liquid region and vn is

the velocity of this interface at the location p in the direction of n. Here we assumed

that the densities of the solid and liquid phases are the same. The interface energy-

balance Eq. (1.53) is not in a suitable form for analytical or numerical solutions of

phase changes problems. Hence an alternative form of this equation is given by
[

1 +

(

∂s

∂x

)2

+

(

∂s

∂y

)2
]

[

K1
∂T1
∂n

−K2
∂T2
∂n

]

= ρL
∂s

∂t
at z = s(x, y, t). (1.54)

This form is more suitable form for analytical or numerical solution of problems.
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1.3.6 Melting Problem

The problems defined in Eqs. (1.23 - 1.35) is a solidification problem as the phase

change from liquid to solid. The melting problem can be formulated for minor

changes in Eq. (1.23 - 1.35). In solidification process latent heat is released but

during melting latent heat is absorbed. The mathematical formulation for both

solidification and melting are analogous. Consider a solid in a semi infinite region

having a phase change temperature Tm. Initially, the solid is at uniform temper-

ature Ti that is lower than the phase change temperature Tm. At time t = 0, the

temperature at the surface x = 0 is suddenly raised to a temperature T0, which is

higher than the melting temperature Tm and maintained at that temperature for

times t > 0. The solid-liquid interface moves in the positive x- direction. The region

is divided into two regions, the region 0 < r < s(t) is liquid region and s(t) < r <∞
is solid. Assuming that the thermo-physical properties for each phases are constant.

The governing differential equations for two phase problem are given by

In liquid region

ρ1c1
∂T1
∂t

= K1
∂2T1
∂r2

, 0 < r < s(t), t > 0. (1.55)

In solid region

ρ2c2
∂T2
∂t

= K2
∂2T2
∂r2

, s(t) < r <∞. (1.56)

The initial and boundary conditions are

T1(r, 0) = Ti, (1.57)

T1(r, t) = T0, r = 0. (1.58)

On moving interface the temperature continuity and energy balance equations are

defined as

T1(r, t) = T2(r, t) = Tm, (1.59)

K1
∂T1
∂r

−K2
∂T2
∂r

= ρL
ds(t)

dt
, r = s(t), (1.60)

as r →∞ the temperature of material is equal to the initial temperature Ti i.e.

T2(r, t) = Ti, r →∞. (1.61)
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The basic concepts on modelling and analysis for classical stefan problems has been

described by Carslaw and Jaegar (1959); Alexiades and Solomon (1993); Gupta

(2003).

1.4 Methods of Solution

The exact solution of moving boundary problems was given by first Neumann (1912)

and by Stefan (1889). They considered a semi infinite material with simple initial

and boundary conditions. The exact solution of moving boundary problem is es-

tablished in terms of the similarity variables r/t1/2 and position of the interface

boundary is found to be proportional to t1/2. This means that the problem is

solved by a similarity transformation, i.e. the partial differential equations of the

problem are reduced into the ordinary differential equations. The reduction of par-

tial differential equation into ordinary differential equation is possible only when

the domain is semi infinite and initial and boundary conditions are defined in some

special forms.

1.4.1 Approximate Analytical Solution

1.4.1.1 Heat Balance Integral Method

Since the exact solutions are exist only for semi infinite problems with constant

parameters at each phase with simple initial and boundary condition. The exact

solutions are not applicable for constant heat flux. So approximate analytical so-

lutions have been developed. One of the approximate solution is introduced by

Goodman (1958) known as heat balance integral method and based on Karmann

Pohlhuasen’s method of momentum integral in the boundary layer theory. In this

method Goodmann developed the integral equation which describes the overall heat

balance of system by integrating the one-dimensional heat conduction equation with

respect to spatial variable r and using the boundary conditions. The heat balance

integral method is defined as

• assume that the temperature distribution depends on the spatial variable in
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the particular form which is consistent with the boundary conditions, for

example a polynomial relationship;

• integrate the heat conduction equation with respect to the spatial variable over

the appropriate interval and substitute the assumed form of the temperature

distribution to attain the heat balance integral;

• solve the integral equation to obtain the time dependence of the temperature

distribution and of moving boundaries.

1.4.1.2 Method of Weighted Residual (MWR)

Method of weighted residual is an approximate method to find the solution of

differential equations. Let us consider a linear differential operator L acting on a

function u to produce a function p i.e.

L(u(r)) = p(r). (1.62)

We wish to approximate u by a function UN , which is a linear combination of basis

functions chosen from a linearly independent set. That is,

u ∼= UN =
n
∑

i=1

ciφi, (1.63)

where ci are unknown constants and φi are called the trial functions. The trial

functions should be linearly independent. Now, when substituted the approximate

function UN into the differential operator L, the result of the operations is not, in

general, p(r). Hence a error or residual will exist:

R(x) = L(UN(r))− p(r) 6= 0. (1.64)

The parameters ci are determined by setting the weighted average of the residual

over the computational domain to zero i.e.,
∫

Ω

R(r)Widr = 0, i = 1, 2, 3, · · · · · · , n. (1.65)

The functions Wi are called weight functions. The number of weight functions Wi is

an exactly equal to the number of unknown constants ci present in an approximate
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function UN . The result is a set of n algebraic equations for the unknown constants

ci. There are several sub-methods for choices of weight function Wi.

• Galerkin Method

In Galerkin method, the weight function is chosen from the same family of

functions as the trial functions in Eq. (1.65) i.e. Wi = φi, i = 1, 2, · · · , n.

• Petrov-Galerkin Method

In Petrov-Galerkin method, the weight function is represented by Wi = φ1
i 6=

φi, i = 1, 2, · · · , n. The more details of Petrov-Galerkin method are given in

book of Reddy (2002).

• Collocation Method

In this method, the weight functions are taken from the family of Dirac δ

functions in the domain i.e. Wi = δ(r − ri), i = 1, 2, · · · , n. The dirac δ

function is defined by

δ(r − ri) =











1, r = ri

0, otherwise.
(1.66)

Hence, the integration of the weighted residual statement results in the forcing

of the residual to zero at specific points in the domain. That is, integration of

Eq. (1.65) with weight function Wi = δ(r − ri), i = 1, 2, · · · , n is R(ri) = 0.

1.4.2 Legendre Polynomial

The Legendre polynomials, Pn(r), n = 0, 1, 2, · · · are eigen solutions to the Sturm-

Liouville problem

d

dr

[

(1− r2)
dPn(r)

dr

]

+ n(n+ 1)Pn(r) = 0, (1.67)

where p(r) = 1− r2, q(r) = 0 and w(r) = 1 with eigen values λn = n(n+ 1). Pn(r)

is even if n is even and odd if n is odd. If Pn(r) is normalized so that Pn(1) = 1,

then for any n

Pn(r) =
1

2n

[n/2]
∑

k=0

(−1)k
(

n

k

)(

2n− 2k

n

)

rn−2k, (1.68)
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where [n/2] denotes the integral part of n/2.

The Legendre polynomials can be expressed by Rodrigues formula

Pn(r) =
(−1)n
2nn!

dn

drn
[(1− r2)n]. (1.69)

The three term recurrence relation for Legendre polynomials

(n+ 1)Pn+1(r) = (2n+ 1)rPn − nPn−1(r), (1.70)

yields a direct way to evaluate the Legendre polynomials of arbitrary order.

The generating function of a Legendre polynomial is

1√
1− 2rt+ t2

=
∞
∑

n=0

Pn(r)t
n. (1.71)

Legendre polynomials Pn(r), n = 0, 1, 2, · · · form a complete orthogonal set on the

interval −1 ≤ r ≤ 1. It can be shown that

∫ 1

−1
Pm(r)Pn(r)dr =











0, m 6= n

2
2n+1

, m = n.

(1.72)

1.4.3 Spectral Galerkin Method

The spectral method employs global polynomials as the trial functions for the dis-

cretization of partial differential equations. It provides very accurate approxima-

tions with a relatively small number of unknowns. Consequently it has gained in-

creasing popularity in the last two decades, especially in the field of computational

fluid dynamics (Canuto (1987), Gottlieb (1977)). This method is distinguished not

only by the fundamental type of the method (Galerkin, Collocation, Galerkin with

numerical integration or tau) but also by the particular choice of trial functions.

The most frequently used trial functions are trigonometric polynomials, Chebyshev

polynomials and Legendre polynomials. In this section we shall discussed the basic

principles of spectral Galerkin method. Consider a differential equation

∂u

∂t
= L(u), (1.73)
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where u(r, t) is the solution and L is a differential operator (linear or nonlinear)

that contains all the spatial derivatives of u. An approximate solution is given as

UN =
n
∑

i=1

ci(t)φi(r). (1.74)

The φi are the trial functions, whereas the ci are the unknown coefficients. In

general, UN will not satisfy Eq. (1.73), i.e. the residual

∂UN

∂t
− L(UN), (1.75)

will not vanish. For minimizing the residual, we take residual orthogonal to trial

functions. i.e.

∫

Ω

[

∂UN

∂t
− L(UN)

]

φi(r)dr = 0, i = 1, 2, 3 · · · , n. (1.76)

Eq. (1.76) represents the system of ordinary differential equations of the form

dC̄

dt
= f̄(t, C̄), (1.77)

where, f̄ and C̄ are column matrix and defined as f̄ = [f1, f2, f3......, fn]
T ,

C̄ = [c1, c2, c3, ......, cn]
T respectively. The solution of Eq. (1.77) provides the un-

known C. Substituting C in Eq. (1.74), we get required solution.

1.4.4 Spectral Petrov-Galerkin Method

Consider a differential equation defined in Eq. (1.73). Let UN is an approximate

solution of Eq. (1.73) defined as

UN =
n
∑

i=1

ci(t)φi(r). (1.78)

For minimizing the residual, we take residual is orthogonal to test function which

is different from the trial function (φ1
i 6= φi), i.e.

∫

Ω

[

∂UN

∂t
− L(UN)

]

φ1
i (r)dr = 0, i = 1, 2, 3 · · · , n. (1.79)

Eq. (1.79) gives the system of differential equation in unknown C̄.
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1.4.5 Numerical Solutions

1.4.5.1 Fixed Grid Method

In this method, the heat flow equation is to be solved by using finite difference

replacements for derivatives in order to compute values of temperature Tij, at dis-

crete points (iδr, jδt) on a fixed grid in the (r, t) plane. At any time jδt, the moving

boundary will be located between two neighbouring grid points, say iδr and (i+1)δr.

As seen, the numerical solution of the method is carried out on a space grid that

remains fixed throughout the calculation.

1.4.5.2 Variable Grid Method

The fixed grid method sometimes breakdown as boundary moves a distance larger

than space increment in a time step. The problem associated with the fixed grid

method can be avoided by using the variable grid method. In the variable grid

method, the number of spatial intervals are kept constants and the spatial intervals

are adjusted in such manner so that the moving boundary lies on a particular grid

points. Thus, in this method the spatial intervals are a function of time. The

substantial temperature derivative of each grid point is

(

dT

dt

)

i

=

(

∂T

∂r

)

t

(

dr

dt

)

i

+

(

∂T

∂t

)

r

, (1.80)

where the moving rate of each grid point is related to the moving boundary by

(

dr

dt

)

i

=
r

s(t)

ds

dt
. (1.81)

Substitute Eq. (1.81) and Eq. (1.23) in Eq. (1.80). The one-dimensional heat

equation becomes
(

dT

dt

)

i

=
r

s(t)

ds

dt

∂T

∂r
+
∂2T

∂r2
, (1.82)

and s(t) is updated at each time step by using, for example, a suitable finite-

difference form of the boundary condition ds/dt = −∂T/∂r on r = s(t).
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1.4.5.3 Enthalpy Method

The essential feature of the basic enthalpy method is that the evaluation of latent

heat is accounted for by the enthalpy as well as the relationship between enthalpy

and temperature. The method can be illustrated by considering a one-dimensional

heat conduction controlled phase problem. An appropriate equation for such a case

can be expressed by

ρ
∂h

∂t
=

∂

∂r

(

K
∂T

∂r

)

. (1.83)

The relationship between the enthalpy and temperature can be defined in terms of

the latent heat release characteristic of the phase change material. This relationship

assumed to be a step function for isothermal phase change problem and a linear

function for non-isotherm phase change cases defined in Fig. (1.5). The enthalpy

as a function of temperature for both cases is given by

for isotherm phase change

h =











csT, T ≤ Tm solid phase

clT +Hf , T ≥ Tm liquid phase
(1.84)

for non-isotherm phase change

h =



























csT, T ≤ Ts solid phase

cinT +
Hf (T−Ts)

(Tl−Ts)
, Ts ≤ T ≤ Tl solid/liquid phase

clT +Hf + cin(Tl − Ts), T ≥ Tl liquid phase

(1.85)
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h h

TT

Ts TlTm

a b

Figure 1.5: Enthalpy as a function of temperature for (a) isothermal phase change

(b) non-isothermal phase change.

1.5 Wavelets

In this section, we described some preliminary concepts of wavelets, Legendre

wavelets, basis function and their properties, operational matrix of integration and

differentiation.

Wavelets constitute a family of functions constructed from dilation and trans-

lation of a single function called the mother wavelets. When the dilation parameters

a and the translation parameters b vary continuously, we have the following family

of wavelets as

ψa,b(t) = |a|−1/2ψ
(

t− b

a

)

, a, b ∈ R, a 6= 0. (1.86)

1.5.1 Legendre Wavelets

The Legendre wavelets ψnm(t) = (k, n̂,m, t) have four arguments, where k =

1, 2, 3......, n̂ = 2n − 1, n = 1, 2, .., 2k−1, m is the order of Legendre polynomial

and t is normalized time and all are defined by Razzaghi and Yousefi (2000) on the
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interval [0, 1] as follows:

ψnm(t) =











√

(m+ 1/2)2k/2Pm(2
kt− n̂) , n̂−1

2k
≤ t ≤ n̂+1

2k

0 , otherwise,
(1.87)

where m = 1, 2, ..,M − 1, Pm(t) is denoted by Legendre polynomial of order m

which are orthogonal with respect to the weight function w(t) = 1, t ∈ [−1, 1] and

satisfying the following formula

P0(t) = 1, P1(t) = t, Pm+1(t) =
(

2m+1
m+1

)

tPm(t)− m
m+1

Pm−1(t), m = 1, 2, 3..... .

1.5.2 Function Approximation

A function f(t) defined in domain [0,1], may be expressed by Legendre wavelets

series as

f(t) =
∞
∑

n=1

∞
∑

m=0

cnmψnm(t), (1.88)

where cnm is Fourier coefficient. The infinite series in Eq. (1.88) is truncated and

can be written as

f(t) ≃
2k−1

∑

n=1

M−1
∑

m=0

cnmψnm(t) = CTψ(t), (1.89)

where C and ψ are matrices of order 2k−1 M × 1 and given by

C = [c10, c11, ..., c1M−1, c20, c21, ...., c2M−1...., c2k−10, ...., c2k−1M−1]
T , (1.90)

ψ(t) = [ψ10(t), ψ11(t), ...ψ1M−1(t), ψ20(t), ψ21(t)...ψ2M−1(t), ...(t), ...,

ψ2k−10, ψ2k−11...., ψ2k−1M−1(t)]
T . (1.91)

1.5.3 Operational Matrix of Integration

The operational matrix of integration is defined by Razzaghi and Yousefi (2001) as

follow
∫ t

0

ψ(s)ds = Pψ(t), t ∈ [0, 1], (1.92)
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where P is operational matrix of integration of order 2k−1M × 2k−1M .

P =
1

2k





























L O O · · · O

0 L O · · · O

0 0 L · · · O
...

...
...

. . .
...

0 0 0 · · · O

0 0 0 · · · O





























(1.93)

where O and L are M ×M matrices given by

O =

















2 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

















and

L =





































1 1√
3

0 0 · · · 0 0 0

−1√
3

0 1√
15

0 · · · 0 0 0

0 −1√
15

0 1√
35

· · · 0 0 0

0 0 −1√
35

0 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · 1√
(2M−3)(2M−1)

0 1√
(2M−3)(2M−5)

0 0 0 0 · · · 0 −1√
(2M−1)(2M−3)

0





































respectively.

1.5.4 Property of Legendre Wavelets

The Legendre wavelets satisfying the following property
∫ 1

0

ψ(t)ψT (t) = I. (1.94)

1.5.5 Property of Product of Two Legendre Wavelets

If E is a given wavelets vector then we have a property

ETψ(t)ψT (t) = ψT (t)Ê, (1.95)
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where Ê is 2k−1M × 2k−1M matrices depend on the wavelet vector E.

1.5.6 Two-Dimensional Legendre Wavelets

The two-dimensional Legendre wavelets which is defined on the interval [0, 1]× [0, 1]

by Parsian (2005) as follows:

ψnmn′m′(x, y) =



























√

(m+ 1/2)(m′ + 1/2)2(k+k′)/2Pm(2
kx− n̂)P ′m(2

ky − n̂′),

n̂−1
2k
≤ x ≤ n̂+1

2k
, n̂′−1

2k′
≤ y ≤ n̂′+1

2k′

0, otherwise

,(1.96)

where m = 0, 1, 2, ......,M − 1, m′ = 0, 1, 2, .....,M ′ − 1, n̂ = 2n − 1, n̂′ = 2n′ − 1,

n = 1, 2...., 2k−1 and n′ = 1, 2...., 2k
′−1. Pm(x) and Pm′(y) are Legendre polynomials

of order m and m′ and orthogonal to weight function w(x) = w(y) = 1 defined over

the interval [−1, 1]. The recursive formula for Pm(x) and Pm′(y) are

P0(x) = 1, P1(x) = x, (m+ 1)Pm+1(x) = (2m+ 1)Pm(x)−mPm−1(x), (1.97)

and

P0(y) = 1, P1(y) = y, (m′ + 1)Pm′+1(y) = (2m′ + 1)P ′m(y)−m′Pm′−1(y), (1.98)

respectively.

1.5.7 Function Approximation

A function f(x, y) is defined in domain [0, 1]× [0, 1] may be expressed as

f(x, y) =
∞
∑

n=1

∞
∑

n′=1

∞
∑

m=0

∞
∑

m′=0

cnmn′m′ψnmn′m′(x, y), (1.99)

where cnmn′m′ is Fourier coefficient. The infinite series in Eq. (1.99) is truncated

and can be written as

f(x, y) ≃
2k−1

∑

n=1

2k
′
−1

∑

n′=1

M−1
∑

m=0

M ′−1
∑

m′=0

cnmn′m′ψnmn′m′(x, y) = CTψ(x, y), (1.100)
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where C and ψ(x, y) are the column vector of order 2k−12k
′−1MM ′ × 1 which is

given by

C = [c1010, · · · , c101M ′−1, c1020 · · · c102M ′−1, c102k′−10 · · · c102k′−1M ′−1, · · · , · · · ,

c1M−110, · · · , c1M−11M ′−1, c1M−120, · · · , c1M−12M ′−1, · · · , c1M−12k′−10, · · · ,

c1M−12k′−1M−1, c2010, c201M ′−1, c2020, · · · c202M ′−1, · · · , c202k′−10, · · · , · · · ,

c202k′−1M ′−1, c2M−110, · · · , c2M−11M ′−1, c2M−120, · · · , c2M−12M ′−1, · · · , · · · ,

c2M−12k′−10, · · · , c2M−12k′−1M ′−1, · · · , c2k−1010, · · · , c2k−101M ′−1, c2k−1020, · · · ,

c2k−102M ′−1, · · · , c2k−102k′−10, · · · , c2k−1M−12k′−1M ′−1]
T (1.101)

and

ψ = [ψ1010, · · · , ψ101M ′−1, ψ1020 · · ·ψ102M ′−1, ψ102k′−10 · · ·ψ102k′−1M ′−1, · · · , · · · ,

ψ1M−110, · · · , ψ1M−11M ′−1, ψ1M−120, · · · , ψ1M−12M ′−1, · · · , ψ1M−12k′−10, · · · ,

ψ1M−12k′−1M−1, ψ2010, ψ201M ′−1, ψ2020, · · ·ψ202M ′−1, · · · , ψ202k
′
−10, · · · , · · · ,

ψ202k′−1M ′−1, ψ2M−110, · · · , ψ2M−11M ′−1, ψ2M−120, · · · , ψ2M−12M ′−1, · · · , · · · ,

ψ2M−12k′−10, · · · , ψ2M−12k′−1M ′−1, · · · , ψ2k−1010, · · · , ψ2k−101M ′−1, · · · , · · · ,

ψ2k−1020, · · · , ψ2k−102M ′−1, · · · , ψ2k−102k
′
−10, · · · , ψ2k−1M−12k′−1M ′−1]

T . (1.102)

1.5.8 Operational Matrix of Integration for x Variable

Theorem 1.1 Let ψ(x, y) be the two-dimensional Legendre wavelets vector de-

fined in Eq. (1.99) then

∫ x

0

ψ(s, y)ds = Pxψ(x, y), (1.103)

where, Px is 2k−12k
′−1MM ′ × 2k−12k

′−1MM ′ operational matrix of integration de-

fined as
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Px =
1

M ′2k′+k−1





























L F F · · · F

O L F · · · F

O O L · · · F
...

...
...

. . .
...

O O O · · · F

O O O · · · L





























, (1.104)

and; F, L and O matrices of order 2k−1MM ′ × 2k−1MM ′ are given as

F =





























2D O′ O′ · · · O′

O′ O′ O′ · · · O′

O′ O′ O′ · · · O′

...
...

...
. . .

...

O′ O′ O′ · · · O′

O′ O′ O′ · · · O′





























,

L =





























D 1√
3
D O′ · · · O′

− 1√
3
D O′ 1√

15
D · · · O′

O′ − 1√
15
D O′ · · · O′

...
...

...
. . .

...

O′ O′ O′ · · · O′

O′ O′ O′ · · · O′





























,

and

O =





























O′ O′ O′ · · · O′

O′ O′ O′ · · · O′

O′ O′ O′ · · · O′

...
...

...
. . .

...

O′ O′ O′ · · · O′

O′ O′ O′ · · · O′





























,

where D is the matrix of order 2k
′−1M ′ × 2k

′−1M ′ which is given as

31



D =

















1 1 1 · · · 1

1 1 1 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1

















,

O′ is zero matrix of order 2k
′−1M ′ × 2k

′−1M ′.

1.5.9 Operational Matrix of Integration for y Variable

Theorem 1.2 Let ψ(x, y) be the two-dimensional Legendre wavelets vector de-

fined in Eq. (1.99) then

∫ y

0

ψ(x, s′)ds′ = Pyψ(x, y), (1.105)

where, Py is operational matrix of integration of order 2k−12k
′−1MM ′×2k−12k′−1MM ′,

is given as

Py =
1

M2k−1























P P P · · · P

P P P · · · P

P P P · · · P
...

...
...

. . .
...

P P P · · · P























,

in which P is

P = 1
2k′























L F F · · · F

O L F · · · F

O O L · · · F
...

...
...

. . .
...

O O O · · · L























,

where, O, L and F are M ×M ′ matrices. O is the zero matrix and L, F are given

as
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L =





























D 1√
3

0 · · · 0

− 1√
3

0 1√
15

· · · 0

0 − 1√
15

0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

0 0 0 · · · 0





























,

and

F =























2 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0























.

1.6 Literature Survey on Moving Boundary Prob-

lems

The analysis of heat transfer problems in melting/solidification process, called mov-

ing boundary problems. Moving boundary problems have been studied first by

Lamé and Clapeyron (1831), concerning ice formation. However the mathematical

model of this phenomenon is traditionally named after the Austrian physicist Stefan

(1889), who published four papers as follows:

• On some problem in the theory of heat conduction.

• On the diffusion of acid and alkaline solution through each other.

• On the theory of ice formation with reference to the Arctic sea.

• On evaporation and condensation as diffusion processes.

The first paper deals with the freezing of ground and in this paper he considered

two problems: one problem is semi infinite (0,∞) region and second problem is

infinite region (−∞,∞). In the same work, Stefan gave an analogous description
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of processes of neutralization for diffusion transport of material in a reaction zone.

In his hard work, he examined the problem of melting of a layer of ice with initial

temperature equal to zero, subject to the influence of the temperature f(t) at the

boundary r = 0. This problem had been solved in closed analytic form only for f

is constant. Finally, Stefan published his fourth work related to evaporation and

condensation. Since, the nonlinear form of energy balance at moving interface is

present. Therefore, an exact solution of moving boundary problems are possible in

limited cases. The simplest one-phase problem first solved analytically by Stefan

(1889). The Laplace transform technique is used to solve one phase moving bound-

ary problem by Evans et al. (1950). Ockenden and Hodgkins (1975) has shown the

integral formulation of the oxygen diffusion problem described by the use of Laplace

transform and has drawn attention to the usefulness of Fourier transform in semi

infinite or finite domain.

Neumann (1912) extended the Stefan’s solution to the two-phase problem. The

one dimensional two-phase Stefan problem was formulated by Rubinstein (1947a)

in terms of a system of integral equations and proved existence and uniqueness

of a solution in a small time interval. Further integral formulations of the one-

dimensional Stefan problem were then studied. Several techniques were used to

prove well-posedness, results of approximation, regularity, asymptotic behaviour

and some other properties.

In melting and freezing of binary alloy, Ruddle states in his monograph on

solidification. A very serious disadvantage of all mathematical methods is that they

are only applicable to materials which freeze at constant temperatures and are not

capable when alloys solidifying over a extended range of temperature. The melting

and freezing temperatures of a binary alloy are not constant values and they vary

with the composition of the alloy. The solidification of the binary alloy for a given

composition actually occurs at a temperature below the liquidus line. Hence, the

solidification problem of a binary alloy is definitely more elaborate and complex

than the classical Stefan problem for a pure metal. A known exact solution of the

problem exists. This solution is, of course for a binary alloy in a semi infinite region

with constant initial and boundary conditions. Boley has also examined the problem
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by his embedding technique and obtained a short time solution. In his study the

solidus and liquidus line are assumed to be straight line; the solution is therefore

limited to dilute binary alloys. In addition there are some other studies for various

aspects of solidification of binary alloy in which straight solidus and liquidus lines

are also assumed. Mushy regions were first investigated for the one-dimensional

Stefan problem by Atthey (1974), Lacey and Tayler (1983), Fasano and Primicerio

(1985), Meirmanov (1981, 1983), Primicerio (1983) and many others. After the

introduction of weak solutions, these regions were also studied in several space

dimensions by Andreucci (1993), Bertsch et al. (1986), Bertsch and Klaver (1989),

Götz and Zaltzman (1991a,b), Lacey and Herraiz (2000, 2002).

To find the solution of moving boundary problems many different mathemat-

ical techniques and approximate method have been described. An approximate

analytical methods were developed by London and Seban (1943) and analysed the

process of ice formation for different boundary conditions and geometries like cylin-

der, sphere, and flat plate. Goodman and Shea (1960) developed the heat balance

integral method and used to solve the one-phase melting-ice problem with various

boundary conditions. Further, Goodman and Shea (1960) applied the heat balance

method to the two phase problem of melting of finite slab, which is initially at a

uniform temperature below the melting point. Poots (1962) used the heat balance

integral method to single phase melting problem using a two parameters quadratic

profile. Noble (1975) proposed a spatial subdivision scheme in which quadratic pro-

files are used in each subregion. After that Bell (1978) modified Noble’s scheme to

solve a single-phase melting problem. Crank and Gupta (1972) have been solved a

moving boundary problems in heat flow using cubic splines or polynomials. This

technique was also used by Yuen (1980) in melting problems with initial subcool-

ing. Landau (1950) proposed a transformation of coordinates such that in the new

coordinate system the moving interface can be immobilized and the solution can be

realized in the fixed domain.

Douglas and Gallie (1955) proposed to determine a variable time step, as part

of the solution, such that the moving boundary coincides with a grid line in space.

Murray (1959) proposed two methods for numerical solutions of phase-change prob-
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lems using finite difference approach. The numerical methods for the solution of

phase-change problems can be subdivided into two main groups: fixed grid meth-

ods based on the enthalpy concept and moving grid methods utilizing the interface

immobilization technique. The moving grid method is equivalent to the Landau

transforms, where the grid points move following the interface. From the numerical

point of view a fixed grid in the Landau transformed plane is equivalent to a mov-

ing grid in the physical domain. This method was applied by Heitz and Westwater

(1970) to solve a one-dimensional problem of solidification with the liquid initially

at saturated temperature. They incorporated the volume change and a higher value

of liquid thermal conductivity to simulate the effect of fluid flow. The complica-

tions due to the non-uniform grid size around the moving boundary were avoided

by the methods of Crank and Gupta (1972), in which the entire uniform grid sys-

tem moves with the velocity of the moving boundary. They presented two schemes

of obtaining the interpolated values of temperatures at the new grid points, to be

used for the next step, in terms of cubic spline or polynomials. The two methods

(fixed grid method and variable grid method) are compared by Furzerland (1980)

for the solution of a specific test problem of one dimension pure conduction heat

transfer. Gupta and Kumar (1980) formulated the same set of finite difference

equation as Douglas and Gallie but they used the Stefan condition to update the

time step. The instability, that develops as the depth of the moving boundary

increases, was avoided with Gupta and Kumar’s method. Goodling and Khader

(1974) gave another variable time step method in which the finite difference form

of the Stefan condition was incorporated into the system of the equations to be

solved. The system is solved for an arbitrary value of the temperature of the node

adjacent to the moving boundary, which is then updated from the Stefan condition.

However, Gupta and Kumar (1981), in a study of a convective boundary condition

at the fixed end, found that Goodling and Khader’s method does not converge as

the computation progresses in time. They showed a satisfactory agreement between

their results and those obtained by using other variable time step methods and the

Goodman (1958) integral method.
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Several other more general ways of formulating moving boundary problem in

terms of integral equations and their solution have been found useful. One advan-

tage of introducing integral equation in linear heat flow problems generally is that

only the value of the unknown on the boundaries of the domain either into the

formulation. The use of Green’s function for the solution of heat flow problems

subjected to conditions prescribed on fixed boundaries is well known. Carslaw and

Jaegar (1959) give the basic theory and solutions to a selection of standard problems

in terms of appropriate Green’s functions. Chuang and Szekely (1972) employed

Green’s functions to solve in integral equation form, the problem of a solid slab,

symmetrically placed in its own melt. Later papers by Chuang and Szekely (1972)

and Chuang and Ehrich (1974) deal with corresponding cylindrical and spherical

problems. For most geometries and boundary conditions encountered in practice,

simple exact solution can not always be obtained in terms of standard analytic

functions.

In 1946, The enthalpy approach was proposed by Eyres et al. (1946) to avoid

nonlinearity in a heat conduction problem. The earliest application of an enthalpy

formulation to a finite difference scheme appears to be Rose (1960). Shamsunder

and Sparrow (1975) employed the enthalpy method with a fully-implicit finite dif-

ference scheme for solidification in a square geometry with convective boundary

conditions. They verified their results by the results from an enthalpy formulation

used with the Crank-Nicholson scheme. The enthalpy method have been used by

Esen and Kutluay (2004); Caldwell and Chan (2000). perturbation solution was

used by Yagit (2007); Singh et al. (2011a). A finite difference methods have been

employed by Furzeland (1977), and Rai and Singh (1998).

Recent, several others numerical methods have been used by Kutluay (2005),

Jana et al. (2007), Yagit (2008), Rajeev et al. (2009a,b). The use of numerical

methods (fixed grid, variable grid, front fixing, adaptive grid generation, and en-

thalpy methods) for obtaining solution of moving boundary problems was reported

by Ozisik (1994). On the other hand, the variety of approximate analytical methods

such as the energy integral method, perturbation methods, and similarity solutions

can be found in the available literature.
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1.7 Dimensionless Variables

The dimensionless variables have wide acceptance in tracing the problem of heat

and mass transfer phenomena. It is not only reduce the number of parameters but

it also generalized the results and creates a firm scientific phenomena. The various

dimensionless variable and similarity criteria which have been used in the problem

are listed as:

1.7.1 Fourier Number

The Fourier number is defined by

Fo =
at

l2
. (1.106)

It is a measure of the rate of heat conduction in comparison with the heat storage

in the given volume element. Larger the Fourier number, deeper is the penetration

of heat into a solid over a given period of time.

1.7.2 Stefan Number

The Stefan number Ste, is strictly positive and signifies the importance of sensible

heat relative to the latent heat. Thus

Ste =
C∆T

L
, (1.107)

∆T = Tf − T0.

1.7.3 Predvoditelev Number

The Predvoditelev number is defined as

Pd =
bl2

a∆T
, (1.108)

The Predvoditelev number Pd describes the rate of change of temperature in

medium. Where, b is constant rate.
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1.7.4 Kirpichev Number

Kirpichev number is ratio of external heat transfer intensity to the internal heat

transfer intensity and defined as

Ki =
ql

K∆T
. (1.109)

1.7.5 Biot Number

The Biot number is the ratio of the internal thermal resistence to the external

thermal resistence and defined as

Bi =
αl

K
. (1.110)

It may vary in the range from 0 to ∞ and the temperature increases as increase the

Biot number increases.
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