LIST OF TABLES

Table 1: Basic difference between conventional and integrated approaches	10	
Table 3.1: Alternative Water Supply (AWS) Option with its Sub-options and Categories		
	42	
Table 4.1: Previous frameworks and indicators covered under urban water cycle	53	
Table 4.2: Indicators and relevant sub-indicators with their description categorized for		
WDPI development	54	
Table 4.3: Need of modification in existing framework based on PSR framework and		
final expected goals	58	
Table 4.4: Weight Assignment to Indicators, Relevant Sub-indicators and PSR for		
WDPI Evaluation.	61	
Table 4.5: WDPI value range to classify category of status	63	
Table 5.1: Reuse Standards of Various Treated Wastewater Reuse option	88	
Table 5.2 Removal Efficiency (in Percentage) of Wastewater Treatment Technology		
(WWTT)	89	
Table 5.3: Urban water balance condition and relevant course of action	98	
Table 5.4: Indicators and Relevant Sub-Indicators for WDPI	100	
Table 5.5: Basic Cases to Improve Water Supply Sustainability	102	
Table 5.6: Analytic Hierarchy Process (AHP) for weight assignment	104	
Table 5.7 (a): Weight assignment to options for improved Urban Water Balance (UWB)		
	104	
Table 5.7 (b): Calculated weight of options for improved Urban Water Balance (UWB)		
	104	
Table 6.1: Population of Water Supply Zones of Varanasi City	110	

Table 6.2: Suggested Wastewater Treatment Technologies for Varanasi C	ity for	
Different Reuse Categories	118	
Table 6.3: Costs Comparison of Various Wastewater Treatment Technologies (WWTT)		
	118	
Table 6.4: Roof-top Area of Varanasi City Calculated Using Satellite Imagery	122	
Table 6.5: Summary of Results from SDSS_IUWM for Varanasi City	128	
Table 6.6: Target based Improvement in Water Supply Sustainability	131	
Table 6.7: Projected Water Situation in Varanasi City for Year 2020	132	
Table 6.8: Projected Water Situation in Varanasi City for Year 2030	135	
Table 6.9: Projected Water Situation in Varanasi City for Year 2040	137	
Table 6.10: Pressure, State, Response Scores and WDPI for Varanasi, Allahabad,		
Lucknow and Kanpur cities without applying improvement options with the existing		
scenario (base year 2015 and projected years 2020, 2030, 2040)	144	
Table 6.11: Pressure, State, Response and WDPI Conditions for Varanasi, Allahabad,		
Lucknow and Kanpur cities without applying improvement options with the existing		
scenario (base year 2015 and projected years 2020, 2030, 2040).	144	