List of Tables

Table 3.1 : Breaking stress, strain at break, extension at break and breaking load
for large tensile specimen (diameter 20 mm, Gauge length 80 mm) tested
according to ASTM: C-74967
Table 3.2: Breaking stress, strain at break, extension at break and breaking load
for compressive specimen (diameter 20 mm, length 40 mm) tested according to
ASTM: C-69569
Table 3.3: Tension and compression test results for Young's Modulus of
elasticity (ASTM E111)70
Table 4.1(a): Formulas for Effective Volumes for Rectangular Beams loaded in
Flexure for bimodular specimens, (b) Formulas for Effective Surfaces for
Rectangular Beams loaded in Flexure for bimodular specimens89
Table 4.2 Conversion factor for converting strengths among four-point and three-
point flexure specimens with the same cross-section sizes tested on 10 mm x 30
mm fixture and 20 mm x 40 mm fixture as a function of the Weibull
Modulus94
Table 4.3 Cylindrical loading span specifications for flexural
specimen95
Table 4.4: Experimental test results for small three-point bend specimen98
Table 4.5: Experimental test results for large three-point bend specimen99

Table 4.6 Experimental test results for small specimen subjected to four-point
bend test with 1/3 loading
Table 4.7 Experimental test results for large specimen subjected to four-point
bend test with 1/3 loading
Table 4.8 Experimental test results for small four-point bend specimens with 1/4
loading
Table 4.9 Experimental test results for large four-point bend specimens with 1/4
loading
Table 4.10: Comparison of Weibull Parameters and goodness of fit for flexural
specimen126
Table 4.11 The results obtained from the three-point bend specimen simulation
Table 4.12. The unimodular and bimodular <i>effective volume</i> estimated with
analytical derived expression and FE model for the flexural graphite specimens.
136
Table 5.1: Comparison of the results (V_E and A_E) obtained from the newly
developed semi-analytical expressions in this chapter with the analytical

expression developed by Quinn (Quinn 2003a); Unimodular beam with Weibull
Modulus $m = 10$, $R = 3.2 \text{ mm}$ and $L_0 = 51 \text{ mm}$
Table 5.2: Final expressions of the effective volume for cylindrical beam loaded
in flexure (a) Effective Volume (Integral Form Expression) (b) Effective Volume
(Closed Form Solution)
Table 5.3 Final expressions of the effective surface for cylindrical beams loaded
in flexure
Table 5.4 Conversion factor for converting strengths among four-point and three-
point flexure specimens having similar dimension but different loading
configurations
Table 5.5 Cylindrical loading span specifications for flexural specimen171
Table 5.6 Support and block dimension in formulating finite element model174
Table 5.7: The characteristic strength (strength at 63.21% of probability of
failure) and Weibull Modulus for large and small flexural specimen having
corresponding co-efficient of determination for different loading
configurations
Table 5.8 Effective volume tabulation for analytical and experimental
analysis
Table 5.9 Tabulation of Effective volume for analytical and experimental
10/

Table 6.1 Weibull effective volumes and effective surface area expressions for
bimodular C-ring specimens (a) Weibull Effective Volume (b) Weibull Effective
Surface Area215
Table 6.2 Description of meshing pattern 224
Table 6.3 Comparison of Weibull Parameter for C-ring specimen
Table 6.4 Comparison of effective volume of C-ring specimen with different FE
mesh and analytical solution for unimodular graphite strength242
Table 6.5(a) The unimodular and bimodular <i>effective volume</i> estimated with
analytical derived expression and finite element model for the C-ring graphite
specimens. (b) Percent difference analysis between the effective volume estimates
from experimental based simulation and semi-analytic solution245
Table 6.6 (a) The unimodular and bimodular effective surface area estimated with
analytical derived expression and finite element model (50000 elements) for the
C-ring graphite specimens. (b) Percent difference analysis between the effective
surface area estimated from experimental based simulation and semi-analytic
solution
Table 7.1 Evaluation of J_{Ic} using published literature data (Chi 2016) and
comparison with G_{Ic}
Table 7.2 Evaluation of crack growth resistance in terms of fracture parameters
K_{r} I_{r} and G_{r}

Table 7.3 Co-efficient of determination (R ²), slope parameter and mean
characteristic load parameter with three parameter and two parameter Weibull
distribution
Table 7.4 J_{Ic} (evaluated from experimental K_{Ic}) and G_{Ic} value for mean peak load
estimated from Fig. 7.13
Table 7. 5 Unimodular and bimodular 3D <i>J</i> -integral and 2D Rice's <i>J</i> -integral is
tabulated for all twelve contour with average corresponding value303
Table 9.1. Properties of Magnetostrictive Material 349
Table 9.2: The of $(J_k^u)_{3D}$ in value at saturate magnetization
Table A1 Tensile strength of thin C-ring (r _i -r _o :: 40-50mm)specimens tested in
tension
Table A2 Tensile strength of thick (r _i -r _o :: 30-50mm)C-ring specimens tested in
tension
Table A3 Tensile strength of thin (r _i -r _o :: 40-50mm) C-ring specimens tested in
compression
Table A4 Tensile strength of thick (r _i -r _o :: 30-50mm) C-ring specimens tested in
compression