
Chapter 6 

Robust Controller Design 

 

Renewable energy based microgrid systems are vital to the fulfilment of present 

day energy needs of the market. The majorly available inexhaustible sources: solar energy 

and fuel cells are DC-based whereas, wind energy is AC in nature. The focus of the 

preceding three chapters is on microgrid stability and modelling, determining the small 

signal model and its reduced order equivalent of the complex AC and DC microgrid 

system in terms of state space representations. Power transfer in AC and DC microgrid 

systems is in the form of AC currents and voltages and DC currents and voltages, 

respectively. In an AC microgrid system, the AC loads require single conversion stage 

whereas DC loads require multiple conversion stages. Similarly, DC microgrid contains 

single conversion for DC loads and multiple conversion stages for AC loads. Thus, the 

combination of the AC and the DC microgrid is termed as Hybrid Microgrid systems, 

which facilitates the connectivity of the AC and DC loads and sources to the power system 

to minimize the conversion losses [95-96]. This results in the emergence of the critical 

issue of proper integration of various naturally available AC-DC sources to the AC-DC 

loads and the main utility grid. Efficient energy and load sharing is also a key factor in 

such hybrid systems. The AC to DC conversion from AC microgrid section to DC 

microgrid section and vice-versa, is achieved by intermediate Interlinking Converters 

(ICs) which are generally bidirectional in nature. A block diagram of the hybrid microgrid 

with separate DC and AC sections and interfacing ICs is depicted in Figure 6.1. 
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Figure 6.1. Block diagram of Hybrid Microgrid. 

 

The figure consists of AC and DC source and loads with their appropriate 

interfacing power electronics devices connected as two separable bus sections through an 

IC block. ICs are basically power electronic circuits which act as an interface between 

AC and DC sections of a hybrid microgrid with the main functions of effective energy 

sharing and maintaining the constant DC voltage across DC load. A simplified AC to DC 

interlinking converter whose circuit diagram is shown in Figure 6.2 has been considered 

in this work for optimal controller design. The converter structure consists of a three-

phase AC source connected to a six-switch IGBT/diode rectifier bridge via RL filter 

connected on the three input phases. The rectified output is connected to a resistive DC 

load through a DC link capacitor to smooth out the ripples in the DC output.  

The small signal modelling of this converter system in the subsequent section aids 

in subsequent controller design and analysing the stability of the controlled converter 

model. This chapter presents robust controller design via adaptive parameter tuning 

through swarm intelligence techniques. It consists of design of PID, FOPID and H∞ loop 

AC 
SOURCE

AC 
SOURCE

DC 
SOURCE

STORAGE

DC 
SOURCE

AC 
LOAD

DC 
LOAD

STORAGE

INTERLINKING 
CONVERTER

AC/DC/AC

DC 
LOAD

Bidirectional 
Converter

DC/AC

Bidirectional 
Converter

AC/DC

DC/DC

AC 
LOAD

DC/ACAC/DC

UTILITY 
GRID

AC BUS DC BUS HYBRID MICROGRID

DC SECTIONAC SECTION



Chapter 6. Robust Controller Design 

 

143 

 

shaping controllers through ABC and PSO tuning algorithms and comparison of their 

simulation results in the form of a case study. 

 

6.1 Preliminaries 

        Some of the preliminary concepts to robust controller design for interlinking 

converter are given in this section. 

 

6.1.1 Robustness and Performance 

Robustness is the ability of the closed loop system to be immune to uncertainties in 

the system components. It is the key factor in the design of feedback systems and hence 

needs to be discussed prior to the closed loop analysis of the control system. Moreover, 

performance and robustness are two closely related properties. Where disturbance and 

robustness are determined by feedback, the performance is mostly related to the feed-

forward action of tracking the reference signal. These can be measured quantitatively by 

a group of six transfer functions, termed as ‘Gang of Six’. 

 

Figure 6.2. Basic feedback configuration. 
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Figure 6.2 shows a feedback control configuration where, three external inputs, 

reference signal, 𝑟, load disturbance, 𝑑 and measurement noise 𝑛 affect the feedback 

law. The set of all six transfer functions of the system as in [97-98] are; 

 
𝑷𝑪𝑭
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(6.1) 

When 𝐹 = 1, the system is in pure error feedback configuration and is characterised by 

four of the above six transfer functions as; 

𝑃𝐶

1+𝑃𝐶
 : Complementary sensitivity function 

𝑃

1+𝑃𝐶
 : Load disturbance sensitivity function (Input sensitivity function) 

𝐶

1+𝑃𝐶
 : Noise sensitivity function (Output sensitivity function) 

1

1+𝑃𝐶
 : Sensitivity function 

Thus, this ‘Gang of Four’ transfer functions[97] give an insight into the system 

robustness and performance with changes in the operating conditions and system 

components. These parameters play a vital role in the controller design of the hybrid 

microgrid system under consideration and are thus discussed here in this subsection. 

 

6.1.2 Linear Quadratic Regulator design 

Linear Quadratic Regulator (LQR) is the optimal theory of pole placement method. 

LQR algorithm defines the optimal pole location based on two cost function. Before 

designing the LQR controller for a linear state space model, certain characteristics of 
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model like stability, controllability and observability, are to be analysed for adequate 

system performance [99-100]. 

LQR is an optimal controller, based on state feedback method. With all controllable 

states, it minimizes the performance index of a linear system given as [101-102]; 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢                                                                                                               (6.2) 

For the linearized system given in equation (6.2), with infinite final time, the quadratic 

Performance Index (PI) is given as: 

𝐽 =
1

2
∫ [𝑥𝑇(𝑡)𝑄(𝑡)𝑥(𝑡) + 𝑢𝑇(𝑡)𝑅(𝑡)𝑢(𝑡)]𝑑𝑡 

∞

0
                                                          (6.3) 

The PI is to be minimized by the control input,u given as, 

𝑢 = −𝑘𝑥                                                                                                                       (6.4) 

where, 

𝑘 = 𝑅−1𝐵𝑇𝑃                                                                                                                (6.5) 

and Q and R are positive semi definite and positive definite weighing matrices 

respectively. 

Q and R, given in equation (6.3), are error weight matrices which constitute the 

relative effect of states and control inputs respectively to the final objective function of 

the given system. For efficient LQR controller design, these matrices are to be selected 

to effectively minimize the performance index (PI) given in as J.  

The matrices Q and R are chosen to be diagonal so that the objective function J is 

kept squared positive, given as; 

𝐽 = 𝑞1𝑥1
2 + 𝑞2𝑥2

2 + ⋯ + 𝑟1𝑢
2                                                                                      (6.6) 
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          The LQR technique gives effective system performance and is used in designing a 

controller for the higher and lower order control system to achieve required performance 

specifications. 

 

6.1.3 Small Signal Modelling of Interlinking Converter 

 

 

Figure 6.3. Circuit diagram of Interlinking Converter. 

 

The schematic diagram of IC in Figure 6.3 consists of a three phase ac source, RL 

filter, three phase six-switch bridge rectifier, dc link capacitor and a dc load (resistive). 

The main aim of this paper is to control the filter current and dc link voltage through 

proper switching pulses at the bridge switches. 

The differential equations for the mathematical modelling of the interlinking 

converter for AC to DC conversion operation[65], considering the basic concept of 

current through input inductors and the voltage across output capacitor as state variables 

in d-q frames are written as; 

𝑖𝑑̇ = −
𝑅

𝐿
𝑖𝑑 +

1

𝐿
𝑒𝑑 + 𝜔𝑖𝑞 −

𝑆𝑑

𝐿
𝑣𝑑𝑐                                                                                           (6.7) 

𝑖𝑞̇ = −
𝑅

𝐿
𝑖𝑞 +

1

𝐿
𝑒𝑞 − 𝜔𝑖𝑑 −

𝑆𝑞

𝐿
𝑣𝑑𝑐                                                                                            (6.8) 
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𝑣𝑑𝑐̇ =
3

2𝐶
(𝑆𝑞𝑖𝑞 + 𝑆𝑑𝑖𝑑) −

1

𝐶𝑅𝐿
𝑣𝑑𝑐                                                                                            (6.9) 

where,  𝑖𝑑𝑞 are the current flowing through the inductor on ac side in d-q axis; 𝑒𝑑𝑞 are the 

ac source voltages in d-q axis; 𝑆𝑑𝑞 are the switching sequence functions in d-q axis; 𝑣𝑑𝑐 

is the dc voltage at output across the load; 𝑅𝐿 is the load resistance;  𝜔 is the operating 

frequency of the system; 𝑅 and 𝐿 are the input filter parameters and 𝐶 is the dc link 

capacitor.  

𝑥1 = 𝑖𝑑; 𝑥2 = 𝑖𝑞;  𝑥3 = 𝑣𝑑𝑐                                                                                                     (6.10) 

𝑢1 = 𝑆𝑑;  𝑢2 = 𝑆𝑞; 𝑢3 = 𝑣𝑑                                                                                                     (6.11) 

After the substitutions for inputs and state variables as in (6.10-6.11) into 

mathematical equations in (6.7-6.9), the MIMO non-linear state-space model of the 

converter is given as in (6.12). 

𝑥̇ =

[
 
 
 
 −

𝑅

𝐿
𝑥1 + 𝜔𝑥2

−
𝑅

𝐿
𝑥2 − 𝜔𝑥1

−
𝑥3

𝐶𝑅𝐿 ]
 
 
 
 

+

[
 
 
 
 −

𝑥3

𝐿
0

1

𝐿

0 −
𝑥3

𝐿
0

3𝑥1

2𝐶

3𝑥2

2𝐶
0]
 
 
 
 

𝑢                                                                               (6.12) 

The small-signal interlinking converter model obtained through the linearization of 

the nonlinear state space (6.12) around a stable operating point, evaluated by equating it 

to zero and considering small state perturbations is rewritten in the standard form as 

(6.13). 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢; 𝑦 = 𝐶𝑥                                                                                                                          (6.13) 

where the jacobian matrices are obtained as;  

𝐴 =

[
 
 
 
 −

𝑅

𝐿
𝜔 −

𝑈1

𝐿

−𝜔 −
𝑅

𝐿
−

𝑈2

𝐿
3𝑈1

2𝐶

3𝑈2

2𝐶
−

1

𝑅𝐿𝐶]
 
 
 
 

  ;  𝐵 =

[
 
 
 
 −

𝑋3

𝐿
0

1

𝐿

0 −
𝑋3

𝐿
0

3𝑋1

2𝐶

3𝑋2

2𝐶
0]
 
 
 
 

;  𝐶 = [
1 0 0
0 1 0
0 0 1

]                                (6.14) 
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Thus, the state space model of the interlinking converter consists of three states 

and is utilised for the controller design formulation discussed in the next sections. 

 

6.2 Robust control of Interlinking Converter model 

In this thesis, the robust controller design of interlinking converter model has been 

achieved through adaptive tuning of controller parameters so as to enhance robustness to 

noise and system uncertainties. Three controllers have been considered in this analysis, 

namely; PID, FOPID and H∞ loop shaping controller, for tuning through PSO and ABC 

optimization algorithms. 

 

6.2.1 PID and FOPID controller 

Proportional-Integral-Derivative (PID) control is the feedback control mechanism 

which combines the proportional, derivative and integral actions to control the process 

variable and automatically adjust it as close as possible to the set-point or reference. A 

block diagram for feedback control is given in Figure 6.4. The PID controller transfer 

function is given in (6.15). This is the simplest type of controller and gives accurate 

analysis over a wide range of applications. However, the controller response varies with 

parameter changes, and its performance degrades over time. This may even lead to 

instability or errors in the output. Only three unknown controller specifications 

(𝑘𝑃, 𝑘𝐼 , 𝑘𝐷) are to be tuned which also limits the tuning strategy.  

𝐾𝑃𝐼𝐷(𝑠) = 𝑘𝑃 +
𝑘𝐼

𝑠
+ 𝑘𝐷𝑠                                                                                                        (6.15) 

Fractional Order Proportional-Integral-Derivative (FOPID) controller is an 

enhancement over the traditional PID control based on fractional calculus. It is 

characterized by five parameters, i.e. the Proportional gain (𝑘𝑃) the integral gain (𝑘𝐼), the 
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derivative gain (𝑘𝐷), integral order (𝜆) and derivative order (𝜇), thereby increasing the 

opportunity for tuning strategies involved in achieving better control. This type of control 

is highly immune to parameter variations and thus more robust [103]. Further, most of 

the practical systems are fractional order systems described by fractional order integro-

differential equations rather that integer order. Therefore, FOPID controller design for 

these systems is particularly more significant. Its transfer function is represented as in 

(6.16). 

𝐾𝐹𝑂𝑃𝐼𝐷(𝑠) = 𝑘𝑃 +
𝑘𝐼

𝑠𝜆
+ 𝑘𝐷𝑠𝜇                                                                                                (6.16) 

In the controller design problem, optimization techniques are increasingly being 

used for automatic and self-adaptive tuning of the various controller parameters.  Efficient 

tuning of these parameters such as 𝑘𝑃, 𝑘𝐼 , 𝑘𝐷 , 𝜆, 𝜇 in FOPID control scheme can achieve 

desired control objectives for various operating conditions. The swarm based 

optimization algorithms have gained popularity in various control related formulations 

due to their social interactive and self-organising problem-solving mechanisms. Two of 

the most popular swarm intelligence algorithms; PSO and ABC have been considered for 

optimal parameter tuning in this analysis and are discussed in detail in Section 4.1 in 

Chapter 4. 

 

 

Figure 6.4. Block diagram of the closed-loop system with PID/FOPID controller. 
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6.2.2 Loop shaping controller design 

This section is further divided into three parts: Augmented Plant Model derives a 

mathematical model of the standard augmented plant 𝑃, as shown in Figure 6.5 which is 

directly used in controller design. H-Infinity Loop Shaping Feedback Controller Design 

Formulation gives the various definitions and inequalities of H-infinity loop shaping 

controller, the constraints on the weight functions with reference to the sensitivity and 

complementary sensitivity functions. Optimization of Weight Functions determines a 

method for obtaining the optimized weight functions through ABC algorithm such that 

both performance and robustness can be attained. 

 

6.2.2.1 Augmented Plant Model 

A closed-loop plant 𝑃 formed by the converter model, weighting functions and 

controller is shown in Figure 6.5 is mathematically expressed as; 

[
𝑧
𝑦] = 𝑷 [

𝑤
𝑢
]                                                                                                                          (6.17) 

where 𝑢 and 𝑤 are the control and exogenous (reference) inputs respectively; 𝑦 and 𝑧 are 

the measured and controlled outputs. 

Considering the state-space model of the plant of the form; 

 𝑥𝑔̇ = 𝐴𝑔𝑥𝑔 + 𝐵𝑔𝑢;  𝑦𝑔 = 𝐶𝑔𝑥𝑔                                                                                                       (6.18) 

where, 𝑥𝑔 is the plant state vector and (𝐴𝑔, 𝐵𝑔, 𝐶𝑔, 0) is the state-space representation of 

the plant model. 

The state space realizations for the two weighing functions are given as; 

 𝑥𝑤1̇ = 𝐴𝑤1𝑥𝑤1 + 𝐵𝑤1(𝑤 − 𝑦𝑔) = −𝐵𝑤1𝐶𝑔𝑥𝑔 + 𝐴𝑤1𝑥𝑤1 + 𝐵𝑤1𝑤;  

 𝑧1 = 𝐶𝑤1𝑥𝑤1 + 𝐷𝑤1(𝑤 − 𝑦𝑔)                                                                                                        (6.19) 
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Figure 6.5. H-infinity loop shaping controller design formulation. 

 

𝑥𝑤2̇ = 𝐴𝑤2𝑥𝑤2 + 𝐵𝑤2𝑦𝑔 = 𝐵𝑤2𝐶𝑔𝑥𝑔 + 𝐴𝑤2𝑥𝑤2;  𝑧2 = 𝐶𝑤2𝑥𝑤2 + 𝐷𝑤1𝑦𝑔                 (6.20) 

where, 𝑥𝑤1 and  𝑥𝑤2 are the two weight function state vectors; (𝐴𝑤1, 𝐵𝑤1, 𝐶𝑤1, 0) and 

(𝐴𝑤2, 𝐵𝑤2, 𝐶𝑤2, 0) are their state-space representations.  

Thus the linearized state-space model of the overall plant is evaluated and rearranged in 

the standard form in equation (6.21). 

𝑥̇ = 𝐴𝑥 + 𝐵1𝑤 + 𝐵2𝑢  

𝑧 = 𝐶1𝑥 + 𝐷11𝑤 + 𝐷12𝑢  

𝑦 = 𝐶2𝑥 + 𝐷21𝑤 + 𝐷22𝑢                                                                                                                 (6.21) 

where; 𝑥 = [𝑥𝑔 𝑥𝑤1 𝑥𝑤2]𝑇;  𝑧 = [𝑧1 𝑧2]𝑇 

Thus, the representation of the augmented plant [101-102] is, 

𝑃(𝑠) ∶= [
𝑃11 𝑃12

𝑃21 𝑃22
] = [

𝐷11 𝐷12

𝐷21 𝐷22
] + [

𝐶1

𝐶2
] (𝑠𝐼 − 𝐴)−1[𝐵1 𝐵2] = [

𝐴 𝐵1 𝐵2

𝐶1 𝐷11 𝐷12

𝐶2 𝐷21 𝐷22

] 

(6.22)                                          

where, the state space matrices are evaluated to be; 

W1

W2G

K

P

w
{id*,iq*,vdc*}

ia,ib,ic

y
{eid,eiq,evdc}

z1

z2

-
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 𝐴 = [

𝐴𝑔 0 0

−𝐵𝑤1𝐶𝑔 𝐴𝑤1 0

𝐵𝑤2𝐶𝑔 0 𝐴𝑤2

]; 𝐵1 = [
0

𝐵𝑤1

0
]; 𝐵2 = [

𝐵𝑔

0
0

]; 𝐶1 = [
−𝐶𝑔𝐷𝑤1 𝐶𝑤1 0

𝐶𝑔𝐷𝑤2 0 𝐶𝑤2
];  

𝐷11 = [
𝐷𝑤1

0
]; 𝐷12 = [

0
0
]; 𝐶2 = [−𝐶𝑔 0 0]; 𝐷21 = 1; 𝐷22 = 0                                     (6.23) 

For the interlinking converter system under consideration, the control input 𝑢 =

[𝑆𝑑 𝑆𝑞 𝑣𝑑]; the reference input 𝑤 = [𝑖𝑑
∗  𝑖𝑞

∗  𝑣𝑑𝑐
∗ ] and the measured or error output 𝑦 =

[𝑒𝑖𝑑 𝑒𝑖𝑞 𝑒𝑣𝑑𝑐]. As discussed in Section 6.1, 𝑥𝑔 is a three state vector of the converter 

model. 𝑥𝑤1 and 𝑥𝑤2 are of three state each corresponding to the three plant output and 

error output variables. 

 

6.2.2.2 H-Infinity Loop Shaping Feedback Controller Design Formulation 

For a controller 𝐾(𝑠) connecting the plant output 𝑦 to plant input 𝑢, the requirement 

of H∞ loop shaping controller design problem is the formulation of a controller 𝐾(𝑠) 

which makes the closed loop system internally stable and minimizes its H∞ norm.  

The closed-loop system in Figure 6.5, can be expressed as; 

𝑧 = [𝑃11 + 𝑃12𝐾(𝐼 − 𝑃22𝐾)−1𝑃21]𝑤 = 𝐹𝑙(𝑃, 𝐾)𝑤                                                                   (6.24) 

Minimization of ‖𝐹𝑙(𝑃, 𝐾)‖∞is equivalent to minimization of 𝛾 such that 

‖𝐹𝑙(𝑃, 𝐾)‖∞ < 𝛾 ⇒ ‖
𝑊1𝑆
𝑊2𝑇

‖
∞

< 𝛾                                                                                                     (6.25) 

Thus, the objective of the H∞ loop shaping controller is to shape the sensitivity and 

complementary sensitivity functions, 𝑆 and 𝑇 respectively, by properly tuning their 

weights 𝑊1and 𝑊2 such that the lower fractional transformation (L.F.T.) function, 

𝐹𝑙(𝑃, 𝐾) is minimised [73,106-107]. It also aims to achieve a stable closed loop system. 

The two weight functions are to be properly chosen so that the loop shaping control 
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achieves the desired objective of enhanced system performance. These functions are 

selected such that; 𝑊1 is to be chosen such that the gain within the desired control 

bandwidth is high for increased disturbance rejection, i.e., reduced tracking error; 𝑊2 is 

to be chosen such that the gain outside the control bandwidth is high for good stability 

margins, i.e., increased robustness. Thus, a trade-off between reduced tracking error and 

robustness is to be achieved by proper selection of weighing functions. 

 

6.2.2.3 Optimization of Weight Functions 

Proper selection of the weight functions 𝑊1 and 𝑊2 requires the fulfilment of three 

loop shaping conditions. The first two conditions are determined from the constraint of 

LFT minimization as in the previous subsection such that; 

‖𝑊1𝑆‖∞ < 1                                                                                                                                       (6.26) 

‖𝑊2𝑇‖∞ < 1                                                                                                                                       (6.27) 

The third condition requires the 0-dB crossover frequency of 𝑊1 to be sufficiently 

below 0-dB crossover frequency of 1/𝑊2 which can also be confirmed in our controller 

design by fulfilling the relationship [73]; 

𝑆 + 𝑇 = 1                                                                                                                                            (6.28) 

Considering the general form of the weights as in (6.29-6.30), the selection criterion 

is based on the determination of certain parameters involved so that the loop shaping 

controller achieves the required performance measure. 

𝑊1 = 𝑎
𝑠 𝑔⁄ +𝜔𝐵𝑊

𝑠+ℎ𝜔𝐵𝑊
                                                                                                                                  (6.29) 

𝑊2 = 𝑏
𝑠+𝜔𝐵𝑊 𝑔⁄

ℎ𝑠+𝜔𝐵𝑊
                                                                                                                                  (6.30) 
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where, 𝑎, 𝑏 are the scaling factors for 𝑊1 and 𝑊2 respectively; 𝑔 is the peak amplitude; ℎ 

is the maximum allowed offset at steady state and 𝜔𝐵𝑊is the desired system bandwidth. 

 

 

Figure 6.6. H-infinity loop shaping controller configuration for IC. 

 

By fixing the value of maximum offset to 0.0001, the optimum values of remaining 

4 variables is to be obtained so as to fulfil the above discussed conditions. In general 

controller design problems these parameters are determined by trial and error method. 

For better weight selection process, these variables can be optimized through various 

optimization tools available. ABC being the most versatile and effective optimization 

algorithm has been utilised for the evaluation of these weight functions. 

It is worthy to mention that, the efficacy of the H-infinity loop shaping controller 

design is embedded in the inherit quality of reducing the tracking errors, increasing the 

system robustness and achieving the bandwidth requirements. The automatic noise 

attenuation, system perturbations and unknown uncertainties make this controller suitable 

for application to mathematical models of systems prone to unpredictable system 

changes, for example, the interlinking converter for hybrid based systems. Therefore, in 
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this work, the control strategy is designed for an augmented configuration of the converter 

state space model incorporating properly selected weight functions. A proper selection of 

these weights ensures adequate system performance in tracking errors and uncertainties. 

It incorporates a weight selection mechanism based on optimization of the weight 

parameters according to the PSO and ABC optimization algorithms. These algorithms 

provide nature inspired mathematical tool for evaluating optimal parameter values with 

optimal performance index within certain constraints. Thus, the optimized weights 

achieve better controller performance due to the adaptive and versatile swarm intelligence 

algorithm.  

 

6.3 Simulation Results 

The simulation results obtained for the robust control of interlinking converter in 

MATLAB 2016a have been given in this section. Tuning of controller parameters is 

performed in MATLAB environment and the optimization coding is simulated with 

Intel(R) Core™ i5-5200U CPU 2.20GHz (4.00 GB RAM). 

 

6.3.1 Controller design through PSO and ABC algorithm 

The state space model of the IC system as in equation (6.13) has been developed 

with the circuit parameters as given in Table 6.1. for subsequent controller design for 

proper control of the switching of the inverter system. Proper tuning of the controller 

parameters, i.e., (𝑘𝑃 , 𝑘𝐼 , 𝑘𝐷) in PID, (𝑘𝑃, 𝑘𝐼 , 𝑘𝐷 , 𝜆, 𝜇) in FOPID controller and (a, b, 

g, 𝜔𝐵𝑊, ℎ) in loop shaping controller, is essential to achieve the required closed loop 

system behaviour of high robustness and immunity to variations. These parameters can 

automatically be tuned through optimization techniques by simple programming 

procedures. 



Chapter 6. Robust Controller Design 

 

156 

 

Table 6.1. IC circuit parameter values. 

 

PSO and ABC optimization algorithms have been used for optimal parameter 

tuning of the three control strategies in this analysis, such that the objective function or 

fitness function in all of the cases is same for generality and is defined as the H-infinity 

norm of the closed loop feedback system of the IC with the controller, i.e., 

𝐽(𝐺, 𝐾) = ‖𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝐺, 𝐾)‖∞                                                                                                         (6.31) 

i.e., Minimize ‖
𝑮

𝟏+𝑮𝑲
‖

∞
           

As in Figure 6.6. of the H-infinity controller, the current on the ac side and the dc 

link voltage are fed to the controller which generates a control signal for the switching 

function 𝑆𝑑, 𝑆𝑞. Assuming the input ac signal 𝑒𝑑 as constant, the error from the reference 

input is compensated by 𝑊1 and 𝑊2 enhances the system performance.      

The user defined parameters of the PSO and ABC algorithm for this optimization 

procedure are given in Table 6.2. PID and FOPID controller parameters and the weight 

variables of the loop shaping controller determined by the optimization algorithms so as 

to minimize the objective function in (6.31) are listed in Table 6.3. 

                                                                                          

 

S.No. Parameter Value  S.No. Parameter Value 

1 Rated Power 1kVA  5  𝑅 4 Ω 

2 Grid voltage 400 V  6  𝐿 165 mH 

3 Grid Frequency 60 Hz  7  𝐶 2 mF 

4 Switching frequency 3000 Hz  8  𝑅𝐿 100 Ω 

    9  𝑒𝑑 380 V 
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Table 6.2.  Parameters of the PSO and ABC algorithm for robust controller tuning. 

PSO 

Parameter Value 

Swarm size 40 

No. of runs 50 

c1,c2 2.2,2.1 

[wmax,wmin] [0.9,0.4] 

ABC 

Parameter Value 

Colony size, nc 40 

No. of employed or onlooker 

bees, N 
20 

No. of runs, Maxiter 10-40 

Limit 60 

No. of dimensions in the 

particle, d 
4 

 

The minimized values of the objective function and the execution time of the 

optimization program in MATLAB in terms of CPU time for the comparative analysis of 

PSO and ABC optimization algorithms have also been given in this table. It is worthy to 

mention that the ABC optimization algorithm proves to be better than the PSO algorithm 

in terms of both reduced CPU time and minimum objective function values attained. 

Thus, ABC tuned controller variables are used in this work for further analysis. 

Further analysis of the loop shaping control scheme achieved through optimization 

based weight selection shows its efficiency in controller design formulation. The singular 

value plots in Figure 6.7. (a) and 6.7. (b), enhances the graphical interpretation of the loop 

shaping inequalities as in (23)-(24), when evaluated for the system under consideration. 

The sigma plot of sensitivity function shows an increasing slope from 1 rad/sec to around 
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100000 rad/sec which is always lower to the sigma plot of inverse W1 function as in 

Figure 6.7.(a). Similarly, Figure 6.7. (b) shows a constant singular value for 

complementary sensitivity function till 10000 rad/sec which is lower to the sigma plot of 

inverse W2 function. Figure 6.7. (c) demonstrates the complementary behaviour of the S 

and T functions with their sum being always equal to one as in equation (6.28). For a 

range of frequencies from 102 to around 106 rad/sec the sensitivity is observed to be an 

increasing function whereas, complementary sensitivity is a decreasing function. 

The overall analysis of an efficient loop shaping controller design for the 

interlinking controller can be determined from the frequency plot in Figure 6.7. (d) which 

clearly demonstrates the trade-off achieved between performance and robustness such 

that 𝜎(𝑊1) gives the performance bound for disturbance attenuation and 𝜎(𝑊2) gives the 

robustness bound for good stability margins.  

 

6.3.2 H-infinity loop shaping controller order reduction 

The augmented plant for the interlinking converter system consists of nine states 

formed by the three states each contributed by the open loop converter state space and the 

weight functions W1 and W2. Thus, the H∞ controller designed for the interlinking 

converter is also of the same 9th order which can easily be reduced to its lower order 

equivalent by any of the direct techniques available in MATLAB. In this work, the 

controller has been reduced to its  4th order equivalent by Schur-based MATLAB function 

[108-110] such that a reduced order controller depicts similar performances in time and 

frequency domains as seen in Figure 6.8. 
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(a) (b) 

  

(c) (d) 

Figure 6.7. Singular value plots for sensitivity and complementary sensitivity functions 

along with corresponding weights and loop shaping control. 

 

  

Figure 6.8. Time and frequency response of closed loop system with full order and 

reduced order H-infinity controller. 
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The efficiency in order reduction is shown in Figure 6.9. (a) with the coincident 

singular values of reduced order controller Kred to the full order controller K over all the 

operating frequencies. 

The constraints in loop shaping controller design remain intact with the controller 

order reduction as demonstrated in Figure 6.9.(b), where the sensitivity and 

complementary sensitivity functions with reduced order controller can be seen to follow 

the ones with full order controller. 

 

6.3.3 Case Study of different controller responses 

A case study of the system responses with the three optimisation based controllers; 

PID, FOPID and H-infinity loop shaping with changes in input, system states and 

operating conditions are discussed below.  

 

CASE 1:  

Closed loop response of d-axis inductor current with a step change in switching. 

The closed-loop response of 𝑖𝑑with change in the switching sequence 𝑆𝑑 for three 

of the controllers: PID Controller, FOPID Controller and H∞ loop shaping controller, 

designed for interlinking converters is shown in Figure 6.10. The closed loop response of 

H-infinity controller shows a reduced settling time as compared to the other two controller 

responses with peak overshoot being the same as that for a PID controller. 
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(a) (b) 

Figure 6.9. Singular values of full order and reduced order H∞ controller and their 

sensitivity functions for the system under consideration. 

 

Figure 6.10. Inductor current (d axis) with step changes in switching. 

  

(a) (b) 

Figure 6.11. Inductor current (dq) with a change in plant parameter. 
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(a) (b) 

Figure 6.12. Inductor current (dq) with a change in the controller parameter. 

  

(a) (b) 

Figure 6.13. Inductor current (dq) with a change in plant operating point. 

CASE 2:  

Closed-loop responses with a change in plant parameter. 

With a fixed change in plant, for e.g., change in resistance on ac side to 10 ohms, 

the responses for dq-inductor currents shown in Figure 6.11., indicates that the loop 

shaping controller behaviour remains the same. The responses have been shown with the 

step disturbance in the input 𝑣𝑑 at the starting and after 1 second. The uncertainty causes 
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the PID controller responses to become unstable whereas the FOPID responses deviate in 

their steady state values.  

 

CASE 3:  

Closed-loop responses with a change in the controller parameter. 

With a fixed uncertainty in controller parameters, for e.g., scaling in parameters by 

10 times, the responses for dq-inductor currents shown in Figure 6.12., indicates that the 

loop shaping controller behaviour remains the same. The responses have been shown with 

the step disturbance in the input 𝑣𝑑 at the starting and after 1 second. The uncertainty 

causes the PID controller responses and the FOPID controller responses to deviate in their 

steady state values with larger deviation in PID than in FOPID response.  

 

CASE 4:  

Change in operating points with loop shaping controller. 

The operating point of the plant can change due to many reasons such as, 

environment changes, component errors, power mismatches etc. Figure 6.13. shows the 

closed loop responses of dq-inductor currents for loop shaping controller with three 

different operating points for the interlinking converter system.  

The three operating points considered for the plant are; 

𝑥𝑜𝑝1 = [75.92071 − 37.99367 − 299.82019];  

𝑥𝑜𝑝2 = [25.32752 − 12.66924 − 49.35576];  

𝑥𝑜𝑝3 = [37.98270 − 19.00380 − 111.99919]                                                         (6.32)                                                                                                                            
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It can be seen from the figure that there are no significant changes in controller responses 

with different operating points. 

 

6.4 Eigenvalue Analysis 

An eigenvalues analysis determines the various system characteristics which help 

in the study of system dynamics and stability. Two categories of modes can be 

distinguished based on real and complex eigenvalues namely; non-oscillatory mode and 

oscillatory mode respectively. The frequency of oscillation for oscillatory modes is 

obtained from the imaginary part of eigenvalues whereas, the real part of eigenvalues 

gives the damping effect of that root on the system as in equation (5.3). 

The eigenvalues of the open loop IC system and closed loop system with an H-

infinity loop shaping controller are presented in Table 6.4. Since all the roots have 

negative real parts, thus, the necessary condition for small signal stability, i.e., 𝜎𝑖 < 0, is 

fulfilled. The table also enlists the various operating modes with their corresponding 

damping and oscillations. Two modes have been identified in the open loop system 

whereas, almost 10 modes exist in the closed loop system. In both the open loop and H∞ 

based closed loop system, mode 1 is the oscillatory mode contributing to the frequency 

of oscillation to the system as 25.2113 Hz and 25.7342 Hz respectively.  

Apart from the eigenvalues, the closed loop time responses in Figure 6.10.-6.13. 

and the frequency responses of two transfer functions 𝑖𝑑 𝑣𝑑⁄  and 𝑖𝑞 𝑣𝑑⁄  shown in the 

Figure 6.14., also demonstrates the stable performance of the overall system. The 

frequency response of PID and FOPID are similar in behaviour as opposed to the loop 

shaping controller response. The responses from loop shaping controller exhibits a larger 

stability margins than the other two controllers. Thus, loop shaping controllers exhibit 
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more robustness and tend to remain in stable region despite uncertainties in system and 

operating conditions.  

 

Table 6.4. Eigenvalues of open loop and closed loop system with H-infinity controller. 

Index 
Real part ± jImaginary 

part 

Oscillatory 

Mode 

Non-

oscillatory 

Mode 

Damped 

frequency, 

𝒇𝒊(Hz) 

Dampin

g ratio, 𝝃 

OPEN LOOP SYSTEM 

1 -20.7983 0  2  1 

2,3 -13.9226 158.326 1  25.2113 0.0876 

       

CLOSED LOOP SYSTEM 

1,2,3 -95.100×10-3 0  2  1 

4,5,6 -9.5100×106 0  3  1 

7 -22.055×1012 0  4  1 

8 -185.645×109 0  5  1 

9 -614.326×106 0  6  1 

10 -9.814×106 0  7  1 

11 -7.399×106 0  
8 

 1 

12 -7.401×106 0   1 

13,14 -8.605 161.611 1  25.734 0.053 

15 -18.603 0  9  1 

16 -3.795×103 0  

10 

 1 

17 -3.781×103 0   1 

18 -3.782×103 0   1 

 

6.5 Summary 

Robust controller design for an AC-DC IC state space model with three states, 

namely, 𝑖𝑑, 𝑖𝑞 and 𝑣𝑑𝑐based on parameter tuning by optimization algorithms: PSO and 

ABC, has been presented. PID, FOPID and H-infinity loop shaping controllers have been  
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(a) 

 

(b) 

Figure 6.14. Bode-plot for PID, FOPID and loop shaping controller based closed-loop 

transfer functions for inductor currents. 
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designed by optimization of their parameters to attain a reduced H∞-norm of the closed 

loop system with controller.  

The various constraints on loop shaping controller design and weight functions has 

been discussed to obtain the optimal weights through optimization so as to achieve the 

desired trade-off between performance and disturbance rejection. The designed 

controllers achieve the desired objective of proper control of switching pulses for 

regulation of ac inductor currents and dc link capacitor voltage. Further, reduction in order 

of the loop shaping controller from 9th to 4th order controller does not alter the controller 

performance to a large extent. All these simulation results have been evaluated in the 

MATLAB environment. An eigenvalue analysis and its associated linearized stability 

concerns have also been taken into consideration. 


