TABLE OF CONTENTS

Title	Page No.
Certificate	
Declaration certificate by candidate	
Certificate from the Supervisor/Head of the Department	
Copyright transfer certificate	
Course work completion Certificate	
Pre-Submission Seminar Completion Certificate	
Acknowledgements	
Contents	
List of Figures	
List of Tables	
Nomenclature	
Abbreviations	
Greek Symbols	
Abstract	1-111
CHAPTER 1 INTRODUCTION	1-4
1.0 Welding	1
1.1 Background of the welding	1
1.2 Challenges	2
1.3 Objectives	2
1.4 Scope of thesis	3
1.5 Thesis outline	3
CHAPTER 2 Literature Review	5-60
2.0 Introduction	5
2.1 Review of welding	5
2.1.1 Middle ages	5
2.1.2 From 1800 to 1900	6
2.1.3 from 1902 to most recent	6
2.2 Welding process	7
2.2.1 Arc Welding	7
2.2.2 Manual metal Arc Welding (MMAW)	7
2.2.3 Gas Metal Arc Welding (GMAW)	8
2.2.3.1 Principle of GMAW process	8
2.2.3.2 Advantages of GMAW process	9
2.2.3.3 GMA Welding process parameters	10
2.2.3.3.1 Welding Current	10
2.2.3.3.2 Arc Voltage 2.2.3.3.3 Arc Travel Speed	12

2.2.3.3.4 Wire Feed Speed	14
2.2.3.3.5 Heat Input	15
2.2.3.3.6 Shielding Gas Flow Rate	17
2.2.3.3.7 Metal Transfer in GMAW process	22
2.2.3.3.8 Electrode diameter	24
2.3 Heat Transfer to the base metal in GMAW	24
2.4 Weldability of steels	25
2.4.1 Metallurgical factors affecting weldability	27
2.4.1.1Hardenability	27
2.4.1.2 Weld metal and HAZ properties	27
2.4.1.2.1 Weld Metal (WM)	27
2.4.1.2.2 HAZ and its Properties	30
2.4.1.3 Pre and post weld heat processing	33
2.4.1.4 Post weld treatment	34
2.5 Microstructure Constituent in steel weldment	34
2.6. Iron Carbon phase diagram	35
2.6.1Ferrite	37
2.6.2 Acicular Ferrite (AF)	37
2.6.2.1 Some common points between AF and Bainite	38
2.6.3 Grain boundary Allotriomorphs	39
2.6.4 Widmanstatten Ferrite (WF)	40
2.6.4.1 Factors responsible for widmanstatten ferrite	40
2.6.5 Pearlite	42
2.6.6. Austenite	43
2.6.7 Bainite	44
2.6.7.1 Upper Bainite	46
2.6.7.2 Lower Bainite	46
2.6.8 Martensite	46
2.7 Characteristics of IS 2062 steel and AISI 304 steel	48
2.7.1 IS 2062 Steel	48
2.7.1.1 Common applications of IS2062 steel	49
2.7.2 Stainless steel	<u>49</u>
2.7.2.1 Austenite steel	49
2.7.2.2 Ferritic steel	50
2.7.2.3 Martensitic steel	50
2.7.2.4 Duplex steel	50
2.7.2.5 Precipitation hardening steel	50
2.7.3 Common Industrial applications of Stainless Steel	51
2.7.4 Classification of steels	52
2.7.5 Differences between IS 2062 and AISI 304 steel	53
2.8 Solidification mechanism of Steel weldment	
2.9 Summery	59

•

:	2.10 Research gap		59
CHAP	TER 3 EXPERIMENTAL PROGRAMME	61-	-75
	3.1 Experimental set up		62
	3.1.1 MIG welding machine		63
	3.2 Selection of work material, consumable and process and v	veldir	ng
	processes		63
	3.2.1 Description of IS 2062 Steel		64
	3.2.1.1 Mechanical Properties of IS 2062		64
	3.2.1.2 Equivalent grade of IS 2062		65
	3.2.1.3 Mechanical Properties of AISI 304		65
	3.2.1.4 Description of AISI 304 steel		65
-	3.3 Experimental procedure		67
	3.4 Mechanical Investigations		68
	3.4.1 Fabrication of tensile test specimens		68
	3.4.2 Fabrication of Impact test specimens		70
	3.5 Preparation of Microstructure and Vickers hardness test samples		72
	3.6 Material Characterization		74
	3.6.1 Vickers Hardness		74
	3.6.2 Light Optical Microscopy		74
	3.6.3 Scanning Electron Microscopy		74
CHAP	TER 4 RESULTS AND DISCUSSION	76-	159
4.1	Effect of voltage, wire feed speed, and shielding gas flow rate on	YS	76
4.2	Effect of voltage, wire feed speed, and shielding gas flow rate on	UTS	79
4.3	Effect of voltage, wire feed speed and shielding gas flow rate on		
	Toughness		82
4.4	Effect of voltage, wire feed speed, and shielding gas flow rate on	VHN	85
4.5	Effect of voltage, wire feed speed, and shielding gas flow rate on	%	0.0
	elongation		88
4.6	Microstructure photograph of base metal		91
4.7	Microstructure photograph of IS 2062 steel weldments		91
4.8	Effect of voltage, wire feed speed, and shielding gas flow rate on	YS	121
4.9	Effect of voltage, wire feed speed, and shielding gas flow rate on	UTS	123
4.10	Effect of voltage, wire feed speed and shielding gas flow rate on		10 (
	Toughness		126
4.11	Effect of voltage, wire feed speed, and shielding gas flow rate on	VHN	1128
4.12	Effect of voltage, wire feed speed, and shielding gas flow rate on	%	101
	elongation		131
4.13	Microstructure photograph of AISI 304 steel weldments		153
4.14	Grain size of IS 2062 and AISI 304 steels weldments		153
4.15	Microstructural analysis and nucleation of acicular ferrite		155
4.16	Analysis of inclusion by SEM		154
4.17	Analysis of weld metal inclusion chemical composition by SEM		154

4.18	SEM analysis of Charpy test for IS 2062 steel weldments	155
4.19	Fractography analysis	156
4.20	Fractography analysis of AISI 304 steel weldment	157
4.21	Energy dispersive spectrometer (EDS)	157
4.22	fracture mode of toughness test specimen	158
CHAPT	ER 5 CONCLUSIONS AND SCOPE FORFUTURE WORK	160-162
5.1	Conclusion	160
5.2	Scope for future work	161
REFREN	NCES	163