LIST OF FIGURES

E'	No. Title	Page No.
Figure		
2.1	Working principal of MMA welding	7
2.2	Schematic of GMAW process	8
2.3	The essential element of a basic GMAW process	9
2.4	Block diagram of GMAW set up	9
2.5	Effect of welding current on weld bead geometry	11
2.6	Effect of arc voltage on weld bead shape and its size	11
2.7	Effect of welding speeds on weld bead width and its profile	13
2.8	Welding current Vs wire feed speed for various diameters of carbon stee	1 14
2.0	Shows the microstructure of weldment at different heat input	16
2.10	Shows the micrograph of weldment at different heat input	17
2.10	Optical micrograph showing the microstructure of (a) weld metal, (b) further	sion
2.11	boundary, and HAZ at low, medium and high heat input	17
2 12	Effect of different shielding gases on weld bead profile and penetration	18
2.12	a-d. Microstructure of (a) base plate (b)weldment sample S1,(c) sample S	54
2.15	(d) sample F1	19
2 14	Optical microstructures of the samples welded under the shielding of 1.5	%
2,11	H_2 —Ar with different welding current: weld metal structure welded with	(a)
	140A, (b) 180A, (c) 240A and (d) transition zone structure welded with	140A
		21
2 1 5	Metallographic micrograph of ST 37-2 (82% Ar + 18% CO ₂) weld pool	etched
2110	in 2% Nital, AF: acicular ferrite, WF: Widmanstatten ferrite, PF: polygo	nal
	ferrite	22
2 16	Schematic of metal transfer process in GMAW	23
2.10	Effect of electrode size on an amount of reaustenitised and tempered we	ld
2.17	metal in multi-run welding, cross sections as a function of weld diamete	r,
	white areas represent reaustenitised and tempered weld metal. The elect	rode
	diameters are mention in the bottom right- hand corner of each figure	24
2 18	Plot of Heat-Transfer Efficiency to Base Metal V _s Electrode-Speed	25
2.10	Schematic diagram showing the interaction between the heat source and	the
2.17	base metal in different zones	28
2 20	Schäffler - De Long diagram	28
2.20	Types of grain morphologies that can form in a fusion zone (weld zone)	30
2.21	Sketch showing the three regions of a weldment (BM=base metal HAZ	=heat
2.22	offected zone and F7=fusion zone	31
2.22	Schemetic of CGHA7 formations	32
2.23	Schematic of COTTAL formations	, 5 -
2.24	Schematic diagram of the unferent zone in a heat affected zone of a low	33
	carbon steel weldment	22

2.25	Iron-carbon phase diagram, showing the different equilibrium phases of carbon and iron with respect to varying the carbon concentration and	
2.26	temperature Schematic diagram changing diffe	36
2.20	microstructure in the showing different constituents of the primary	• •
2 27	Schemetic line columnar austenite grains of a steel weld	38
2.27	Schematic diagram of grain boundary allotriomorphic ferrite, and	
0.00	intragranular idiomorphic ferrite	39
2.28	Mixture of allotriomorphic ferrite, widmanstatten ferrite, and pearlite for carbon Steel	low 41
2.29	Shows the primary and secondary phases of widmanstatten ferrite	42
2.30	Shows the ferrite (White) and Pearlite (Black) in the low carbon steel	
	weldment	43
2.31	Morphological classification systems for bainite according to Bramfitt and	
	Speer	45
2.32	Schematic representation of the transition path of upper and lower bainite	46
2.33	Shows the structure of martensite cementite and ferrite in a microstructur	e
	server and substate of martensite, comonitie, and former in a micrositatian	47
2.34	The Bain model for martensite formation in steels	47
2.35	Shows the formation of martensite, bainite etc	48
2.36	Classifications of Steels	53
2.37	Effect of temperature gradient G and growth rate R on the morphology and	ł
	size of solidification microstructure	55
2.38	Schematic illustrations of competitive grain growth in welds. (a) Early gro	wth
	of grains near the fusion line. (b) Continued growth of favorably orientated	t
	grains at a later time	56
2.39	Proposed mechanisms for the formation of different ferrite morphologies i	n
	weld metals solidified in FA mode	57
2.40	Schematic diagram of continuous cooling transformation depict the	
	development of weldment microstructure in low-alloy steel	58
3.1	Schematic of experimental approach of the present study	62
3.2	AISI 304 plates after welding in Fixture	67
3.3	AISI 304 plates during welding	67
3.4	AISI 304 plates after weld	68
3.5	IS 2062 welded plate after cutting	68
3.6	Detail of tensile test specimen as per ASTM	68
3.7	Dimensions of V-groove and tensile test samples in mm	69
3.8	Actual photograph for the tensile test of IS 2062 steel	70
3.9	Actual photograph for a tensile test of AISI 304	70
3.10	Dimensions (mm) of "sub size" Charpy V-notch test samples	71
3.11	Actual photograph for Charpy test samples	71
3.12	Charpy test samples after fracture	72
3.13	Samples for microstructure & Vickers hardness test	73
4.1	Effect of wire feed speed on the yield strength of IS 2062 steel at 25V with	h

	different Shielding gas flow rate at 3.22 kJ/mm heat input	17
4.2	Effect of wire feed speed on the yield strength of IS 2062 steel at 26V with	
	different Shielding gas flow rate at 3.58 kJ/mm heat input	17
4.3	Effect of wire feed speed on the yield strength of IS 2062 steel at 27V with	
	different Shielding gas flow rate at 3.88 kJ/mm heat input	78
4.4	Effect of wire feed speed on the yield strength of IS 2062 steel at 28V with	
	different Shielding gas flow rate at 4.47 kJ/mm heat input	78
4.5	Effect of wire feed speed on the Ultimate tensile strength of IS 2062 steel a	t
	25V with different shielding gas flow rate at 3.22 kJ/mm heat input	19
4.6	Effect of wire feed speed on the Ultimate tensile strength of IS 2062 steel a	at
	26V with different shielding gas flow rate at 3.58 kJ/mm heat input	30
4.7	Effect of wire feed speed on the Ultimate tensile strength of IS 2062 steel a	at
	27V with different shielding gas flow rate at 3.88 kJ/mm heat input	60
4.8	Effect of wire feed speed on the Ultimate tensile strength of IS 2062 steel a	at
	28V with different shielding gas flow rate at 4.47 kJ/mm heat input 8	1
4.9	Effect of wire feed speed on Toughness of IS 2062 steel at 25V with	
	different shielding gas flow rate at 3.22 kJ/mm heat input 82	2
4.10	Effect of wire feed speed on toughness of IS 2062 steel at 26V with	
	different shielding gas flow rate at 3.58 kJ/mm heat input 83	3
4.11	Effect of wire feed speed on toughness of IS 2062 steel at 27V with	
	different shielding gas flow rate at 3.88 kJ/mm heat input 83	3
4.12	Effect of wire feed speed on toughness of IS 2062 steel at 28V with	
	different shielding gas flow rate at 4.47 kJ/mm heat input 84	1
4.13	Effect of wire feed speed on microhardness (VHN) of IS 2062 steel at 25V	T
	with different shielding gas flow rate at 3.22 kJ/mm heat input 83	5
4.14	Effect of wire feed speed on microhardness (VHN) of IS 2062 steel at 26V	1
	with different shielding gas flow rate at 3.58 kJ/mm heat input	5
4.15	Effect of wire feed speed on microhardness (VHN) of IS 2062 steel at 27V	/
	with different shielding gas flow rate at 3.88 kJ/mm heat input	5
4.16	Effect of wire feed speed on micronardness (VHN) of 1S 2062 steel at 28V	/
	with different shielding gas now rate at 4.47 kJ/mm heat input 8	/
4.17	Effect of whe leed speed on % age elongation of 18 2062 steel at 25V with different shielding gas flow rate at 3.22 k l/mm heat input	h o
4 18	Effect of wire feed speed on % age elongation of IS 2062 steel at 26V wit	o h
7.10	different shielding gas flow rate at 3.58 kJ/mm heat input	9
4 10	Effect of wire feed speed on % age elongation of IS 2062 steel at 27V with	ĥ
7.17	different shielding gas flow rate at 3.88 kJ/mm heat input	9
4 20	Effect of wire feed speed on % age elongation of IS 2062 steel at 28V with	h
1.20	different shielding gas flow rate at 4.47 kJ/mm heat input	0
4 21	Ontical micrograph as received IS 2062 steel. 9	1
4.22	Optical micrograph as -received AISI 304 steel 9	1

4.23	(a-d) microstructure photograph of heat affected zone (HAZ) of IS	
	2062 steel weldment at 10-25 l/m shielding gas flow rate, at 7.62m	/min
	produced at 3.22kJ/mm heat input	92
4.24	(a-d) microstructure photograph of heat affected zone (HAZ) of IS	
	2062 steel weldment at 10-25 l/m shielding gas flow rate, at 8.89	
	m/min produced at 3.22 kJ/mm heat input	94
4.25	(a-d) microstructure photograph of heat affected zone (HAZ) of IS	
	2062 steel weldment at 10-25 l/m shielding gas flow rate, at	
	10.16m/min produced at 3.22kJ/mm heat input	96
4.26	(a-d) microstructure photograph of heat affected zone (HAZ) of IS	
	2062 steel weldment at 10-25 l/m shielding gas flow rate, at 11.43	
	m/min produced at 3.22 kJ/mm heat input	98
4.27	(a-d) microstructure photograph of heat affected zone (HAZ) of IS	
	2062 steel weldment at 10-25 l/m shielding gas flow rate, at 7.62m/min	
	produced at 3.58 kJ /mm heat input	100
4.28	(a-d) microstructure photograph of heat affected zone (HAZ) of IS	
	2062 steel weldment at 10-25 l/m shielding gas flow rate, at 8.89	
	m/min produced at 3.58 kJ/mm heat input	102
4.29	(a-d) microstructure photograph of heat affected zone (HAZ) of IS	
	2062 steel weldment at 10-25 l/m shielding gas flow rate, at 10.16	
	m/min produced at 3.58 kJ/mm heat input	104
4.30	(a-d) microstructure photograph of heat affected zone (HAZ) of IS	
	2062 steel weldment at 10-25 l/m shielding gas flow rate, at 11.43	
	m/min produced at 3.58 kJ/mm heat input	106
4.31	(a-d) microstructure photograph of heat affected zone (HAZ) of IS	
	2062 steel weldment at 10-25 l/m shielding gas flow rate, at 7.62	
	m/min produced at 3.88 kJ/mm heat input	108
4.32	(a-d) microstructure photograph of heat affected zone (HAZ) of IS	
	2062 steel weldment at 10-25 l/m shielding gas flow rate, at 8.89m	/min
	produced at 3.88 kJ/mm heat input	110
4.33	(a-d) microstructure photograph of heat affected zone (HAZ) of IS	
	2062 steel weldment at 10-25 l/m shielding gas flow rate, at 10.16	
	m/min produced at 3.88 kJ/mm heat input	112
4.34	(a-d) microstructure photograph of heat affected zone (HAZ) of IS	
	2062 steel weldment at 10-25 l/m shielding gas flow rate, at 11.43	111
1 25	m/mm produced at 5.88 kJ/mm heat input microstructure photograph of heat affected zone (HAZ) of IS 2062	114
4.55	steel weldment at 10-25 l/m shielding gas flow rate, at 7.62m/min	
	produced at 4.47 kJ/mm heat input	116
4.36	(a-d) microstructure photograph of heat affected zone (HAZ) of IS	
	2062 steel weldment at 10-25 l/m shielding gas flow rate, at 8.89m	/min
	produced at 4.47 kJ/mm heat input	118

4.37	(a-d) microstructure photograph of heat affected zone (HAZ) of IS 2062 steel weldment at 10-25 l/m shielding gas flow rate, at 10.16
4.38	Effect of wire feed speed on the Yield strength of AISI 304 steel at 20V at a different shielding gas flow rate at 1.89 k l/mm heat input
	121
4.39	Effect of wire feed speed on the Yield strength of AISI 304 steel at 21V at a different shielding gas flow rate at 2.17 kJ/mm heat input
4.40	Effect of wire feed speed on the Yield strength of AISI 304 steel at
	22V at a different shielding gas flow rate at 2.78 kJ/mm heat input
	122
4.41	Effect of wire feed speed on the Yield strength of AISI 304 steel at 23V at a different shielding gas flow rate at 3.01 kJ/mm heat input
4.42	Effect of wire feed speed on the Ultimate tensile strength of AISI 304
	steel at 20V at a different shielding gas flow rate at 1.89 kJ/mm heat
4.40	input 123
4.43	Effect of wire feed speed on the Ultimate tensile strength of AISI 304 steel at 21V at a different shielding gas flow rate at 2.17 k l/mm heat
	input 124
4.44	Effect of wire feed speed on the Ultimate tensile strength of AISI 304
	steel at 22V at a different shielding gas flow rate at 2.78 kJ/mm heat
4.45	Effect of wire feed speed on the Ultimate tensile strength of AISI 304
	steel at 23V at a different shielding gas flow rate at 3.01 kJ/mm heat
	input 125
4.46	Effect of wire feed speed on Toughness of AISI 304 steel at 20V at a
	different shielding gas flow rate at 1.89 kJ/mm heat input 126
4.47	Effect of wire feed speed on Toughness of AISI 304 steel at 21V at a
	different shielding gas flow rate at 2.17 kJ/mm heat input 127
4.48	Effect of wire feed speed on Toughness of AISI 304 steel at 22V at a
	different shielding gas flow rate at 2.78 kJ/mm heat input 127
4.49	Effect of wire feed speed on Toughness of AISI 304 steel at 23V at a
	different shielding gas flow rate at 3.01 kJ/mm heat input 128
4.50	Effect of wire feed speed on microhardness (VHN) of AISI 304 steel at
	20V at a different shielding gas flow rate at 1.89 kJ/mm heat input 129
4.51	Effect of wire feed speed on microhardness (VHN) of AISI 304 steel at
	21V at a different shielding gas flow rate at 2.17 kJ/mm heat input 129
4.52	Effect of wire feed speed on microhardness (VHN) of AISI 304 steel at
	22V at a different shielding gas flow rate at 2.78 kJ/mm heat input 130

4.53	Effect of wire feed speed on microhardness (VHN) of AISI 304 steel at 23V at a different shielding gas flow rate at 3.01 kJ/mm heat input 130
4.54	Effect of wire feed speed on the %age elongation of AISI 304 steel at 20V at a different shielding gas flow rate at 1.89 k l/mm heat input 132
1 55	Effect of wire food speed on the Vace alongation of AISI 204 steel at
4.55	21V at a different shielding gas flow rate at 2.17 k 1/mm heat input 132
4 56	Effect of wire food speed on the % age alongation of AISI 304 steel at
H. 50	22V at a different shielding gas flow rate at 2.78 k l/mm heat input 133
4 57	Effect of wire feed speed on the %age elongation of AISI 304 steel at
т. <i>ЭТ</i>	23V at a different shielding gas flow rate at 3.01 k I/mm heat input 133
4.58	(a-d) microstructure photograph of heat affected zone (HAZ) of AISI
	304 steel weldment at 10-25 1/m shielding gas flow rate, at 6.35m/min
	produced at 1.89 k I/mm heat input 136
4.59	(a-d) microstructure photograph of heat affected zone (HAZ) of AISI
110 /	304 steel weldment at 10-25 l/m shielding gas flow rate, at 7.62m/min
	produced at 1.89 kJ/mm heat input 138
4.60	(a-d) microstructure photograph of heat affected zone (HAZ) of AISI
	304 steel weldment at 10-25 l/m shielding gas flow rate, at 8.89m/min
	produced at 1.89 kJ/mm heat input 140
4.61	(a-d) microstructure photograph of heat affected zone (HAZ) of AISI
	304 steel weldment at 10-25 l/m shielding gas flow rate, at 10.16m/min
	produced at 1.89 kJ/mm heat input 142
4.62	(a-d) microstructure photograph of heat affected zone (HAZ) of AISI
	304 steel weldment at 10-25 l/m shielding gas flow rate, at 6.35m/min
	produced at 2.17 kJ/mm heat input 144
4.63	(a-d) microstructure photograph of heat affected zone (HAZ) of AISI
	304 steel weldment at 10-25 l/m shielding gas flow rate, at 7.62m/min
	produced at 2.17 kJ/mm heat input 146
4.64	(a-d) microstructure photograph of heat affected zone (HAZ) of AISI
	304 steel weldment at 10-25 l/m shleiding gas now rate, at 8.89m/min
	produced at 2.1 / kJ/mm heat input 148
4.65	microstructure photograph of heat affected zone (fraz) of AISI 504
	steel weldhent at 10-25 hin shedding gas now rate, at 10.10hhinni have dueed at 2.17 k I/mm heat input
	(a, d) microstructure photograph of heat affected zone (HAZ) of AISI
4.66	(a-d) incrossitucture photograph of heat affected zone (HAZ) of Aisi 204 steel weldment at 10-25 l/m shielding gas flow rate, and at 2.78
	504 Steel weighten at 10-25 will sinciding gas now rate, and at 2.76
	KJ/IIIII licat input
4.67	ateal weldment at 3.01 k I/mm heat input
1 (0	SEEM image (Fracture morphology) of tensile specimen of IS 2062 steel
4.68	SEW Image (Tracture morphology) or tensite specificities of 15 2002 steel
1.0	Turical EDAX spectrums: the distribution of alloving elements 155
4.69	Firsture morphology (SEM image) of Charpy test specimen fractured
4.70	Fracture morphology (SEW mage) of charpy test speemen nature
4 71	SEM images of the fracture surface of samples under low medium and
4./1	bigh best input
1 70	(a) (b) & (c) Fractography of AISI 304 welded joint after the tensile
4.12	test at room temperature 157
	test at room temperature

4.73	Energy-dispersive spectroscopy (EDS) analysis results of inclusions	
		158
4.74	Impact test samples after fracture	159
4.75	Macro images and SEM images of Impact fracture samples for	
	Morphology	159