
Chapter 3 

Small Signal Modelling 

 

The previous chapter gives the existing background in literature for the research 

work carried out in this thesis. This chapter focusses on the small signal analysis of the 

microgrid system while obtaining the state space representations of complex AC 

microgrid system and DC microgrid system. The detailed mathematical formulation of 

these systems with the transfer function modelling has been analysed. The chapter also 

includes simulation results obtained in MATLAB 2016a environment for the small signal 

modelling with certain state perturbations. 

 

3.1 Preliminaries 

Some of the preliminaries to small signal modelling of AC and DC microgrid 

systems in both autonomous and grid-tied mode have been discussed in this section. 

 

3.1.1   Reference frames  

The mathematical modelling in power system analysis has been greatly simplified 

with the transformation theory wherein the dependent variables can be decoupled for 

solving time-varying complex electrical equations[75]. The three commonly used 

reference frames are: 

 Three phase reference frame (ABC-Frame): The three axis are coplanar and at 120 

degree from each other. 
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 Two phase stationary reference frame (αβ-Frame): Two axis are coplanar and 

perpendicular(orthogonal) to each other. 

 Two phase synchronous reference frame (dq-Frame): d-axis is at θ degree(rotating 

angle) to α axis and q-axis is perpendicular to d-axis. 

Among the various transformations available, the most commonly used are; Park 

Transformation and Clarke Transformation [77]. Mathematical interpretations of these 

transformations has been discussed below. 

Park Transformation 

The two axis orthogonal stationary reference frame quantities are transformed to 

two axis ortogonal rotating reference frame by Park Transformation. 

 𝑥𝑑 = 𝑥𝛼 cos 𝜃 + 𝑥𝛽 sin 𝜃 

𝑥𝑞 = 𝑥𝛽 cos 𝜃 − 𝑥𝛼 sin 𝜃                                                                                                             (3.1) 

where, 𝑥𝑑𝑞is the rotating two phase quantity and 𝑥𝛼𝛽 is the stationary two phase quantity. 

𝜃 is the rotating angle. 

 [𝑑𝑞] = [
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃
] [𝛼𝛽]                                                                                                    (3.2) 

Where [
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃
]is called the Park matrix. 

Clarke Transformation 

The three phase quantities are transformed from three phase reference frame to two 

phase stationary orthogonal reference frame by Clarke Transformation. 

𝑥𝛼 =
2

3
𝑥𝑎 −

1

3
(𝑥𝑏 − 𝑥𝑐)                                                                                                                 

 𝑥𝛽 =
2

√3
(𝑥𝑏 − 𝑥𝑐)                                                                                                                      (3.3) 
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where, 𝑥𝑎𝑏𝑐is the three phase quantity and 𝑥𝛼𝛽 is the two phase orthogonal quantity. 

[𝛼𝛽] =
2

3
× [

1 −1/2 −1/2

0 √3/2 −√3/2
] [𝑎𝑏𝑐]                                                                                      (3.4) 

where 
2

3
× [

1 −1/2 −1/2

0 √3/2 −√3/2
] is called the Clarke matrix. 

 

 

Figure 3.1. Frame transformation 

 

The inter-conversion between the three reference frames as in Figure 3.1. is self-

explanatory [77]. Further, the transformation of three phase quantities from ABC frame 

to dq frame is a result of a combination of both Park and Clarke matrices. 

 

3.1.2   Operating point evaluation in linearization 

In this thesis work, the small signal modelling of a complex microgrid system by 

evaluating the complete state space model of microgrid system is initiated by determining 

the Operating point to linearize the non-linear model in its neighbourhood [78]. Given a 

non-linear set of state equations, the general form is given as; 

),( uxfx  ; ),( uxgy                                                                                                                  (3.5) 

ABC FRAME

 FRAME

dq FRAME

CLARKE 
MATRIX

PARK 
MATRIX
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To find the linear equivalent of these non-linear equations, it is desired to evaluate 

an operating point about which the model can be safely considered as linear. These set of 

operating points (x0 ,u0) are calculated as; 

     ),(0 00 uxf ; ),( 000 uxgy                                                                                                        (3.6)                                                                                                                                                                                                               

Thereafter, the model is linearized by finding the deviation about the operating point as; 

0xxx  ; 0uuu  ; 0yyy   

There are several stable operating points about which a non-linear model can be 

linearized but once linearized the system stability can be analyzed only in the vicinity of 

that specific operating point around which it has been linearized. 

 

3.1.3   State Perturbation 

State perturbation is the analysis of perturb in the matrices constituting the state 

space representation of a system so as to study the impact of such a perturbation on the 

overall system dynamics. Such a perturb may occur due to variations in system parameters, 

component variations, uncertainties in loading, changes in operating conditions etc. 

Given a state perturbation of ∆𝐴 in state space, as;  

𝑥̇ = (𝐴 + ∆𝐴)𝑥                                                                                                                         (3.7) 

The perturbed eigen-triplets; i.e., eigenvalue Δ𝜆, right eigenvectors Δ∅𝑅 and left 

eigenvectors Δ∅𝐿 of the perturbed system are given as; 

(∅𝐿 + Δ∅𝐿)(𝐴 + Δ𝐴) = (∅𝐿 + Δ∅𝐿)(𝜆 + Δ𝜆)                                                                        (3.8) 

(𝐴 + Δ𝐴)(∅𝑅 + Δ∅𝑅) = (𝜆 + Δ𝜆)(∅𝑅 + Δ∅𝑅)                                                                      (3.9) 
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The perturbations in state space modelling may even affect the small signal stability 

and hence, needs to be considered while evaluating the complete state space modelling of 

the complex system i.e., isolated microgrid system [16,79]. While a small state 

perturbation, ∆𝐴 may not alter a stable system, but the stability of a marginally stable 

system or systems on the boundary, such as those with very small real-valued poles, may 

shift towards the right half of s-plane and, hence system may become unstable. This is 

discussed in case 4 of Table 3.1 under ‘Simulation Results’. 

 

3.2 Small signal modelling of AC microgrid 

 

 

Figure 3.2. AC Microgrid Architecture. 

 

In this work, a small signal model of an AC Microgrid system using conventional 

droop controlled invertor system has been developed. The individual DERs are connected 

to the load through a voltage source inverter circuit such that the gating pulses are 
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controlled through an inner and outer loop droop controller. The architecture of the 

microgrid is discussed in next section.  

 

3.2.1   AC microgrid architecture 

The microgrid architecture considered in this work is represented in Figure 3.2. It 

consists of two DERs connected to their individual local buses through LC filter and 

coupling inductances. The two local buses are coupled through a line of impedance 

Rline+jXLline. When the Point of Common Coupling (PCC) is closed, the AC buses are 

connected to the main utility grid and hence, the microgrid works in ‘Grid-tied mode’. 

Whereas, when PCC is open, then the microgrid is cut-off from the main grid and is in 

‘Autonomous mode’. 

Although the small signal model of Microgrid exists in the literature as discussed in 

Chapter 2, the small signal model with necessary mathematical formulation has been 

obtained in this chapter for ease of the reader, as it is required in subsequent order 

reduction analysis in the preceding chapters. The small signal modelling of the system in 

Figure 3.3., requires the state space analysis of the two inverters, loads and line dynamics.  

 

3.2.2   State space modelling in autonomous mode 

Figure 3.3 shows the block diagram of an autonomous DG based inverter. The DG 

is connected to the load and common bus through a Voltage Source Inverter (VSI). The 

control strategy is this block diagram is implemented by three control loops: (a) outer 

power loop, which evaluates the desired frequency and voltage of the inverter through 

droop control technique; (b) Inner voltage control loop, which gives the reference currents 

through inductor; (c) Inner current control loop, which evaluates the reference voltages 
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to direct the State Vector Pulse Width Modulation (SVPWM) block to generate signal for 

the inverter [80].  

The basic idea behind power sharing in the power controller block is to compensate 

any increase in the load side, in accordance with droop characteristics, through decrease 

in the frequency and voltage amplitude of the system [7]. The instantaneous active and 

reactive powers are calculated from the output currents and voltages. The average powers 

corresponding to the fundamental component are then obtained by passing these 

instantaneous powers through low pass filter with cut- off frequency of 𝜔𝑐.  

The reference frequency and voltage signals are therefore generated using 

conventional P −ω and Q − V droop characteristic equations, such that, 

        
mPn

r 
                                                                                                           (3.10)                                                                                                               

       nQVv noq
r

oq  ,                                                                                                   (3.11)                                                                      

where, m and n are the static droop gain. 

A dq-based Phase Locked Loop (PLL) with conventional PI strategy was chosen to 

measure the frequency of the system. The input signal to PLL block is the d-axis 

component of the voltage measured across the filter capacitor. In voltage control loop, 

the reference signals obtained from power controller are compared to the measured 

angular frequency from PLL block and measured q axis voltage by using conventional PI 

controllers. The reference inductor currents generated by voltage controller are compared 

by their measured values to obtain an error signal which thereby produces set-point 

voltage for input to SVPWM block. Reduced Total Harmonic Distortion (THD), 

simplified DSP implementation and fast processing makes, Space Vector Pulse Width 

Modulation advantageous over other PWM techniques. It lowers the frequency oscillation 

and is thus used in these microgrid systems. 
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3.2.2.1 Local to global reference frame transformation 

Generally in a microgrid system modelling, the load and line dynamics are referred 

in global reference frame, whereas each inverter is mathematically modelled in its own 

local frame (d-q). The individual inverter state equations are derived in terms of their 

individual local reference frame [10]. The input and output quantities of individual 

inverters can be transformed from their individual frame to a common reference frame 

(D-Q) using the transformation matrix as given (3.12).The angle 𝜃, as shown in Figure 

3.4., represents the angle between an individual inverter reference frame and the common 

global reference frame, which translates electrical quantities from local to common frame 

and vice versa. 








 






cossin

sincos
T                                                                                                       (3.12)                                                                                                 

where,   )( common  

Considering the system to be autonomous, i.e., disconnected to main grid, the phase 

angle measured by the PLL of inverter 1 can be chosen as the reference for the overall 

interconnected system. The resultant reference angles calculated for both DERs can be 

used as; 

   0111  PLLPLL                                                                                                  (3.13)                                                                                                                                

   212 PLLPLL                                                                                                      (3.14)                                                                                                                                        

where, 1PLL and 2PLL are calculated from DER1 and DER2, respectively. 
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Figure 3.4. Local to global reference frame transformation. 

 

3.2.2.2 Control scheme for VSI duty cycle regulation 

The control scheme for the small signal model of the inverter is divided into several 

modules to enhance the understanding of the functionality of its various controllers 

involved. 

 

Phase Locked Loop 

 

Figure 3.5. Block diagram of PLL 

 

A dq-based PLL as in Figure 3.5. was chosen to measure the frequency of the 

system. The input signal to PLL is the d-axis component of the voltage measured across 

the filter capacitor. Therefore, the phase is locked such that 𝑣𝑜𝑑 = 0. The PLL dynamics 

for measured frequency,  𝜔𝑃𝐿𝐿 and measured phase angle, 𝛿 are given as; 

𝑣̇𝑜𝑑,𝑓  =  𝜔𝑐.𝑃𝐿𝐿 𝑣𝑜𝑑 − 𝜔𝑐.𝑃𝐿𝐿 𝑣𝑜𝑑,𝑓 

φ𝑃𝐿𝐿̇ = −𝑣𝑜𝑑,𝑓 

Qq1 

  

               d1

q2

               d2

D

+
LPF

 
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𝜔𝑃𝐿𝐿 = 377 −  𝑘𝑝.𝑃𝐿𝐿 𝑣𝑜𝑑,𝑓 +  𝑘𝑖.𝑃𝐿𝐿 𝜑𝑃𝐿𝐿 

𝛿̇ =  𝜔𝑃𝐿𝐿 

The resultant state equations from PLL as obtained by linearization around an equilibrium 

point are given below: 

∆𝑣̇𝑜𝑑,𝑓  =  𝜔𝑐.𝑃𝐿𝐿 ∆𝑣𝑜𝑑 − 𝜔𝑐.𝑃𝐿𝐿 ∆𝑣𝑜𝑑,𝑓                                                                                  (3.15) 

∆φ𝑃𝐿𝐿
̇ = −∆𝑣𝑜𝑑,𝑓                                                                                                                         (3.16) 

 ∆𝛿̇ = − 𝑘𝑝.𝑃𝐿𝐿 ∆𝑣𝑜𝑑,𝑓 +  𝑘𝑖.𝑃𝐿𝐿 ∆𝜑𝑃𝐿𝐿                                                                                        (3.17) 

 

Power Controller 

 

Figure 3.6. Block diagram of Power Controller. 

 

The basic idea of power sharing function in the power controller module is to 

balance any increase in the load by decreasing the frequency and voltage amplitude of the 

system according to the droop characteristics. The instantaneous active and reactive 

powers are calculate from the output currents and voltages as shown in Figure 3.6 and 

given in (3.18-3.19). The average powers corresponding to the fundamental component 

are then obtained by passing these instantaneous powers through low pass filter with cut-

off frequency of 𝜔𝑐. 

LPF
m
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LPF
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𝑝 =
3

2
(𝑣𝑜𝑑𝑖𝑜𝑑 + 𝑣𝑜𝑞𝑖𝑜𝑞)                                                                                                       (3.18) 

𝑞 =
3

2
(𝑣𝑜𝑞𝑖𝑜𝑑 −  𝑣𝑜𝑑𝑖𝑜𝑞)                                                                                                             (3.19) 

𝑃 =
𝜔𝑐

𝑠 + 𝜔𝑐
 𝑝 ⇒ 𝑃̇ = −𝑃𝜔𝐶 + 1.5𝜔𝐶(𝑣𝑜𝑑𝑖𝑜𝑑 + 𝑣𝑜𝑞𝑖𝑜𝑞) 

𝑄 =
𝜔𝑐

𝑠 + 𝜔𝑐
 𝑞 ⇒ 𝑄̇ = −𝑄𝜔𝐶 + 1.5𝜔𝐶(𝑣𝑜𝑑𝑖𝑜𝑑 − 𝑣𝑜𝑞𝑖𝑜𝑞) 

         The reference frequency and voltage signals are generated using conventional P −ω 

and Q − V droop characteristic equations given in (3.10-3.11). The small signal dynamics 

of power controller is re-written after linearization as; 

∆𝑃̇ = −𝜔𝐶∆𝑃 + 1.5𝜔𝐶(𝑉𝑜𝑑∆𝑖𝑜𝑑 + 𝐼𝑜𝑑∆𝑣𝑜𝑑 + 𝑉𝑜𝑞∆𝑖𝑜𝑞 + 𝐼𝑜𝑞∆𝑣𝑜𝑞)                               (3.20) 

∆𝑄̇ = −𝜔𝐶∆𝑄 + 1.5𝜔𝐶(𝑉𝑜𝑞∆𝑖𝑜𝑑 + 𝐼𝑜𝑑∆𝑣𝑜𝑞 − 𝑉𝑜𝑑∆𝑖𝑜𝑞 − 𝐼𝑜𝑞∆𝑣𝑜𝑑)                          (3.21) 

 

Voltage Controller 

 

Figure 3.7. Block diagram of Voltage Controller. 

 

In this block in Figure 3.7., the reference signals obtained from power controller are 

compared to the measured angular frequency from PLL block and measured q axis 




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voltage as shown in Figure 3.6. Conventional PI controllers are used in these controllers. 

As seen from the figure, the voltage controller equations are derived as; 

φ𝑑̇ = 𝜔𝑃𝐿𝐿 −  𝜔𝑟   ;          𝑖𝑙𝑑
    𝑟 =  𝑘𝑖𝑣,𝑑  𝜑𝑑 +  𝑘𝑝𝑣,𝑑 𝜑𝑑̇ 

φ𝑞̇ = 𝑣𝑜𝑞
     𝑟 − 𝑣𝑜𝑞   ;         𝑖𝑙𝑞

    𝑟  =  𝑘𝑖𝑣,𝑞 𝜑𝑞 +  𝑘𝑝𝑣,𝑞 𝜑𝑞̇ 

The linearized state equations contributed by voltage controller to the inverter model are: 

∆φ𝑑
̇ = ∆𝜔𝑃𝐿𝐿 + 𝑚∆𝑃                                                                                                               (3.22) 

 ∆φ̇𝑞 = −𝑛∆𝑄 −  ∆𝑣𝑜𝑞                                                                                                                (3.23) 

Throughout the modelling process, all PI gains have been tuned by trial and error method. 

Current Controller 

 

Figure 3.8. Block diagram of current controller. 

 

The reference inductor currents generated by voltage controller are compared by 

their measured values to obtain an error signal which thereby produces set-point voltage 

for input to SVPWM block. The dynamical equations from current controller as in Figure 

3.8. are: 




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𝛾̇𝑑 = 𝑖𝑙𝑑
𝑟 − 𝑖𝑙𝑑  ;      𝑣𝑖𝑑

     𝑟 =  − 𝜔𝑛 𝐿𝑓 𝑖𝑙𝑞 +  𝑘𝑖𝑐,𝑑  𝛾𝑑 +  𝑘𝑝𝑐,𝑑𝛾̇𝑑 

𝛾̇𝑞 = 𝑖𝑙𝑞
𝑟 −  𝑖𝑙𝑑  ;      𝑣𝑖𝑞

     𝑟 =   𝜔𝑛 𝐿𝑓 𝑖𝑙𝑑 + 𝑘𝑖𝑐,𝑞 𝛾𝑞 + 𝑘𝑝𝑐,𝑞𝛾̇𝑞 

The state equations contributed by current controller to the overall state space model 

dynamics are; 

∆𝛾̇𝑑 = 𝑘𝑖𝑣,𝑑 ∆𝜑𝑑 + 𝑘𝑝𝑣,𝑑 ∆𝜑𝑑̇ −  ∆𝑖𝑙𝑑                                                                                   (3.24) 

 ∆𝛾̇𝑞 = 𝑘𝑖𝑣,𝑞 ∆𝜑𝑞 + 𝑘𝑝𝑣,𝑞 ∆𝜑𝑞̇ −  ∆𝑖𝑙𝑞                                                                                    (3.25) 

 

3.2.2.3 LC Filter and Coupling inductor model 

A passive low-pass filter is used to attenuate switching frequency ripple. By 

considering the input and output voltages of inverter as equal, the state equations 

governing the filter dynamics derived by Kirchoff’s laws are; 

𝑖̇̇𝑙𝑑 =  
1

𝐿𝑓
 (−𝑟𝑓𝑖𝑙𝑑 + 𝑣𝑖𝑑 − 𝑣𝑜𝑑) + 𝜔𝑃𝐿𝐿𝑖𝑙𝑞 

𝑖̇̇𝑙𝑞 =  
1

𝐿𝑓
 (−𝑟𝑓𝑖𝑙𝑞 + 𝑣𝑖𝑞 − 𝑣𝑜𝑞) + 𝜔𝑃𝐿𝐿𝑖𝑙𝑑 

𝑖̇̇𝑜𝑑 =  
1

𝐿𝑐
 (−𝑟𝑐𝑖𝑜𝑑 +  𝑣𝑜𝑑 − 𝑣𝑏𝑑) +  𝜔𝑃𝐿𝐿𝑖𝑜𝑞 

𝑖̇̇𝑜𝑞 =  
1

𝐿𝑐
 (−𝑟𝑐𝑖𝑜𝑞 +  𝑣𝑜𝑞 − 𝑣𝑏𝑞) +  𝜔𝑃𝐿𝐿𝑖𝑜𝑑 

𝑣̇𝑜𝑑 =  
1

𝐶𝑓
 (𝑖𝑙𝑑 − 𝑖𝑜𝑑) +  𝜔𝑃𝐿𝐿 𝑣𝑜𝑞 + 𝑅𝑑(𝑖̇̇𝑙𝑑 − 𝑖̇̇𝑜𝑑) 

𝑣̇𝑜𝑞 =  
1

𝐶𝑓
 (𝑖𝑙𝑞 − 𝑖𝑜𝑞) −  𝜔𝑃𝐿𝐿 𝑣𝑜𝑑 + 𝑅𝑑(𝑖̇̇𝑙𝑞 − 𝑖̇̇𝑜𝑞) 

Thus, the six filter state space representation after small perturbation and 

subsequent linearisation of the above equations are given as; 
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∆𝑖̇̇𝑙𝑑 =  −
𝑟𝑓

𝐿𝐹
∆𝑖𝑙𝑑 +

1

𝐿𝐹
∆𝑣𝑖𝑑 −

1

𝐿𝐹
∆𝑣𝑜𝑑 + 377∆𝑖𝑙𝑞 −  𝑘𝑝.𝑃𝐿𝐿𝐼𝑙𝑞 ∆𝑣𝑜𝑑,𝑓 −

              𝑘𝑝.𝑃𝐿𝐿𝑉𝑜𝑑,𝑓∆𝑖𝑙𝑞 + 𝑘𝑖.𝑃𝐿𝐿 𝐼𝑙𝑞∆𝜑𝑃𝐿𝐿 + 𝑘𝑖.𝑃𝐿𝐿∅𝑃𝐿𝐿∆𝑖𝑙𝑞                                           (3.26) 

∆𝑖̇̇𝑙𝑞 =  −
𝑟𝑓

𝐿𝐹
∆𝑖𝑙𝑞 +

1

𝐿𝐹
∆𝑣𝑖𝑞 −

1

𝐿𝐹
∆𝑣𝑜𝑞 − 377∆𝑖𝑙𝑑 + 𝑘𝑝.𝑃𝐿𝐿𝐼𝑙𝑑 ∆𝑣𝑜𝑑,𝑓 + 𝑘𝑝.𝑃𝐿𝐿𝑉𝑜𝑑,𝑓∆𝑖𝑙𝑑 −

               𝑘𝑖.𝑃𝐿𝐿 𝐼𝑙𝑑∆𝜑𝑃𝐿𝐿 − 𝑘𝑖.𝑃𝐿𝐿∅𝑃𝐿𝐿∆𝑖𝑙𝑑                                                                                       (3.27) 

∆𝑖̇̇𝑜𝑑 =  −
𝑟𝑐

𝐿𝐶
∆𝑖𝑜𝑑 +

1

𝐿𝐶
∆𝑣𝑜𝑑 −

1

𝐿𝐶
∆𝑣𝑏𝑑 + 377∆𝑖𝑜𝑞 −  𝑘𝑝.𝑃𝐿𝐿𝐼𝑜𝑞 ∆𝑣𝑜𝑑,𝑓 −

              𝑘𝑝.𝑃𝐿𝐿𝑉𝑜𝑑,𝑓∆𝑖𝑜𝑞 + 𝑘𝑖.𝑃𝐿𝐿𝐼𝑜𝑞∆𝜑𝑃𝐿𝐿 + 𝑘𝑖.𝑃𝐿𝐿∅𝑃𝐿𝐿∆𝑖𝑜𝑞                                      (3.28) 

∆𝑖̇̇𝑜𝑞 =  −
𝑟𝑐

𝐿𝐶
∆𝑖𝑜𝑞 +

1

𝐿𝐶
∆𝑣𝑜𝑞 −

1

𝐿𝐶
∆𝑣𝑏𝑞 − 377∆𝑖𝑜𝑑 +  𝑘𝑝.𝑃𝐿𝐿𝐼𝑜𝑑 ∆𝑣𝑜𝑑,𝑓 +

              𝑘𝑝.𝑃𝐿𝐿𝑉𝑜𝑑,𝑓∆𝑖𝑜𝑑 − 𝑘𝑖.𝑃𝐿𝐿𝐼𝑜𝑑∆𝜑𝑃𝐿𝐿 − 𝑘𝑖.𝑃𝐿𝐿∅𝑃𝐿𝐿∆𝑖𝑜𝑑                                            (3.29) 

∆𝑣̇𝑜𝑑 =  
1

𝐶𝐹
 (∆𝑖𝑙𝑑 − ∆𝑖𝑜𝑑) + 377∆𝑣𝑜𝑞 −  𝑘𝑝.𝑃𝐿𝐿𝑉𝑜𝑞 ∆𝑣𝑜𝑑,𝑓 −

                𝑘𝑝.𝑃𝐿𝐿𝑉𝑜𝑑,𝑓∆𝑣𝑜𝑞 +𝑘𝑖.𝑃𝐿𝐿𝑉𝑜𝑞∆𝜑𝑃𝐿𝐿 + 𝑘𝑖.𝑃𝐿𝐿∅𝑃𝐿𝐿∆𝑣𝑜𝑞 + 𝑅𝑑(∆𝑖̇̇𝑙𝑑 − ∆𝑖̇̇𝑜𝑑)  (3.30) 

∆𝑣̇𝑜𝑞 =  
1

𝐶𝐹
∆𝑖𝑙𝑞 −  

1

𝐶𝐹
∆𝑖𝑜𝑞 − 377∆𝑣𝑜𝑑 +  𝑘𝑝.𝑃𝐿𝐿𝑉𝑜𝑑 ∆𝑣𝑜𝑑,𝑓 +

                𝑘𝑝.𝑃𝐿𝐿𝑉𝑜𝑑,𝑓∆𝑣𝑜𝑑 − 𝑘𝑖.𝑃𝐿𝐿𝑉𝑜𝑑∆𝜑𝑃𝐿𝐿 − 𝑘𝑖.𝑃𝐿𝐿∅𝑃𝐿𝐿∆𝑣𝑜𝑑 + 𝑅𝑑(∆𝑖̇̇𝑙𝑞 − ∆𝑖̇̇𝑜𝑞) (3.31) 

 

3.2.2.4 Load and line model 

For the microgrid shown in Figure 3.3, the RL load dynamics for both the DERs, 

i.e., i=1,2, in the global D-Q frame are; 

𝑖̇̇𝑙𝑜𝑎𝑑𝐷𝑖 =  
1

𝐿𝑙𝑜𝑎𝑑

(−𝑅𝑙𝑜𝑎𝑑𝑖𝑙𝑜𝑎𝑑𝐷𝑖 +  𝑣𝑏𝐷𝑖) + 𝜔𝑃𝐿𝐿𝑖𝑖𝑙𝑜𝑎𝑑𝑄𝑖 

𝑖̇̇𝑙𝑜𝑎𝑑𝑄𝑖 =  
1

𝐿𝑙𝑜𝑎𝑑
(−𝑅𝑙𝑜𝑎𝑑𝑖𝑙𝑜𝑎𝑑𝑄𝑖 + 𝑣𝑏𝑄𝑖) − 𝜔𝑃𝐿𝐿𝑖𝑖𝑙𝑜𝑎𝑑𝐷𝑖 

Considering the states ∆𝑥𝑙𝑜𝑎𝑑 emerging from modelling of load of both the 

inverters, the load state space representation is given as; 
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∆𝑥𝑙𝑜𝑎𝑑 = [∆𝑖𝑙𝑜𝑎𝑑𝐷1   ∆𝑖𝑙𝑜𝑎𝑑𝑄1    ∆𝑖𝑙𝑜𝑎𝑑𝐷2    ∆𝑖𝑙𝑜𝑎𝑑𝑄2   ]                                                 (3.32) 

where, 

∆𝑖𝑙𝑜𝑎𝑑𝐷1
̇ = −

𝑅𝑙𝑜𝑎𝑑

𝐿𝑙𝑜𝑎𝑑1
 ∆𝑖𝑙𝑜𝑎𝑑𝐷1 +

1

𝐿𝑙𝑜𝑎𝑑1
 ∆𝑣𝑏𝐷1 + 377 ∆𝑖𝑙𝑜𝑎𝑑𝑄1 − 𝑘𝑝,𝑃𝐿𝐿 𝑉𝑜𝑑,𝑓1 ∆𝑖𝑙𝑜𝑎𝑑𝑄1 −

                  𝑘𝑝,𝑃𝐿𝐿 𝐼𝑙𝑜𝑎𝑑𝑄1 ∆𝑣𝑜𝑑,𝑓1 + 𝑘𝑖,𝑃𝐿𝐿 ∅𝑃𝐿𝐿1 ∆𝑖𝑙𝑜𝑎𝑑𝑄1 + 𝑘𝑖,𝑃𝐿𝐿 𝐼𝑙𝑜𝑎𝑑𝑄1 ∆∅𝑃𝐿𝐿1    (3.33) 

∆𝑖𝑙𝑜𝑎𝑑𝑄1
̇ = −

𝑅𝑙𝑜𝑎𝑑

𝐿𝑙𝑜𝑎𝑑1
 ∆𝑖𝑙𝑜𝑎𝑑𝑄1 +

1

𝐿𝑙𝑜𝑎𝑑1
 ∆𝑣𝑏𝑄1 − 377 ∆𝑖𝑙𝑜𝑎𝑑𝐷1 + 𝑘𝑝,𝑃𝐿𝐿 𝑉𝑜𝑑,𝑓1 ∆𝑖𝑙𝑜𝑎𝑑𝐷1 +

                 𝑘𝑝,𝑃𝐿𝐿 𝐼𝑙𝑜𝑎𝑑𝐷1 ∆𝑣𝑜𝑑,𝑓1 − 𝑘𝑖,𝑃𝐿𝐿 ∅𝑃𝐿𝐿1 ∆𝑖𝑙𝑜𝑎𝑑𝐷1 − 𝑘𝑖,𝑃𝐿𝐿 𝐼𝑙𝑜𝑎𝑑𝐷1 ∆∅𝑃𝐿𝐿1    (3.34) 

∆𝑖𝑙𝑜𝑎𝑑𝐷2
̇ = −

𝑅𝑙𝑜𝑎𝑑

𝐿𝑙𝑜𝑎𝑑2
 ∆𝑖𝑙𝑜𝑎𝑑𝐷2 +

1

𝐿𝑙𝑜𝑎𝑑2
 ∆𝑣𝑏𝐷2 + 377 ∆𝑖𝑙𝑜𝑎𝑑𝑄2 − 𝑘𝑝,𝑃𝐿𝐿 𝑉𝑜𝑑,𝑓2 ∆𝑖𝑙𝑜𝑎𝑑𝑄2 −

                   𝑘𝑝,𝑃𝐿𝐿 𝐼𝑙𝑜𝑎𝑑𝑄2 ∆𝑣𝑜𝑑,𝑓2 + 𝑘𝑖,𝑃𝐿𝐿 ∅𝑃𝐿𝐿2 ∆𝑖𝑙𝑜𝑎𝑑𝑄2 + 𝑘𝑖,𝑃𝐿𝐿 𝐼𝑙𝑜𝑎𝑑𝑄2 ∆∅𝑃𝐿𝐿2   (3.35) 

∆𝑖𝑙𝑜𝑎𝑑𝑄2
̇ = −

𝑅𝑙𝑜𝑎𝑑

𝐿𝑙𝑜𝑎𝑑2
 ∆𝑖𝑙𝑜𝑎𝑑𝑄2 +

1

𝐿𝑙𝑜𝑎𝑑2
 ∆𝑣𝑏𝑄2 − 377 ∆𝑖𝑙𝑜𝑎𝑑𝐷2 + 𝑘𝑝,𝑃𝐿𝐿 𝑉𝑜𝑑,𝑓2 ∆𝑖𝑙𝑜𝑎𝑑𝐷2 +

                   𝑘𝑝,𝑃𝐿𝐿 𝐼𝑙𝑜𝑎𝑑𝐷2 ∆𝑣𝑜𝑑,𝑓2 − 𝑘𝑖,𝑃𝐿𝐿 ∅𝑃𝐿𝐿2 ∆𝑖𝑙𝑜𝑎𝑑𝐷2 − 𝑘𝑖,𝑃𝐿𝐿 𝐼𝑙𝑜𝑎𝑑𝐷2 ∆∅𝑃𝐿𝐿2    (3.36) 

In a similar way, the line model is considered to be in the form of a RL line 

impedance such that overall inductance represents the lumped line inductance and resistor 

represents the resistance due to losses in the long line. For the line impedance shown in 

figure 1, connected between bus 1 and bus 2, the line dynamics is given as; 

𝑖̇̇𝑙𝑖𝑛𝑒𝐷𝑖 𝑗 =  
1

𝐿𝑙𝑖𝑛𝑒
(−𝑟𝑙𝑖𝑛𝑒𝑖𝑙𝑖𝑛𝑒𝐷 +  𝑣𝑏𝐷,𝑖 − 𝑣𝑏𝐷,𝑗) + 𝜔𝑃𝐿𝐿𝑖𝑙𝑖𝑛𝑒𝑄 

𝑖̇̇𝑙𝑖𝑛𝑒𝐷𝑖 𝑗 =  
1

𝐿𝑙𝑖𝑛𝑒
(−𝑟𝑙𝑖𝑛𝑒𝑖𝑙𝑖𝑛𝑒𝑄 +  𝑣𝑏𝑄,𝑖 − 𝑣𝑏𝑄,𝑗) + 𝜔𝑃𝐿𝐿𝑖𝑙𝑖𝑛𝑒𝐷 

The states contributed by line model are; ∆𝑥𝑙𝑖𝑛𝑒 = [∆𝑖𝑙𝑖𝑛𝑒𝐷21    ∆𝑖𝑙𝑖𝑛𝑒𝑄21]; where, 

∆𝑖̇𝑙𝑖𝑛𝑒𝐷21
̇ = −

𝑟𝑙𝑖𝑛𝑒

𝐿𝑙𝑖𝑛𝑒
 ∆𝑖𝑙𝑖𝑛𝑒𝐷21 +

1

𝐿𝑙𝑖𝑛𝑒
 ∆𝑣𝑏𝐷2 −

1

𝐿𝑙𝑖𝑛𝑒
 ∆𝑣𝑏𝐷1 + 377 ∆𝑖𝑙𝑖𝑛𝑒𝑄21 −

                  𝑘𝑝,𝑃𝐿𝐿 𝑉𝑜𝑑,𝑓1 ∆𝑖𝑙𝑖𝑛𝑒𝑄21 − 𝑘𝑝,𝑃𝐿𝐿 𝐼𝑙𝑖𝑛𝑒𝑄21 ∆𝑣𝑜𝑑,𝑓1 + 𝑘𝑖,𝑃𝐿𝐿 ∅𝑃𝐿𝐿1 ∆𝑖𝑙𝑖𝑛𝑒𝑄21 +

                  𝑘𝑖,𝑃𝐿𝐿 𝐼𝑙𝑖𝑛𝑒𝑄21 ∆∅𝑃𝐿𝐿1                                                                                                        (3.37) 
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∆𝑖𝑙𝑖𝑛𝑒𝑄21
̇ = −

𝑟𝑙𝑖𝑛𝑒

𝐿𝑙𝑖𝑛𝑒
 ∆𝑖𝑙𝑖𝑛𝑒𝑄21 +

1

𝐿𝑙𝑖𝑛𝑒
 ∆𝑣𝑏𝑄2 −

1

𝐿𝑙𝑖𝑛𝑒
 ∆𝑣𝑏𝑄1 − 377 ∆𝑖𝑙𝑖𝑛𝑒𝐷21 +

                𝑘𝑝,𝑃𝐿𝐿 𝑉𝑜𝑑,𝑓1 ∆𝑖𝑙𝑖𝑛𝑒𝐷21 + 𝑘𝑝,𝑃𝐿𝐿 𝐼𝑙𝑖𝑛𝑒𝐷21 ∆𝑣𝑜𝑑,𝑓1 − 𝑘𝑖,𝑃𝐿𝐿 ∅𝑃𝐿𝐿1 ∆𝑖𝑙𝑖𝑛𝑒𝐷21 −

                𝑘𝑖,𝑃𝐿𝐿 𝐼𝑙𝑖𝑛𝑒𝐷21 ∆∅𝑃𝐿𝐿1                                                                                                             (3.38) 

 

3.2.2.5 State Space Representation of autonomous AC microgrid system 

The solution of nonlinear state equations, results in numerous operating points as 

discussed in Section 3.1. All these operating points, when substituted in the system model 

converge in a unique set of eigenvalues and hence, stability remains constant irrespective 

of the operating point used. Two operating points are used for linearization in this thesis 

work, as in the order in equation (3.45), which are given below;  

Xoper1=[  0  427.5168617327   70.6170034059   0.0023046622   0.1341087489   

0.0006727867   0.8659982689   0.0755690319  3.356108065 0.0238838476 

84.9226043131 0.5553074851 3.3559731423 -0.1928204754 0.0238838472 -

0.0028025069 319.8844680459 99.8188550535 0.0128811824 0.1005479992 

0.0015581691 0.8615899257 0.3040973201 2.511731333 0.0000000083 

84.9041184384 0.7837770177 2.5117313328 -0.1778744746 0.0000000083 

0.7498537394 3.2112097558 0.4024841940 3.3356768754 0.1545880693  -

0.0685844362]T 

Xoper2=[0  391.3662706302 72.05087785541  0.003603224363 0.122404418455 

0.000436238942  0.864378130696  0.085978348802  3.073085590603 -0.004599444120 

84.90204136555 0.565590507310 3.07311157262 -0.20035814421 -0.004599444084 

0.000800633243 407.4322324061 27.91019451458 -0.01052206978 0.126689262146 -

0.001228432831 0.865079063267 -0.260438434021 3.198991901613 0.001816807069 

84.908612346102 0.2192074870664 3.1989816386079  -0.200875022866 
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0.001816807054 0.746751476846 3.212185062451 0.397813605348 3.338168700060 

0.1816841344989 0.2235924503283]T                                                                                                          (3.39)                                                                                                                   

The complete small signal modelling of the two inverter architecture as in Figure 

3.2 is achieved by combining the models of the two inverters into a one state space as 

given[10]; 

𝒙𝒊𝒏𝒗𝟏 = [𝛿1 𝑃1 𝑄1𝜑𝑑1𝜑𝑞1𝛾𝑑1𝛾𝑞1𝑖𝑙𝑑1𝑖𝑙𝑞1𝑣𝑜𝑑1𝑣𝑜𝑞1𝑖𝑜𝑑1𝑖𝑜𝑞1𝜑𝑃𝐿𝐿1𝑣𝑜𝑑1,𝑓]                    (3.40) 

𝒙𝒊𝒏𝒗𝟐 = [𝛿2 𝑃2 𝑄2𝜑𝑑2𝜑𝑞2𝛾𝑑2𝛾𝑞2𝑖𝑙𝑑2𝑖𝑙𝑞2𝑣𝑜𝑑2𝑣𝑜𝑞2𝑖𝑜𝑑2𝑖𝑜𝑞2𝜑𝑃𝐿𝐿2𝑣𝑜𝑑2,𝑓]                   (3.41) 

𝒙𝒊𝒏𝒗 = [𝒙𝒊𝒏𝒗𝟏𝒙𝒊𝒏𝒗𝟐]                                                                                                                 (3.42)                                                                         

The collective load and line model from the two inverters is given as, 𝒙𝒍𝒐𝒂𝒅 =

[𝑖𝑙𝑜𝑎𝑑𝐷1 𝑖𝑙𝑜𝑎𝑑𝑄1  𝑖𝑙𝑜𝑎𝑑𝐷2 𝑖𝑙𝑜𝑎𝑑𝑄2] and𝒙𝒍𝒊𝒏𝒆 = [𝑖𝑙𝑖𝑛𝑒𝐷21 𝑖𝑙𝑖𝑛𝑒𝑄21]. 

After linearization of the complete system about stable operating points as given 

and rearranging the state variables and output variables in order as in (3.45-3.46), the 

complete 36th order state space model for the autonomous microgrid system is obtained 

from as; 

∆𝒙̇ = 𝑨∆𝒙 + 𝑩∆𝒖                                                                                                          (3.43) 

∆𝒚 = 𝑪∆𝒙                                                                                                                   (3.44) 

where; A is the state matrix (36×36), B is the input matrix (36×4) and C is the output 

matrix (6×36) 

State vector, 𝒙 = [𝒙𝒊𝒏𝒗𝟏     𝒙𝒊𝒏𝒗𝟐   𝒙𝒍𝒐𝒂𝒅     𝒙𝒍𝒊𝒏𝒆]𝑇                                            (3.45) 

Output vector, 𝒚 = [∆𝑖𝑜𝐷𝑄1  ∆𝑖𝑜𝐷𝑄2  ∆𝜔𝑃𝐿𝐿1  ∆𝜔𝑃𝐿𝐿2]
𝑇
                                             (3.46) 

Input vector, 𝒖 = [∆𝑣𝑏𝐷1   ∆𝑣𝑏𝑄1   ∆𝑣𝑏𝐷2   ∆𝑣𝑏𝑄2]
𝑇
                                                  (3.47) 
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Thus, the small signal model of autonomous AC microgrid with state space 

representations as in (3.43-3.44) will be deployed for further analysis on its reduced order 

modelling in the next chapter.  

 

3.2.3   State space modelling in grid-tied mode 

The simplified architecture of the 3-phase inverter based Grid-tied microgrid 

system is given in Figure 3.9. With the Point of Common Coupling (PCC) closed, the 

microgrid operates in a grid-connected mode such that the link between main utility grid 

and DER exists. 

When the microgrid is connected to the main utility grid, the bus voltage and system 

frequency are controlled by the main grid. The objective of this mode is to regulate the 

active and reactive powers to follow their commanded values, 𝑃𝑟 and𝑄𝑟, given as system 

inputs. The schematic of the grid-tied system in Figure 3.10, consists of Phase Locked 

Loop (PLL) block, power computation block, power controller and current controller 

blocks connected to the three phase Voltage-Source Inverter (VSI). 

 

 

Figure 3.9. Grid-tied Microgrid Architecture. 
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The grid-tied microgrid structure consists of two control loops: an outer power 

control loop and an inner current control loop. The PLL block measures the system phase 

angle which in turn synchronizes all the abc to dq and dq to abc converters in the system. 

The measured output currents and voltages in both d-q axes serve as inputs for power 

calculation in the outer loop. The computed active and reactive powers, 𝑃 and𝑄, are 

subsequently compared with the reference powers in the power controller block. 

Thereafter, the reference inductor currents generated by the power controller are 

compared to their measured values in the current controller, to obtain an error signal 

which is given to the State Vector Pulse Width Modulation (SVPWM) block, thereby 

generating switching pulses. The voltages at the input and output of the VSI are assumed 

to be the same, i.e. 𝑣𝑖,𝑎𝑏𝑐 = 𝑣𝑖,𝑎𝑏𝑐
𝑟. The utility of SVPWM in this system results from its 

quality of lowering the fluctuations on the system frequency. 

 

3.2.3.1 Local to global reference frame transformation 

The small signal modelling of the grid-tied microgrid system requires a frame 

transformation of individual DER to the global reference frame as also discussed for 

autonomous microgrid in Section 3.1.1. The small signal model of a microgrid system 

calculated in the local reference frame (d-q) is translated to the global reference frame of 

the main grid by using the orthogonal transformation matrix as in [13], which is 

reproduced in equation (3.48). 

𝑨𝐷𝑄
𝑔𝑙𝑜𝑏𝑎𝑙

= [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] 𝑨𝑑𝑞
𝑙𝑜𝑐𝑎𝑙                                                                                     (3.48) 

where, 𝜃 = 𝛿 = ∫(𝜔 − 𝜔𝑐𝑜𝑚𝑚𝑜𝑛) as in Figure 3.11. 
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Figure 3.11. Reference frame transformations. 

 

3.2.3.2 Control scheme for VSI duty cycle regulation 

The several blocks discussed for control scheme of microgrid system in this section 

are: PLL block, Power computation block, Power controller, Current controller, LC Filter 

and coupling inductor. 

 

Phase Locked Loop 

 

Figure 3.12. Block diagram of PLL. 

 

A dq-based PLL was chosen to measure the frequency of the system. The input 

signal to PLL is the d-axis component of the voltage measured across the filter capacitor. 

Therefore, the phase is locked such that 𝑣𝑜𝑑 = 0. The PLL dynamics for measured 

frequency,  𝜔𝑃𝐿𝐿 and measured phase angle, 𝛿 are given as; 

𝑣̇𝑜𝑑,𝑓  =  𝜔𝑐.𝑃𝐿𝐿 𝑣𝑜𝑑 − 𝜔𝑐.𝑃𝐿𝐿 𝑣𝑜𝑑,𝑓 

Qq 

  

                               d (Microgrid)

D (Main grid)

+
LPF

 
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φ𝑃𝐿𝐿̇ = −𝑣𝑜𝑑,𝑓 

𝜔𝑃𝐿𝐿 = 377 −  𝑘𝑝.𝑃𝐿𝐿 𝑣𝑜𝑑,𝑓 +  𝑘𝑖.𝑃𝐿𝐿 𝜑𝑃𝐿𝐿 

𝛿̇ =  𝜔𝑃𝐿𝐿 

The linearized state equations from PLL are; 

∆𝑣̇𝑜𝑑,𝑓  =  𝜔𝑐.𝑃𝐿𝐿 ∆𝑣𝑜𝑑 − 𝜔𝑐.𝑃𝐿𝐿 ∆𝑣𝑜𝑑,𝑓                                                                                        (3.49) 

∆φ𝑃𝐿𝐿
̇ = −∆𝑣𝑜𝑑,𝑓                                                                                                                    (3.50) 

 ∆𝛿̇ = − 𝑘𝑝.𝑃𝐿𝐿 ∆𝑣𝑜𝑑,𝑓 +  𝑘𝑖.𝑃𝐿𝐿 ∆𝜑𝑃𝐿𝐿                                                                                    (3.51) 

 

Power Calculation 

The instantaneous active and reactive powers are calculated from the output 

currents and voltages as shown in Figure 3.13 and given in (3.52-3.53). 

 

 

Figure 3.13. Diagram of Power Computation block. 

 

𝑝 =
3

2
(𝑣𝑜𝑑𝑖𝑜𝑑 + 𝑣𝑜𝑞𝑖𝑜𝑞)                                                                                                     (3.52) 

𝑞 =
3

2
(𝑣𝑜𝑞𝑖𝑜𝑑 −  𝑣𝑜𝑑𝑖𝑜𝑞)                                                                                                        (3.53) 

LPF

LPF

1.5

p

q

1.5

P

Q
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The average powers corresponding to the fundamental component are then obtained 

by passing these instantaneous powers through low pass filter with cut-off frequency 

of 𝜔𝑐. 

𝑃 =
𝜔𝑐

𝑠 + 𝜔𝑐
 𝑝 ⇒ 𝑃̇ = −𝑃𝜔𝐶 + 1.5𝜔𝐶(𝑣𝑜𝑑𝑖𝑜𝑑 + 𝑣𝑜𝑞𝑖𝑜𝑞) 

𝑄 =
𝜔𝑐

𝑠 + 𝜔𝑐
 𝑞 ⇒ 𝑄̇ = −𝑄𝜔𝐶 + 1.5𝜔𝐶(𝑣𝑜𝑑𝑖𝑜𝑑 − 𝑣𝑜𝑞𝑖𝑜𝑞) 

The small signal dynamics of power controller is re-written after linearization as; 

∆𝑃̇ = −𝜔𝐶∆𝑃 + 1.5𝜔𝐶(𝑉𝑜𝑑∆𝑖𝑜𝑑 + 𝐼𝑜𝑑∆𝑣𝑜𝑑 + 𝑉𝑜𝑞∆𝑖𝑜𝑞 + 𝐼𝑜𝑞∆𝑣𝑜𝑞)               (3.54) 

∆𝑄̇ = −𝜔𝐶∆𝑄 + 1.5𝜔𝐶(𝑉𝑜𝑞∆𝑖𝑜𝑑 + 𝐼𝑜𝑑∆𝑣𝑜𝑞 − 𝑉𝑜𝑑∆𝑖𝑜𝑞 − 𝐼𝑜𝑞∆𝑣𝑜𝑑)               (3.55) 

 

Power Controller 

In this block, the active and reactive power set point signals are compared to their 

corresponding measured signals from power computation block as shown in Figure 3.14. 

 

 

Figure 3.14. Block diagram of Power Controller. 

 




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Conventional PI controllers are used in these controllers. As seen from the figure, the 

power controller equations are derived as; 

 φ𝑃̇ = 𝑃𝑟 −  𝑃  ;  𝑖𝑙𝑞
    𝑟 =  𝑘𝑖

𝑃 𝜑𝑃 +  𝑘𝑝
𝑃 𝜑𝑃̇ 

 φ𝑄̇ = 𝑄𝑟 −  𝑄  ;   𝑖𝑙𝑑
    𝑟 =  𝑘𝑖

𝑃 𝜑𝑄 +  𝑘𝑝
𝑃 𝜑𝑄̇  

The state equations contributed by voltage controller to the inverter model are: 

  ∆φ𝑃
̇ = ∆𝑃𝑟 − ∆𝑃                                                                                                                            (3.56) 

  ∆φ̇𝑄 = ∆𝑄𝑟 − ∆𝑄                                                                                                                      (3.57) 

 

Current Controller 

The reference inductor currents generated by the voltage controller are compared 

by their measured values to obtain a resultant error signal. This signal thereby produces 

a set-point voltage for input to SVPWM block, subsequently generating switching pulses. 

 

 

Figure 3.15. Block diagram of current controller. 

 




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The dynamical equations from current controller as in Figure 3.15. are; 

 𝛾̇𝑑 = 𝑖𝑙𝑑
𝑟 −  𝑖𝑙𝑑  ;  𝑣𝑖𝑑

     𝑟 =  − 𝜔𝑛 𝐿𝑓 𝑖𝑙𝑞 + 𝑘𝑖
𝐶  𝛾𝑑 +  𝑘𝑝

𝐶𝛾̇𝑑 

 𝛾̇𝑞 = 𝑖𝑙𝑞
𝑟 − 𝑖𝑙𝑑  ;  𝑣𝑖𝑞

     𝑟 =   𝜔𝑛 𝐿𝑓 𝑖𝑙𝑑 + 𝑘𝑖
𝐶  𝛾𝑞 +  𝑘𝑝

𝐶𝛾̇𝑞 

The state equations contributed by current controller to the overall state space model 

dynamics are; 

∆𝛾̇𝑑 = 𝑘𝑖
𝑃 ∆𝜑𝑑 + 𝑘𝑝

𝑃 ∆𝜑𝑑̇ −  ∆𝑖𝑙𝑑                                                                            (3.58) 

∆𝛾̇𝑞 = 𝑘𝑖
𝑃 ∆𝜑𝑞 + 𝑘𝑝

𝑃 ∆𝜑𝑞̇ −  ∆𝑖𝑙𝑞                                                                             (3.59) 

 

3.2.3.3 LC Filter and Coupling inductor 

 A passive low-pass filter is used to attenuate switching frequency ripple. By 

considering the input and output voltages of inverter as equal, the state equations 

governing the filter dynamics can be given as; 

𝑖̇̇𝑙𝑑 =  
1

𝐿𝑓
 (−𝑟𝑓𝑖𝑙𝑑 + 𝑣𝑖𝑑 − 𝑣𝑜𝑑) + 𝜔𝑛𝑖𝑙𝑞 

𝑖̇̇𝑙𝑞 =  
1

𝐿𝑓
 (−𝑟𝑓𝑖𝑙𝑞 + 𝑣𝑖𝑞 − 𝑣𝑜𝑞) + 𝜔𝑛𝑖𝑙𝑑 

𝑖̇̇𝑜𝑑 =  
1

𝐿𝑐
 (−𝑟𝑐𝑖𝑜𝑑 +  𝑣𝑜𝑑 − 𝑣𝑏𝑑) +  𝜔𝑛𝑖𝑜𝑞 

𝑖̇̇𝑜𝑞 =  
1

𝐿𝑐
 (−𝑟𝑐𝑖𝑜𝑞 +  𝑣𝑜𝑞 − 𝑣𝑏𝑞) +  𝜔𝑛𝑖𝑜𝑑 

𝑣̇𝑜𝑑 =  
1

𝐶𝑓
 (𝑖𝑙𝑑 − 𝑖𝑜𝑑) +  𝜔𝑛 𝑣𝑜𝑞 + 𝑅𝑑(𝑖̇̇𝑙𝑑 − 𝑖̇̇𝑜𝑑) 

𝑣̇𝑜𝑞 =  
1

𝐶𝑓
 (𝑖𝑙𝑞 − 𝑖𝑜𝑞) −  𝜔𝑛 𝑣𝑜𝑑 + 𝑅𝑑(𝑖̇̇𝑙𝑞 − 𝑖̇̇𝑜𝑞) 

Thus, the six equations in filter state space repreentation after small perturbation 

and subsequent linearisation are given as; 
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∆𝑖̇̇𝑙𝑑 =  − (
𝑟𝑓

𝐿𝐹
+

𝑘𝑝
𝐶

𝐿𝐹
) ∆𝑖𝑙𝑑 +

𝑘𝑖
𝐶

𝐿𝐹
∆𝛾𝑑 +

𝑘𝑝
𝐶𝑘𝑖

𝑃

𝐿𝐹
∆∅𝑄 +

𝑘𝑝
𝐶𝑘𝑝

𝑃

𝐿𝐹
∆𝑄𝑟 −

𝑘𝑝
𝐶𝑘𝑝

𝑃

𝐿𝐹
∆𝑄 −

1

𝐿𝐹
∆𝑣𝑜𝑑   (3.60) 

∆𝑖̇̇𝑙𝑞 =   − (
𝑟𝑓

𝐿𝐹
+

𝑘𝑝
𝐶

𝐿𝐹
) ∆𝑖𝑙𝑞 +

𝑘𝑖
𝐶

𝐿𝐹
∆𝛾𝑞 +

𝑘𝑝
𝐶𝑘𝑖

𝑃

𝐿𝐹
∆∅𝑄 +

𝑘𝑝
𝐶𝑘𝑝

𝑃

𝐿𝐹
∆𝑃𝑟 −

𝑘𝑝
𝐶𝑘𝑝

𝑃

𝐿𝐹
∆𝑃 −

1

𝐿𝐹
∆𝑣𝑜𝑞    (3.61) 

∆𝑖̇̇𝑜𝑑 =  − (
2𝑅𝐶

𝐿𝐶
−

𝑅𝐹

𝐿𝐹
− 𝑅𝑑) ∆𝑖𝑜𝑑 +

1

𝐿𝐶
∆𝑣𝑜𝑑 −

1

𝐿𝐶
∆𝑣𝑜𝑞 + 𝑅𝑑∆𝑖𝑙𝑑 + 𝜔𝑛∆𝑖𝑜𝑞                  (3.62) 

∆𝑖̇̇𝑜𝑞 =  − (
2𝑅𝐶

𝐿𝐶
−

𝑅𝐹

𝐿𝐹
− 𝑅𝑑) ∆𝑖𝑜𝑞 +

1

𝐿𝐶
∆𝑣𝑜𝑞 −

1

𝐿𝐶
(−𝑘𝑝

𝑝𝑙𝑙∆𝑣𝑜𝑑,𝑓 + 𝑘𝑖
𝑝𝑙𝑙∆∅𝑃𝐿𝐿) − 𝑅𝑑∆𝑖𝑙𝑞 −

                    𝜔𝑛∆𝑖𝑜𝑑                                                                                                                        (3.63) 

 ∆𝑣̇𝑜𝑑 = ( 
1

𝐶𝐹
−

𝑅𝑑(𝑅𝐹+𝑘𝑝
𝐶)

𝐿𝐹
− 𝑅𝑑

2) ∆𝑖𝑙𝑑 − ( 
1

𝐶𝐹
−

𝑅𝑑(𝑅𝐶−𝑅𝐹)

𝐿𝐹
−

𝑅𝑑𝑅𝐶

𝐿𝐶
+ 𝑅𝑑

2) ∆𝑖𝑜𝑑 

                  + (𝜔𝑛 +
𝑅𝑑

𝐿𝐶
) ∆𝑣𝑜𝑞 +

𝑘𝑖
𝐶𝑅𝑑

𝐿𝐹
∆𝛾𝑑 +

𝑘𝑝
𝐶𝑘𝑖

𝑃𝑅𝑑

𝐿𝐹
∆∅𝑄 +

𝑘𝑝
𝐶𝑘𝑝

𝑃𝑅𝑑

𝐿𝐹
∆𝑄𝑟 −

𝑘𝑝
𝐶𝑘𝑝

𝑃𝑅𝑑

𝐿𝐹
∆𝑄 −

                   𝑅𝑑 (
1

𝐿𝐹
+

1

𝐿𝐶
) ∆𝑣𝑜𝑑 − 𝑅𝑑𝜔𝑛∆𝑖𝑜𝑞                                                                              (3.64) 

 ∆𝑣̇𝑜𝑞 =  ( 
1

𝐶𝐹
−

𝑅𝑑(𝑅𝐹+𝑘𝑝
𝐶)

𝐿𝐹
− 𝑅𝑑

2) ∆𝑖𝑙𝑞 − ( 
1

𝐶𝐹
−

𝑅𝑑(𝑅𝐶−𝑅𝐹)

𝐿𝐹
−

𝑅𝑑𝑅𝐶

𝐿𝐶
+ 𝑅𝑑

2) ∆𝑖𝑜𝑞 

    +𝜔𝑛∆𝑣𝑜𝑑 +
𝑘𝑖

𝐶𝑅𝑑

𝐿𝐹
∆𝛾𝑞 +

𝑘𝑝
𝐶𝑘𝑖

𝑃𝑅𝑑

𝐿𝐹
∆∅𝑃 +

𝑘𝑝
𝐶𝑘𝑝

𝑃𝑅𝑑

𝐿𝐹
∆𝑃𝑟 −

𝑘𝑝
𝐶𝑘𝑝

𝑃𝑅𝑑

𝐿𝐹
∆𝑃 − 𝑅𝑑 (

1

𝐿𝐹
+

                       
1

𝐿𝐶
) ∆𝑣𝑜𝑞 −  𝑅𝑑𝜔𝑛∆𝑖𝑜𝑑 +

𝑅𝑑

𝐿𝐶
(−𝑘𝑝

𝑝𝑙𝑙
∆𝑣𝑜𝑑,𝑓 + 𝑘𝑖

𝑝𝑙𝑙
∆∅𝑃𝐿𝐿)                           (3.65) 

 

3.2.3.4 State space representation of grid-tied AC microgrid system 

The non-linear dynamic model of the microgrid system is linearized at an 

equilibrium point which is evaluated as in Section 3.2.2.  

Xoper=[0.0000036106 -0.0000019850  -0.000000007 -188.5000000045 0 0.0189001525 

-0.0106497444 -0.0000053247 0.0000220378 -0.0010649465 0.0018899647 -

0.0010578279 0.0019241120 -0.0000000072 0.0012588128]T                                                (3.66) 
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The modelled linear-system is an approximation of the non-linear system model 

and is valid only for the equilibrium point about which the non-linear system is linearized. 

It is known from Lyapunov’s first method that if the linear system is stable then the non-

linear system is also stable at the equilibrium point. The complete state space 

representation of a grid-connected microgrid system is; 

∆𝒙̇ = 𝑨∆𝒙 + 𝑩∆𝒖,  ∆𝒚 = 𝑪∆𝒙                                                                                                  (3.67) 

where,  

∆𝑥 =

[ ∆𝑃  ∆𝑄  ∆𝑣𝑜𝑑,𝑓   ∆𝜑𝑃𝐿𝐿  ∆𝛿  ∆𝜑𝑃 ∆𝜑𝑄  ∆𝛾𝑑  ∆𝛾𝑞  ∆𝑖𝑙𝑑  ∆𝑖𝑙𝑞  ∆𝑖𝑜𝑑   ∆𝑖𝑜𝑞  ∆𝑣𝑜𝑑 ∆𝑣𝑜𝑞]𝑇                                            

 (3.68) 

∆𝑦 = [∆𝑃    ∆𝑄    ∆𝑖𝑜𝑑   ∆𝑖𝑜𝑞    ∆𝑖𝑙𝑑   ∆𝑖𝑙𝑞    ∆𝑣𝑜𝑑    ∆𝑣𝑜𝑞  ∆𝜔𝑃𝐿𝐿]
𝑇
                                (3.69) 

∆𝑢 = [𝑃𝑟 𝑄𝑟] 𝑇 are state variables, output variables and input variables respectively. 

Thus, the small signal model of grid-tied AC microgrid with state space 

representations as in (3.67) will be deployed for further analysis based on its reduced 

order modelling in chapter 4.  

 

3.3 Small Signal Modelling of DC Microgrid 

 The PV-fuel cell based DC microgrid considered in this work has been shown in 

Figure 3.16 and its small signal model is given as below. 

 

3.3.1    DC microgrid architecture 

The autonomous DC microgrid block diagram in Figure 3.16, shows the 

interconnected system components comprising of two sources: PV array and fuel cell 

stack along with individual storage devices to supply uninterrupted power to the DC load. 
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The converter interfaced sources are directly connected to DC bus which subsequently 

supplies the load requirements. The aggregation of different feasible load combinations 

are depicted by an equivalent load model comprising of Constant Resistive Load (CRL) 

and Constant Voltage Load (CVL) [26] in present analysis.  

 

 

Figure 3.16. Block diagram of PV-fuel cell based DC microgrid system. 

 

The control strategies involved in this work are limited to MPPT and droop control 

for accurate fulfilment of load power through regulation of converter duty cycle ratio. A 

decentralised modified droop control ensuring both accuracy in current sharing and 
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voltage restoration for each converter model has been utilised for effective load power 

sharing [27]. MPPT controller tracks the maximum power points of a PV array by 

adjusting the converter duty cycle. A droop control in combination with MPPT controller 

has been explored to meet the load requirements in the system.    

 

3.3.2    Microgrid component modelling 

In this section, a mathematical model is presented for all the subsystems in DC 

microgrid architecture as in Figure 3.16. The main subsystems are PV, fuel cell, DC/DC 

boost converter, storage system, load and line. The complete microgrid model is 

developed after individual subsystem modelling. 

 

 

Figure 3.17. PV and fuel cell with DC/DC boost converter. 

 

3.3.2.1 Photovoltaic array with DC/DC boost converter 

A simplified Norton equivalent PV module involving short-circuit current 𝑖𝑠𝑐 and 

PV voltage and current at maximum power point, i.e., 𝑉𝑀𝑃𝑃 and 𝐼𝑀𝑃𝑃 respectively as 

shown in Figure 3.17., is connected to a DC boost converter electrical model. Norton 
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equivalent model is used to demonstrate the effect of irradiance uncertainties on the 

overall system functionality [22]. 

Considering parasitic losses associated with converter elements in the form of 

resistances𝑅𝑐1, 𝑅𝑐2, 𝑅𝑙, the states associated with inductor current 𝑖̇𝐿,𝑃𝑉 and capacitor 

voltages 𝑣𝑐1,𝑃𝑉 and 𝑣𝑐2,𝑃𝑉 are expressed in the following equation. 

 𝑖̇𝐿,𝑃𝑉 =
𝑅𝑚𝑝𝑅𝑐1

𝑅𝑚𝑝+𝑅𝑐1

𝑖𝑠𝑐

𝐿
+

𝑅𝑚𝑝

𝑅𝑚𝑝+𝑅𝑐1

𝑣𝑐1

𝐿
− (

𝑅𝑚𝑝𝑅𝑐1

𝑅𝑚𝑝+𝑅𝑐1
+ 𝑅𝐿)

1

𝐿
𝑖𝐿,𝑃𝑉 −  

1

𝐿
 𝑣𝑜𝑃𝑉 (1 − 𝑑𝑝𝑣)  

  𝑣̇𝑐1,𝑃𝑉 =
𝑅𝑚𝑝

𝐶1(𝑅𝑚𝑝+𝑅𝑐1)
𝑖𝑠𝑐 −  

𝑅𝑚𝑝

𝐶1(𝑅𝑚𝑝+𝑅𝑐1)
𝑖𝐿,𝑃𝑉 −

1

𝐶1(𝑅𝑚𝑝+𝑅𝑐1)
𝑣𝑐1,𝑃𝑉, 

  𝑣̇𝑐2,𝑃𝑉 =
1

𝑅𝑐2𝐶2
 𝑣𝑜𝑃𝑉 −  

1

𝑅𝑐2𝐶2
 𝑣𝑐2,𝑃𝑉                                                                                                (3.70)  

where, 𝑑𝑝𝑣 is the converter duty ratio determined by droop and MPPT controller as in 

(3.91). 

 

3.3.2.2 Fuel cell stack with DC/DC boost converter 

An approximate model of fuel cell consists of a single electrical state variable 

representing voltage across a capacitor formed from the charge decomposition on the 

electrodes [24]. This is also known as ‘double-charge effect’. Contrary to the usual fuel 

cell electrical model, reference [23, 81] gives a detailed state space analysis of the various 

electrical and non-electrical fuel cell states taking the effect of chemical and 

electrochemical processes into account. An accurate state space representation of DC 

microgrid system takes into consideration the effect of these processes into the overall 

system dynamical behaviour. In this context, the state space model in [23] (consisting of 

11 state variables) will be incorporated into the DC microgrid state space model to 

demonstrate their effects in terms of nonlinearity and sluggish time responses. These 

states are defined as follows.   
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𝒙𝒇𝒄 = [(𝑚𝑂2
)

𝑛𝑒𝑡
;  (𝑚𝐻2

)
𝑛𝑒𝑡

;  (𝑚𝐻2𝑂)
𝑛𝑒𝑡

;  𝑇; 𝑃𝐻2
; 𝑃𝑂2

; 𝑃𝐻2𝑂; 𝑄𝐶;  𝑄𝐸;  𝑄𝐿;  𝑣𝑐𝑑]       (3.71) 

where, (𝑚𝑂2
)

𝑛𝑒𝑡
, (𝑚𝐻2

)
𝑛𝑒𝑡

 and , (𝑚𝐻2𝑂)
𝑛𝑒𝑡

are net mole flow rate of oxygen, hydrogen 

and water respectively; 𝑇 indicates the stack temperature; 𝑃𝐻2
, 𝑃𝑂2

and 𝑃𝐻2𝑂 are the partial 

pressures of hydrogen, oxygen and water respectively; 𝑄𝐶 is the heat generated due to 

electrochemical reaction, 𝑄𝐸 is the heat generated due to electricity and 𝑄𝐿 is the heat loss 

by air convection;  𝑣𝑐𝑑 represents the voltage across capacitance due to ‘double-layer 

charge effect’. 

Following the similar approach as for PV-converter modelling, the boost converter state 

equations are given as, 

𝑖̇𝐿,𝐹𝐶 =
1

𝐿
 𝜐𝑓𝑐 −

𝑅𝐿

𝐿
 𝑖𝐿 −

1

𝐿
 𝜐𝑜𝐹𝐶  (1 − 𝑑𝑓𝑐),  

𝜐̇𝑐,𝐹𝐶 =
1

𝐶𝑅𝑐
𝜐𝑜𝐹𝐶 −  

1

𝐶𝑅𝑐
𝜐𝑐,𝐹𝐶                                                                                                           (3.72) 

where, 𝑑𝑓𝑐 is the duty ratio of converter interfacing fuel cell determined by droop 

controller in (3.86). 

 

3.3.2.3 Battery with bidirectional converter 

A mathematical model of storage batteries connected to bidirectional DC/DC 

converter for each of the sources, as in Figure 3.18., is derived by writing Kirchhoff’s 

current and voltage laws and given in [25]. 

𝑖̇𝑏𝑎𝑡1 =  −
𝑅𝑠1

𝐿𝑏𝑎𝑡1
𝑖𝑏𝑎𝑡1 −

1

𝐿𝑏𝑎𝑡1
𝑣𝑐1,𝐵 −

1

𝐿𝑏𝑎𝑡1
𝑑𝑏𝑎𝑡1𝑣𝑜𝑃𝑉 +

1

𝐿𝑏𝑎𝑡1
𝑒01, 𝑖̇𝑏𝑎𝑡2 =  −

𝑅𝑠2

𝐿𝑏𝑎𝑡2
𝑖𝑏𝑎𝑡2 −

                
1

𝐿𝑏𝑎𝑡2
𝑣𝑐2,𝐵 −

1

𝐿𝑏𝑎𝑡2
𝑑𝑏𝑎𝑡2𝑣𝑜𝐹𝐶 +

1

𝐿𝑏𝑎𝑡2
𝑒02                                                                     (3.73) 

𝑣̇𝑐1,𝐵 = −
1

𝑅01𝐶01
 𝑣𝑐1,𝐵 +

1

𝐶01
𝑖𝑏𝑎𝑡1, 𝑣̇𝑐2,𝐵 = −

1

𝑅02𝐶02
 𝑣𝑐2,𝐵 +

1

𝐶02
𝑖𝑏𝑎𝑡2                          (3.74) 
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where, 𝑑𝑏𝑎𝑡1 and 𝑑𝑏𝑎𝑡2 are the battery duty ratios determined by its droop mechanism in 

(3.88). 

 

 

Figure 3.18. Circuit diagram of DC microgrid interconnections. 

 

3.3.2.4 Load and Line Model 

The equivalent load dynamics consists of two parallel load combinations of 

constant power load and constant voltage load. The linearized model of constant power 

load consists of an equivalent negative resistance, 𝑅𝑐𝑝𝑙 and equivalent current sink,𝑖𝐶𝑃𝐿. 

A combination of equivalent resistance of constant resistance load, 𝑅𝑐𝑟𝑙 and equivalent 

current sink representing constant current load forms another set of generalized load 

model. The total load current 𝑖𝑙𝑜𝑎𝑑 is the sum of current in both parallel branches as 

follows. 

𝑖𝑙𝑜𝑎𝑑 = 𝑖𝑙1 + 𝑖𝑙2 = (𝑖𝑐𝑙 + 𝑖𝐶𝑃𝐿 +
𝑣𝑙𝑜𝑎𝑑

𝑅𝑐𝑝𝑙
) + (𝑖𝐶𝐶𝐿 +

𝑣𝑙𝑜𝑎𝑑

𝑅𝑐𝑟𝑙
)=𝑖𝑐𝑙 + 𝑖𝑐𝑐 +

𝑣𝑙𝑜𝑎𝑑

𝑅𝑐𝑐
               (3.75) 

DC Load

Battery 2 Bidirectional Converter 2

Battery 1 Bidirectional Converter 1
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where, 𝑖𝑐𝑐 = 𝑖𝐶𝑃𝐿 + 𝑖𝐶𝐶𝐿 and 𝑅𝑐𝑐 =
𝑅𝑐𝑝𝑙𝑅𝑐𝑟𝑙

𝑅𝑐𝑝𝑙+𝑅𝑐𝑟𝑙
 

The state equation derived by the load dynamics is given in (3.76), where 𝑖𝑐𝑐 

represents the load current sink and 𝑅𝑐𝑐 represents the total resistive load. 

𝑣̇𝑙𝑜𝑎𝑑 =
1

𝐶𝑙
(𝑖𝑙𝑜𝑎𝑑 − 𝑖𝑐𝑐 −

𝑣𝑙𝑜𝑎𝑑

𝑅𝑐𝑐
)                                                                                                            (3.76) 

The equivalent model of lumped π-type connecting cable consists of series 

combination of line resistance and line inductance. Considering separate connecting 

cables between the two sources and fuel cell-load module as in Figure 3.18., the load 

current states are evaluated in (3.77). 

𝑖̇𝑙𝑖𝑛𝑒1 = −
𝑅𝑙𝑖𝑛𝑒1

𝐿𝑙𝑖𝑛𝑒1
𝑖𝑙𝑖𝑛𝑒1 +

1

𝐿𝑙𝑖𝑛𝑒1
𝑣𝑜𝑃𝑉 −

1

𝐿𝑙𝑖𝑛𝑒1
 𝑣𝑜𝐹𝐶                                        

𝑖̇𝑙𝑖𝑛𝑒2 = −
𝑅𝑙𝑖𝑛𝑒2

𝐿𝑙𝑖𝑛𝑒2
𝑖𝑙𝑖𝑛𝑒2 +

1

𝐿𝑙𝑖𝑛𝑒2
𝑣𝑜𝐹𝐶 −

1

𝐿𝑙𝑖𝑛𝑒2
 𝑣𝑙𝑜𝑎𝑑                                                                (3.77) 

where, 𝑅𝑙𝑖𝑛𝑒1, 𝐿𝑙𝑖𝑛𝑒1 and 𝑅𝑙𝑖𝑛𝑒2, 𝐿𝑙𝑖𝑛𝑒2 are the resistance and inductance of the two lines 

respectively, and 𝑣𝑙𝑜𝑎𝑑 is the voltage at the load terminal. 

 

3.3.3    Control scheme for duty ratio regulation 

The control scheme for a DC microgrid can be divided into three parts: first, a 

modified droop controller to regulate converter duty cycle such that the output voltage of 

converter varies inversely with current with the enhanced property of increased current 

sharing accuracy and output voltage restoration. 
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Figure 3.19. Droop control mechanism. 

 

         Second, power balancing droop controller for decentralized control of individual 

storage devices associated to different sources. Third, a linearized MPPT controller is 

mathematically obtained for maximum power point tracking in PV panel.  

 

3.3.3.1 Droop control of photovoltaic and fuel cell converter 

The two-faced control owing to primary and secondary level control hierarchy has 

been incorporated for steady state voltage and current control in DC microgrid through 

inclusion of a virtual resistance and current-voltage correction terms in system modelling 

as in Figure 3.19. 

Primary control is achieved through an inner control loop which linearly decreases 

the output converter voltages as current increases. The general droop control is expressed 

as; 

𝑣𝑜,𝑖 = 𝑣𝑑𝑐
∗ − 𝑅𝑑,𝑖𝑖𝑜,𝑖                                                                                                                                   (3.78) 
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where, 𝑣𝑜,𝑖 and 𝑖𝑜,𝑖 is the output voltage and current of converter ‘i’ respectively; and 𝑣𝑑𝑐
∗  

is the reference value of dc output voltage and 𝑅𝑑,𝑖 is the virtual resistance representing 

the droop characteristics. 

Secondary control is achieved by correction term 𝛿𝑖1 and 𝛿𝑣1 which compensates 

for the voltage deviation and current degradation caused by droop mechanism. The 

reference DC voltage and averaged output converter voltage transmitted over a 

communication channel produces the voltage correction term, whereas the reference 

converter current output and averaged converter current generates the current correction 

term[27]. 

 

Droop control of PV-converter duty ratio 

References [27-28] gives a detailed theoretical analysis of converter droop 

controller based on enhanced low-bandwidth communication. A mathematical 

formulation following the basic convention of considering the output of accumulator as a 

state variables, the droop based voltage and current correction terms has been obtained in 

equation (3.79). 

𝛿𝑣1 = 𝑘𝑝𝑣 (𝑣𝑑𝑐
∗ −

𝑣𝑜𝑃𝑉+𝐺𝑑𝑣𝑜𝐹𝐶

2
) + 𝑘𝑖𝑣𝑔𝑣.𝑝𝑣                                               

𝛿𝑖1 = 𝑘𝑝𝑐 (
𝑖𝑜𝑃𝑉

𝑘1
−

𝑖𝑜𝑃𝑉 𝑘1⁄ +𝐺𝑑𝑖𝑜𝐹𝐶 𝑘2⁄

2
) + 𝑘𝑖𝑐𝑔𝑐.𝑝𝑣                                                                     (3.79) 

where, 𝑘𝑝𝑣, 𝑘𝑖𝑣; 𝑘𝑝𝑐, 𝑘𝑖𝑐 are the PI gains of voltage and current average controllers. 𝑘1 

and 𝑘2 denote the percentage current sharing by the two converters. (let, 𝑘1 = 𝑘2 = 1)  

Considering negligible latency in communication link, the state equations of 

average voltage and current controllers are (3.80-3.81). Assuming a LPF with cut-off 



Chapter 3. Small Signal Modelling 

58 
 

frequency 𝜔𝑐 rad/sec for the converter output current in droop control loop and two 

subsequent accumulator outputs 𝜇𝑝𝑣 and 𝜂𝑝𝑣 as state variables, the state equations are: 

𝑔̇𝑐,𝑝𝑣 =
𝑖𝑜𝑃𝑉

𝑘1
−

𝑖𝑜𝑃𝑉 𝑘1⁄ +𝐺𝑑𝑖𝑜𝐹𝐶 𝑘2⁄

2
                                                                          

𝑔̇𝑣,𝑝𝑣 = 𝑣𝑑𝑐
∗ −

𝑣𝑜𝑃𝑉+𝐺𝑑𝑣𝑜𝐹𝐶

2
                                                                                                                  (3.80) 

𝑖̇𝑜𝑝𝑣,𝑓 = −𝜔𝑐𝑖𝑜𝑝𝑣,𝑓 + 𝜔𝑐𝑖𝑜𝑃𝑉                                                                            

𝜇̇𝑝𝑣 = 𝑣𝑑𝑐
∗ +  𝛿𝑣1 −  𝛿𝑖1 −

𝑅𝑑0

𝑘1
 𝑖𝑜𝑝𝑣,𝑓 − 𝑣𝑜𝑃𝑉                                                       

𝜂̇𝑝𝑣 = 𝑘𝑝𝑣𝑙𝜇̇𝑝𝑣 +  𝑘𝑖𝑣𝑙𝜇𝑝𝑣 − 𝑖𝑜𝑃𝑉                                                                                                    (3.81) 

where, 𝑘𝑝𝑣𝑙, 𝑘𝑖𝑣𝑙 are PI gains of voltage loop; 𝑅𝑑0 is the constant virtual resistance 

reflecting droop characteristics. 

The duty cycle ratio is obtained as the normalized droop output pulses; 

𝛥𝑑 = 𝑘𝑝𝑐𝑙
𝜂̇𝑝𝑣

𝑣𝑜𝑃𝑉
+ 𝑘𝑖𝑐𝑙

𝜂𝑝𝑣

𝑣𝑜𝑃𝑉
                                                                                                                (3.82) 

where, 𝑘𝑝𝑐𝑙, 𝑘𝑖𝑐𝑙 are PI gains of current loop. 

 

Droop control of fuel cell-converter duty ratio 

The duty cycle ratio, 𝑑𝑓𝑐, given as normalized output pulses to drive the fuel cell 

converter system can be derived from a set of mathematical equations for fuel cell-

converter droop control in (3.83-3.85). 

𝛿𝑣2 = 𝑘𝑝𝑣 (𝑣𝑑𝑐
∗ −

𝑣𝑜𝐹𝐶+𝐺𝑑𝑣𝑜𝑃𝑉

2
) + 𝑘𝑖𝑣𝑔𝑣,𝑓𝑐                                                     

𝛿𝑖2 = 𝑘𝑝𝑐 (
𝑖𝑜𝐹𝐶

𝑘2
−

𝑖𝑜𝑃𝑉 𝑘1⁄ +𝐺𝑑𝑖𝑜𝐹𝐶 𝑘2⁄

2
) + 𝑘𝑖𝑐𝑔𝑐,𝑓𝑐                                                                     (3.83) 

𝑔̇𝑣,𝑓𝑐 = 𝑣𝑑𝑐
∗ −

𝑣𝑜𝐹𝐶+𝐺𝑑𝑣𝑜𝑃𝑉

2
                                                                                         

𝑔̇𝑐,𝑓𝑐 =
𝑖𝑜𝐹𝐶

𝑘2
−

𝑖𝑜𝐹𝐶 𝑘2⁄ +𝐺𝑑𝑖𝑜𝑃𝑉 𝑘1⁄

2
                                                                                                       (3.84) 
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𝑖̇𝑜𝑓𝑐,𝑓 = −𝜔𝑐𝑖𝑜𝑓𝑐,𝑓 + 𝜔𝑐𝑖𝑜𝐹𝐶                                                

𝜇̇𝑓𝑐 = 𝑣𝑑𝑐
∗ +  𝛿𝑣2 −  𝛿𝑖2 −

𝑅𝑑0

𝑘2
 𝑖𝑜𝑓𝑐,𝑓 − 𝑣𝑜𝐹𝐶                          

𝜂̇𝑓𝑐 = 𝑘𝑝𝑣𝑙𝜇̇𝑓𝑐 +  𝑘𝑖𝑣𝑙𝜇𝑓𝑐 − 𝑖𝑜𝐹𝐶                                                                                                      (3.85) 

𝑑𝑓𝑐 = 𝑘𝑝𝑐𝑙
𝜂̇𝑓𝑐

𝑣𝑜𝐹𝐶
+ 𝑘𝑖𝑐𝑙

𝜂𝑓𝑐

𝑣𝑜𝐹𝐶
                                                                                                                (3.86) 

where, all the PI gains are same as that for PV system for sake of simplicity.  

 

3.3.3.2 Droop control of battery 

The reference [25] derives a battery reference current from a slower outer loop 

based on P-V droop characteristics so as to balance power requirements. To keep the 

focus of this study on the time separation based on fuel cell dynamics, this slower outer 

loop has been ignored by considering the reference battery currents, 𝑖𝑏𝑎𝑡1
∗ and 𝑖𝑏𝑎𝑡2

∗  as 

inputs to the overall state space model. The two state equations and duty ratios 𝑑𝑏𝑎𝑡1, 

𝑑𝑏𝑎𝑡2 are given in (3.87-3.88).  

𝑧1̇ = 𝑖𝑏𝑎𝑡1 − 𝑖𝑏𝑎𝑡1
∗ − 𝑘𝑓1𝑧1                                                    

𝑧2̇ = 𝑖𝑏𝑎𝑡2 − 𝑖𝑏𝑎𝑡2
∗ − 𝑘𝑓2𝑧2                                                                                                              (3.87) 

𝑑𝑏𝑎𝑡1 = 𝑘𝑝𝑐
(𝑖𝑏𝑎𝑡1−𝑖𝑏𝑎𝑡1

∗ )

𝑣𝑜𝑃𝑉
+ 𝑘𝑖𝑐

𝑧1

𝑣𝑜𝑃𝑉
                                                    

𝑑𝑏𝑎𝑡2 = 𝑘𝑝𝑐
(𝑖𝑏𝑎𝑡2−𝑖𝑏𝑎𝑡2

∗ )

𝑣𝑜𝐹𝐶
+ 𝑘𝑖𝑐

𝑧2

𝑣𝑜𝐹𝐶
                                                                                               (3.88)  

where, 𝑘𝑝𝑐 and 𝑘𝑖𝑐 are the PI gains of current controller. 

 

3.3.3.3 MPPT control 

The objective of Maximum Power Point Tracking (MPPT) controller is to track the 

Maximum Power Point(MPP) of the PV source. The mathematical model of a fast MPPT 
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controller to regulate the duty cycle of PV connected converter system is obtained from 

[29]. The controller is basically follows a PI control strategy wherein input is the value 

of 𝑑𝑃𝑃𝑉 𝑑𝑉𝑃𝑉⁄ . Thus the linearized expression for derived duty cycle is given in (3.88) 

and the state variable, ∅𝑝𝑣, represents the cumulative perturbations in PV current as in 

(3.89). 

𝑑(𝑡)̃ = 𝑘𝑝,𝑚𝑝𝑝𝐺𝑝𝑣𝑖𝑝𝑣 + 𝑘𝑖,𝑚𝑝𝑝𝐺𝑝𝑣∅𝑝𝑣                                                                                        (3.89) 

∅̇𝑝𝑣 = 𝑖𝑝𝑣                                                                                                                                                          (3.90) 

where, 𝐺𝑝𝑣 =
𝜕(𝑑𝑃𝑃𝑉 𝑑𝑉𝑃𝑉)⁄

𝜕𝑖𝑝𝑣
|

𝑖𝑝𝑣=𝐼𝑃𝑉

is considered to be a constant value. The droop-MPPT 

controller regulating the duty cycle of PV-converter system works in two modes given by 

two cases as; 

𝑑𝑝𝑣 = {
𝑑(𝑡)̃                          𝑀𝑃𝑃𝑇 𝑚𝑜𝑑𝑒

𝑑(𝑡)̃ + ∆𝑑         𝑀𝑃𝑃𝑇 + 𝐷𝑟𝑜𝑜𝑝 𝑚𝑜𝑑𝑒
= {

𝑑1                     𝑀𝑃𝑃𝑇 𝑚𝑜𝑑𝑒
 𝑑2    𝑀𝑃𝑃𝑇 + 𝐷𝑟𝑜𝑜𝑝 𝑚𝑜𝑑𝑒

    (3.91) 

 

3.3.4    State Space Representation of DC Microgrid System 

The overall nonlinear state space model consisting of system components and 

control strategies is derived by substituting the duty ratios 𝑑𝑝𝑣, 𝑑𝑓𝑐, 𝑑𝑏𝑎𝑡1 and 𝑑𝑏𝑎𝑡2 in 

(3.86), (3.88), (3.91) derived from respective controller blocks into the converter state 

equations (3.70), (3.72) and (3.73) such that the individual states are combined as; 

𝒙 =

[𝒙𝒇𝒄 𝑥𝑜𝑝𝑣 𝑥𝑜𝑓𝑐 𝒙𝒑𝒗,𝒄𝒐𝒏𝒗 𝒙𝒇𝒄,𝒄𝒐𝒏𝒗 𝑥𝑚𝑝𝑝𝑡 𝒙𝒅𝒓𝒐𝒐𝒑,𝒑𝒗 𝒙𝒅𝒓𝒐𝒐𝒑,𝒇𝒄 𝒙𝒃𝒂𝒕𝒙𝒅𝒓𝒐𝒐𝒑,𝒃𝒂𝒕 𝒙𝒍𝒊𝒏𝒆 𝒙𝒍𝒐𝒂𝒅]𝑻              

(3.92) 
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where, 𝒙𝒑𝒗,𝒄𝒐𝒏𝒗 = [𝑖𝐿,𝑃𝑉 𝑣𝑐1,𝑃𝑉  𝑣𝑐2,𝑃𝑉] ,𝒙𝒇𝒄,𝒄𝒐𝒏𝒗 = [ 𝑥𝑓𝑐 𝑖̇𝐿,𝐹𝐶  𝜐𝑐,𝐹𝐶], 𝑥𝑚𝑝𝑝𝑡 = ∅𝑝𝑣, 

𝒙𝒃𝒂𝒕 = [𝑖𝑏𝑎𝑡1 𝑖𝑏𝑎𝑡2 𝑣𝑐1,𝐵 𝑣𝑐2,𝐵],  𝒙𝒅𝒓𝒐𝒐𝒑,𝒃𝒂𝒕 = [𝑧1 𝑧2], 𝒙𝒍𝒊𝒏𝒆 = [𝑖𝑙𝑖𝑛𝑒1 𝑖𝑙𝑖𝑛𝑒2] and 𝑥𝑙𝑜𝑎𝑑 =

𝑣𝑙𝑜𝑎𝑑 as obtained in (3.76). 

The PV and fuel cell-converter output voltages derived with reference to network 

dynamics as in Figure 3.18., is given in (3.93). 

𝑥̇𝑜𝑃𝑉 = 𝑣̇𝑜𝑃𝑉 =
𝑎1

𝑐1
 𝑖𝑜𝑃𝑉 +

1

𝐶1
 𝑑𝑏𝑎𝑡1𝑖𝑏𝑎𝑡1 −

1

𝐶1
𝑖𝑙𝑖𝑛𝑒1 −

1

𝑅1𝐶1
 𝑣𝑜𝑃𝑉                   

𝑥̇𝑜𝐹𝐶 = 𝑣̇𝑜𝐹𝐶 =
𝑎2

𝑐2
 𝑖𝑜𝐹𝐶 +

1

𝑐2
𝑑𝑏𝑎𝑡2 𝑖𝑏𝑎𝑡2 +

1

𝑐2
𝑖𝑙𝑖𝑛𝑒1 −

1

𝑐2
𝑖𝑙𝑜𝑎𝑑 −

1

𝑅2𝐶2
 𝑣𝑜𝐹𝐶                  (3.93)  

where, 𝑎1 and 𝑎2 represents the portion of source power delivered to the microgrid under 

stable operating conditions for PV and fuel cell respectively. 

The nonlinear state space model of the full order DC microgrid is represented as; 

 𝒙̇ = 𝒇(𝒙, 𝒖, 𝒘)                      

 𝑦 = 𝑣𝑙𝑜𝑎𝑑 = 𝑪𝒙                                                                                                                                     (3.94) 

where, State variables;  

𝒙

= [(𝑚𝑂2
)

𝑛𝑒𝑡
; (𝑚𝐻2

)
𝑛𝑒𝑡

;  (𝑚𝐻2𝑂)
𝑛𝑒𝑡

;  𝑇; 𝑃𝐻2
;  𝑃𝑂2

;  𝑃𝐻2𝑂;  𝑄𝐶;  𝑄𝐸;  𝑄𝐿; 𝑣𝑐𝑑;  𝑣𝑜𝑃𝑉;  𝑣𝑜𝐹𝐶 ;  

𝑖𝐿,𝑃𝑉;  𝑣𝑐1,𝑃𝑉;  𝑣𝑐2,𝑃𝑉;  𝑖𝐿,𝐹𝐶; 𝑣𝑐,𝐹𝐶;  ∅𝑝𝑣;  𝑖𝑜𝑝𝑣,𝑓;  𝜇𝑝𝑣;  𝜂𝑝𝑣;   𝑔𝑣.𝑝𝑣;   𝑔𝑐.𝑝𝑣;  𝑖𝑜𝑓𝑐,𝑓;  𝜇𝑓𝑐;  𝜂𝑓𝑐;  𝑔𝑣.𝑓𝑐; 

 𝑔𝑐.𝑓𝑐; 𝑖𝑏𝑎𝑡1;  𝑖𝑏𝑎𝑡2;  𝑣𝑐1,𝐵;   𝑣𝑐2,𝐵;  𝑧1;  𝑧2;  𝑖𝑙𝑖𝑛𝑒1;  𝑖𝑙𝑖𝑛𝑒2;  𝑣𝑙𝑜𝑎𝑑]                                        (3.95) 

Control input,  𝒖 = [𝑢𝑃𝐴
𝑢𝑃𝐶

𝑢𝑇𝑅
𝑣𝑃𝑉𝑣𝐹𝐶  𝑖𝑜𝑃𝑉𝑖𝑜𝐹𝐶𝑣𝑑𝑐

∗ 𝑖𝑏𝑎𝑡1
∗ 𝑖𝑏𝑎𝑡2

∗ 𝑒01𝑒02𝑖𝑐𝑐]𝑇 

Disturbance input, 𝒘 = [𝐼] 

𝑪 = [01×37 1] with dimensionality 1×38; dimensionality of 𝑥, 𝑢 and 𝑤 are 38×1;13×1 

and 1×1 respectively. 
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       Thus this section determines the state space representation of the microgrid systems 

by mathematical modelling of the individual components and control schemes in a 

cumulative manner. 

 

3.4 Simulation Results 

The simulation results of the small signal modelling of microgrid system on 

MATLAB/SIMULINK 2016a on Intel(R) Core™ i5-5200U CPU 2.20GHz (4.00 GB 

RAM) are given in this section. 

The complete small signal modeling of an autonomous AC microgrid, considering 

a small perturbation of A  on the state matrix A  linearized in the vicinity of a steady state 

operating point, consisting of two DERs, local loads and a connecting line is represented 

in state space by state space equations and output equations as in (3.43-3.44). The PLL 

angular frequency profile for perturbed and unperturbed microgrid system in terms of two 

operating points is given in Figure 3.20. The effect of state perturbations on autonomous 

micro grid system dynamics can be seen in Figure 3.21.  

 

 

Figure 3.20. Measured frequency by PLL. 

(blue and red color denotes operating points Xoper1 and Xoper2, respectively) 
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The dynamical response of odqv and odqi of the system with and without perturbation, 

are shown in Figure 3.21.(c) and 3.21.(d). It is worthy to mention that the effect of 

perturbation on output voltage and current profile almost tracks with little deviation in 

the initial period due to certain system uncertainties. After 0.5 second the tracking error 

is almost zero. Similar case is also visualized corresponding to other system behavioral 

quantities. Here convergence is almost achieved even earlier in the initial period. 

 

Figure 3.21. Autonomous Microgrid System Profile (blue line indicates 

unperturbed system and red line indicates perturbed system) (a) Active and reactive 

power, (b) qd  , (c) d-axis output current and voltage, (d) q-axis output current and 

voltage. 

 
(a) 

 

(b) 

 

(c) 
 

(d) 
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Table 3.1. Eigenvalues obtained in different cases in grid-tied AC microgrid model. 

Eigenvalue 

indices 

Eigenvalues 

Case 1 

Unperturbed 

system 

Case 2 

Uncertainty 

due to 

oscillations in 

LPF cut-off 

frequencies 

(1%) 

Case 3 

Uncertainty in 

measured 

powers at the 

steady state 

(0.2%) 

Case 4 

Uncertainty in 

measured powers 

at the steady 

state 

(-0.05%) 

1 0 0 0 0 

2,3 -3999.1639 

±11.1381i 

-3999.1639 

±11.1381e3i 

-3999.1639 

±11.1381e03i 

-3999.1639 

±11.1381e03i 

4 -8397.4010 -8397.4011 -8397.4011 -8397.4011 

5,6 -765.6479 

±11320.5331i 

-765.6480 

±11320.5332i 

-765.6480 

±11320.5332i 

-765.6480 

±11320.5332i 

7 -462.0381 -462.0382 -462.0381 -462.0386 

8 -391.4367 -391.4360 -391.4360 -391.4368 

9 -54.6187 -54.6091 -54.6092 -54.6201 

10 -45.0823 -45.0798 -45.0798 -45.0827 

11 -50.2610 -50.2620 -50.2620 -50.2599 

12 -50.2602 -50.2716 -50.2716 -50.2594 

13 -1.6376 -1.6373 -1.6373 -1.6375 

14 -32.0808×10-6 -188.2018×10-6 -187.4150×10-6 18.8672×10-6 

15 -16.1113×10-6 -374.6750×10-6 -373.1089×10-6 9.4749×10-6 

 

Further, for the small signal model of grid-tied microgrid system as in (3.67) a 

detailed state perturbation analysis has been carried out in the form of eigenvalues and 

system dynamics in Table 3.1. Four different cases with definite changes in the system 

parameters in the form of percentage values has been considered and their impact on the 

location of eigenvalues has been analyzed. Their subsequent dynamical changes has also 

been studied graphically. 

The perturbation in the state space model due to various reasons discussed in 

Section 3.1 lead to deviations in the system dynamics. Uncontrolled perturbations need 
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to be monitored in order to ensure system stability in all operating conditions. A case 

study of some of the perturbations in the microgrid model, given in Table 3.1, are 

considered in this work to demonstrate their effects on system stability which will be 

analysed in Chapter 5. 

Figure 3.22., demonstrates the effect of different cases under consideration on the 

system dynamics. The overlapping PLL frequency waveforms in Figure 3.22.(e) for all 

the four cases depict the efficient small signal modelling for the microgrid systems. 

 

3.5 Summary 

In this chapter, the AC and DC microgrid architectures considered in this thesis has 

been mathematically modelled. However, the small signal analysis of the AC microgrid 

systems in this chapter develops a 36th order state space model of droop-controlled model 

in autonomous mode and 15th order state space model in grid-tied mode. A 38th order PV-

fuel cell DC microgrid in autonomous mode has also been modelled to demonstrate the 

system dynamics with both droop controller and MPPT controller. Simulation results for 

the state space system dynamics with the impact of state perturbations also been included. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 3.22. Grid-tied Microgrid System Profile: (a)Active power, (b)Reactive power, 

(c)Direct axis output current and voltage, (d)Quadrature axis output current and 

voltage, (e)PLL frequency. 


