LIST OF FIGURES

Fig. 1.1: Framework of Decision Support System	04
Fig. 1.2: Components of SDSS	05
Fig. 1.3: Ground Water Table Variation of all districts of Uttar Pradesh during 200	05-2017
	12
Fig. 1.4: Ground Water Table Variation of Varanasi, Allahabad, Lucknow and Ka	npur
Nagar during 2005-2017.	13
Fig. 3.1: Basic Framework for Integrated Urban Water Management	41
Fig. 3.2: Data Flow Diagram for Alternative Water Supply Options	41
Fig.3.3: Detailed framework of Spatial Decision Support System for Integrated Un	rban
Water Management (SDSS_IUWM).	43
Fig. 4.1: Interaction among IUWM, WDP and PSR framework to evaluate WDPI	59
Fig. 4.2: Framework of Water for Development Planning Index (WDPI)	60
Fig. 5.1 Data flow diagram of SDSS_IUWM	67
Fig. 5.2: Screenshot of Application Development Environment for SDSS_IUWM	68
Fig. 5.3: Screenshot of Main Page Designed for SDSS_IUWM	69
Fig. 5.4: Screenshot of Basic Data Input Page	70
Fig. 5.5: Screenshot of Population Fore casting Sub-module	73
Fig. 5.6: Screenshot of Domestic Demand Calculation Sub-module	75
Fig. 5.7: Screenshot of Institutional Water Demand Sub-Module	77
Fig. 5.8: Screenshot of Industrial Water Demand Sub-Module	78
Fig. 5.9: Screenshot of Firefighting Water Demand Sub-Module	79
Fig. 5.10: Screenshot of Other Water Demand Sub-Module	80
Fig. 5.11: Screenshot of Total Water Demand Sub-Module	81

Fig. 5.12: Water Supply (WS) Module Snapshot	82	
Fig. 5.13: Screenshot of Drinking Water Quality Index (DWQI) Sub-module	83	
Fig. 5.14: Screenshot of Wastewater Estimation Sub-module	84	
Fig. 5.15: Dataflow Diagram for Wastewater Treatment Technology Selection	86	
Fig. 5.16: Screenshot of Wastewater Characteristics Data Input Sub-Module	87	
Fig. 5.17: Database Stored for Wastewater Characteristics Entered by the User.	90	
Fig. 5.18: Database Management of Different Reuse Options and its Reuse Standards		
	90	
Fig. 5.19: Database Management of Wastewater Treatment Technology Efficienc	y 91	
Fig. 5.20: Screenshot of Reuse Based Wastewater Treatment Technology Selection	on Sub-	
Module	91	
Fig. 5.21: Screenshot of Annual Rainfall Runoff (ARR) Estimation Sub-module	93	
Fig. 5.22: Screenshot of calculation of Roof-top area by using digitized roof-top area		
map within the city boundary.	94	
Fig. 5.23: Screenshot of Water Table Depletion Estimation Using QGIS Software 97		
Fig. 5.24: Water Supply Sustainability (WSS) Estimation Module.	99	
Fig. 5.25: Water for Development Planning Index (WDPI) Interface Snapshot	101	
Fig. 5.26 Screenshot of Scenario analysis for Urban Water Balance Improvement	Cases	
	106	
Fig. 6.1: Varanasi district on India map	108	
Fig. 6.2: Map of Administrative Ward for Varanasi City	109	
Fig. 6.3: Water Supply Zone Map of Varanasi city (Source: Jalkal, Varanasi, U.P.) 111		
Fig. 6.4: Screenshot of Basic data input for the Varanasi city	112	
Fig. 6.5: Screenshot of Population Forecasting Interface	113	
Fig. 6.6: Screenshot of Total Water Demand (TWD) Calculation for Varanasi city	7 114	

Fig. 6.7: Water Supply Zone Map (service and non-service zones) of Varanasi city 115		
Fig. 6.8: Screenshot of Wastewater Generation Sub-module for Varanasi City.	116	
Fig. 6.9: Screenshot of Wastewater Characteristics Input Sub-module for Varanas	i City.	
	117	
Fig. 6.10: Screenshot of Suggested Wastewater Treatment Technology for Specific	ic	
Reuse for Varanasi City.	117	
Fig. 6.11: Screenshot of Storm Water Runoff Estimation for Varanasi city.	120	
Fig. 6.12: Screenshot of Area Calculation of Ponds in Varanasi city using ArcGIS	3.121	
Fig. 6.13: Screenshot of Roof-top Area Estimation for Varanasi city.	122	
Fig. 6.14: Screenshot of Water Supply Sustainability (WSS) Analyses for Varana	si city.	
	123	
Fig. 6.15: Water Table Depletion of Varanasi city (2005-2017).	124	
Fig. 6.16: Screenshot of Calculation of PSR and WDPI for Varanasi city for year	2015.	
	126	
Fig. 6.17: Screenshot of Scenario Generation to Improve WDP for Varanasi city.	127	
Fig. 6.18: Existing condition of WDPI for Varanasi City (2015).	129	
Fig. 6.19: Sub-indicator values of Pressure Objective Function for Varanasi city (2015)	
	129	
Fig. 6.20: Sub-indicator values of State Objective Function for Varanasi City (20)	15).	
	130	
Fig. 6.21: Sub-indicator Values of Response Objective Function for Varanasi City	у	
(2015).	131	
Fig. 6.22: Comparative View of Pressure Sub-indicators for Varanasi City in 2015 and		
2020.	133	

Fig. 6.23: Sub-indicator Values of Pressure, State, Response Objective Functions	for	
Varanasi City (2020).	134	
Fig. 6.24: Sub-indicator Values of Pressure, State, Response Objective Functions for		
Varanasi City (2030).	136	
Fig. 6.25:Sub-indicator Values of Pressure, State, Response Objective Functions for		
Varanasi City (2040).	138	
Fig. 6.26: WDPI of Varanasi city for the years2015, 2020, 2030 and 2040	139	
Fig. 6.27: WDPI of Allahabad city for the years 2015, 2020, 2030 and 2040.	140	
Fig. 6.28: WDPI of Lucknow city for the years 2015, 2020,2030 and 2040.	141	
Fig.6.29: WDPI of Kanpur city for year 2015, 2020, 2030, and 2040.	143	
Fig 6.31: Trend Analysis of Pressure, State, Response and WDPI (2020, 2030, and		
2040) for Varanasi, Allahabad, Lucknow, and Kanpur city with the existing scenario		
(2015) with applying improvement options.	149	