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5.1 Introduction 

 

Designing structural components fabricated from ceramic materials are desirable 

in many applications because of their strength at elevated temperature, high 

thermal conductivity, low thermal expansion, and outstanding wear resistance. On 

the other hand, structural ceramics are generally brittle and are associated with 

low strain tolerance, low fracture toughness and thereby putting into effect a 

severe limitation on the size of the critical flaw or defect. As well, fracture 

strengths of identical specimens of ceramic materials vary considerably and 

therefore, failure predictions for ceramics are performed using statistics and 

reliability analysis. The most widely accepted statistical method for characterizing 

the strength behavior of brittle materials is Weibull analysis, which is based on the 

weakest link theory. Furthermore, as the volume and/ or surface area of a ceramic 

component under stress increases, the probability of encountering a critical flaw 

increases. This effect introduces a size dependence of strength. In other words, the 

strength of a brittle ceramic component depends on the stress distribution and the 

volume and/or surface area stressed in tension. Thus calculation of effective 

volume and effective surface is a key step in estimating reliability of ceramic 
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component life cycle. Most of the tests performed to evaluate the mechanical 

reliability of ceramic materials are conducted on small laboratory specimens. This 

is because the testing of actual large size components subjected to complex stress 

fields at high temperature is both expensive and tedious. Most common tests 

performed to assess the strength and reliability of ceramic components are bend 

bar specimens tested in three-point and four-point flexure, C-ring and O-ring 

specimen under diametral compressive or tensile loads and biaxial ring-on-ring 

specimens. Weibull effective volumes and surfaces are used to scale ceramic 

strength from one component size to another or from one loading configuration to 

another (Jadaan et al. 1991; Quinn and Morrell 1991; Shelleman et al. 1991; 

Duffy et al. 1992, 2005, Quinn 2003a, b).  

 

Although the classical theory of elasticity assumes that materials have the same 

elastic properties in tension as well as in compression, numerous studies have 

indicated that materials like ceramic exhibit in a different way in tension and 

compression. With the developments of new materials, the numerical analyses 

incorporating the bi-modular properties are gaining attention of the researchers. 

The chance of failure is significantly affected by neutral axis shift due to the bi-

modular property of the material. The effective volume and effective surface of 

bi-modular material subjected to flexural loading is significantly affected by the 

neutral axis shift. The phenomena of different behavior in tension and 

compression were initially recognized by Saint-Venant in 1864 (Saint-Venant 

1864), however, the perception did not receive much attention for a long time. 

Later on, in 1941, the concept of a bi-modular material was revisited by 

Timoshenko while considering the flexural stress in such a material undergoing 
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pure bending(Timoshenko 1941). The bi-modular concept was extended to two-

dimensional materials by Ambartsumyan (1965-69) (Ambartsumyan 1965, 1966, 

1969). Since last few decades, several attempts have been made to establish 

constitutive relationships and exploring different aspects for such materials 

(Marin 1962; Isabekian and Khachatryan 1969; Tabaddor 1972; Kamiya 1975). 

Also, numerous literatures related to analytical and numerical solutions are 

available for the effective volume and effective surface area in beams with single 

modulus (Jadaan et al. 1991; Shelleman et al. 1991; Nemeth et al. 2005, 2013). 

However, computation of the effective volumes, surfaces and strength scaling of 

bi-modular material and thereby the more accurate reliability prediction remain 

really a challenging issue. 

Although previous investigators have attempted to predict the mechanical 

behavior of one simple specimen configuration from another using Weibull 

statistics and tabulations of formulas for effective volume or effective surface for 

square or rectangular beam specimens as well as cylindrical rods loaded in flexure 

expressions of Weibull effective volumes and surfaces for bi-modular material are 

not reported in the literatures so far(Quinn 2003a, b; Duffy et al. 2005; 

Wereszczak et al. 2008). In the present work, effort has been made to derive 

closed form expressions of Weibull effective volume and effective surface for the 

cylindrical beam specimen having bi-modularity. Though, it has not been possible 

to obtain the completely closed form expression due to the occurrence of complex 

integral form, still, one can get rid of the extensive computer modeling efforts 

because of the development of semi analytical expressions of effective volume 

and effective surface. Effective volume and effective area were computed semi 
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analytically as a function of the Weibull modulus.  As for the practical purposes, it 

is required to convert data rapidly between various loading configurations, 

therefore, expressions of strength scaling ratios and table of conversion factors, 

for strength scaling from one flexural loading configuration to another with 

varying Weibull modulus are also provided. For illustrative purposes, derivation 

of effective volumes and effective surfaces for three simple loading configurations 

are illustrated in this chapter. 

 

5.2 Weibull Statistical Failure Analysis 

 

Weibull statistical failure analysis is based on the weakest link theory and has 

been extensively used to describe the features of the strength of ceramic materials. 

According to this theory, the probability of failure (  ) can be related to the 

strength of a specimen through the two-parameter Weibull equation 
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Eq 5.1 can be transformed into: 
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Where,  is the Weibull modulus and associated with strength controlling flaws 

distributed through the volume; 0 V
  is the Weibull material scale parameter 

and can be described as the Weibull characteristic strength of a hypothetical test 

specimen with unit volume loaded in uniform uniaxial tension;  is the failure 

stress. 

 Now, this probability of failure can be estimated from the following expression: 

 

0.5
f

n
P

N
         (5.2) 

where fP  is the cumulative probability according to ranking of a set of failure 

strength data, n is the rank of the individual specimen arranged in increasing order 

of failure strength and N is the total number of specimens tested. The probability 

of failure against tensile strength data set has been plotted with 90% confidence 

bound for all the three estimator. The scattered data on the Weibull plot has been 

analyzed using the best fit line drawn by least square estimator (LIN2), biased 

(MLE2-B) and unbiased (MLE2-U) maximum likelihood estimator procedure.  

 

Where N is the total of specimens and  is the rank order of a certain specimen 

when the specimens are ordered from weakest to strongest. 

 

In order to represent graphically the strength data, the following form of Eq. 5.1 is 

frequently used: 
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Where,  is the effective volume under tension, k is a dimensionless 

factor and has been identified as a load factor. Eq. 5.3 represents a straight line 

with slope  when 
1

ln ln
1 fP

 is plotted against ln . This parameter can 

then be computed with the use of the least squares method.  

 

The effective volume expression is a function of the Weibull modulus and the 

geometric parameters of the specimen configuration which possesses a stress 

distribution. The effective volume can be derived for any configuration from the 

following equation: 

   

max

m
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V dV                                (5.4) 

 

Similarly, the effective surface area can be derived for any configuration from the 

following equation: 

max

m

E

A

A dA            (5.5) 

Where,  is an appropriate expression for the stress distribution and  is the 

maximum stress. In the case when the stress distribution cannot be obtained 

analytically, the effective volume/ surface area can then be computed numerically. 

When the strengths of two different specimen configurations of the same material 
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are to be compared, the following expression will be effectively used. In such case 

equal failure probabilities are substituted in Eq. 5.3: 

 

1/

1 2
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             (5.6) 

 

The volume-based Weibull analysis is used when the failure initiating flaws exist 

in the bulk of the material as well as at the surface, conversely, when failure 

mainly occurs due to surface flaws, then the area Weibull analysis can better 

describe the strength distribution. In this case the relationship which corresponds 

to Eq. 5.6 is 
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1,  2 are the mean strength of the specimen type 1 and 2; 1EV , 2EV  are 

effective volumes of the specimen type 1 and 2; 1EA , 2EA are effective surfaces of 

the specimen type 1 and 2, respectively(Quinn 2003a, b). 

  

5.3 Weibull Effective Volume and Surface Area for Bimodular Material 

 

In order to show the strength scaling from one loading configuration to another, 

the present work deals with the bi-modular beam of circular cross-section with 

different flexural loading configurations. Figs. 5.1 to 5.5 represent respectively the 

four-point general, four point ¼ point loading, four point 1/3 point loading, three-
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point general and uniform bending flexural specimen as corresponding to the 

location of loading configurations along with its Cartesian X-Y coordinate 

system.  

 

Fig. 5.1 Four-point general flexure specimen  

 

Fig. 5.2 Three-point flexure specimen 
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Fig. 5.3 Beam subjected to uniform bending 

 

 

Fig. 5.4 Four-point ¼ point flexure specimen 

 

 

Fig. 5.5 Four-point 1/3 point flexure specimen 

 

The notation x represents the longitudinal coordinate of the flexural beam from 

the central half-length of each specimen. However, in the present analysis, as the 

specimen cross section is circular, the cylindrical r   coordinate transformation 

as delineated in Fig. 5.6 has been referred for deriving Weibull effective volume 

and effective surface area expressions.  
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In order to derive the expression for effective volume, effective surface and 

thereafter strength scaling factor, the following cross-section of the cylindrical 

beam has been considered, Fig. 5.6. In this figure,  is the shift of the neutral axis 

from the centroidal axis of the beam and it is evaluated by force balance at any 

plane perpendicular to the neutral axis; R is radius of circular cross-section of the 

cylindrical specimen. At any plane the force balance equation is given by: 

 

0
A

dA                       (5.8) 

cy R

ty R

d

 
 
 

Fig. 5.6 Cylinder cross-section for the effective volume and surface analyses. For 

the effective volume, the material in the shaded zone is integrated over the cross-

section. For the effective surface analysis, the surface length dS Rd  is 

integrated over the periphery. 

 

Where, the elemental area at a distance r from the centroidal axis is given by 

 

2 22dA R r dr        (5.9) 
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Now, the stress at a point in the tensile and compressive region is given, 

respectively, by 

( )T
T

E r
        (5.10)       

and   

 

( )C
C

E r
        (5.11) 

 

where,  is the radius of curvature of the beam. 

 

Using Eq 5.9-5.11 in Eq 5.8 and simplifying, we have the following expression in 

terms of as 
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After substituting   
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Solutions for 1I and 2I  can be sought after some manipulations in the following 

way 

2 2
1 ( )

R

I r R r dr  

   
  

2 2 2 21
2 2

2

R R

r R r dr R r dr  

  

3 2
2 2 22

2

1 2
2 1

2 3

R r dr
R R

R R
 

  

23
2 2 2 12

1 2
sin . 1

2 3 2
R R

R R R
 

In a similar way,  
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Now, putting the expressions of I1 and I2 in Eq 5.12, we have 

23
2 2 2 12

2
sin . 1

2 3 2
R R

R R R
 

23
2 2 2 12

1 2
sin . 1

2 3 2
R R

R R R
 

3
22 2

1
2

1 2 1 3 sin . 1 1 3 0
2R R R R R R

 



151 
 

R  

So,  

3
22 121 2 1 3 sin . 1 1 3 0

2
 

3
22 1 22

1 3
2 1 3 sin 3 . 1 0

1 2
  (5.13) 

 Here, the shift of the neutral axis is a function of the specimen dimension as well 

as the ratio. Thus in order to evaluate the shift, the specimen dimensions 

must be provided. In the present analysis, the specimen dimensions have been 

taken from the report by Price (Price 1976). After solving the above equation 

using Newton-Raphson method, results have been plotted in Fig. 5.7 for the 

dimensionless ratio of neutral axis shift to radius of the cross-section of the beam 

over a range of ratio. This figure reflects that with increase in  ratio, 

the shift of the neutral axis decrease in a non-linear way. 

 

Fig. 5.7 Ratio of Neutral axis shift to radius of circular x-  

for a range of  
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After evaluating the neutral axis shift, the stress distribution at a point in the 

cylindrical specimen may be determined from the equation of moment balance 

about the axis of the specimen. The moment balance equation can be written as  
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dA r dA r M    (5.14)
 

 

Substituting Eqs. (5.9-5.11) in Eq. (5.14), we get 
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After carrying out the integration and on simplification, the above equation turns 

out to be  
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Now, let us substitute  in the above equation, we obtain  

4
2 3sin 4 32

4sin sin cos sin cos
4 2 4 2 3
TE R

 



153 
 

4
2 3sin 4 32

4sin sin cos sin cos
4 2 4 2 3
CE R

M  

 

Substitution of  TE

 
 by 

( )
T

r
from Eq. 5.10, some treatment 

yields 
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The above equation may also be represented in the form 
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Where,  
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5.3.1 Effective Volume for Four Point Flexural Beam with Bimodular Property 

Now, the expression for  maxT can be written for the Fig. 5.1 as 
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Insertion of Eqs. (5.15-5.16) into Eq. (5.4) and subsequent simplification yields 
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After some manipulations and simplifications, the above equation turns out to be  
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It is to be noted here that the integration has been performed over the portions of 

the specimen that are stressed in tension. After carrying out the integration for the 

first integral expression, one may have the fully closed form solution as derived in 

Eq 5.17 below while for the second integral one has to go for the numerical 

method. 
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The above integral term can be effectively evaluated with a programming 

software such as C-Program/Fortran Program as an area under the curve by taking 

 varying from  to 
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R.  Alternatively, the integral term in Eq. 5.17 has been evaluated using 

Mathematica and the closed form expression has been given as 
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Thus, now we have expression of EV  for the bi-modular cylindrical beam loaded 

in four point flexure.  

 

Fig. 5.8 Effect of bi-modularity on effective volume in four-point- ¼ point flexure 

specimen 
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For four-point- ¼ point flexure loading (Fig. 5.4),  and the Eq. 5.17 

leads to 

2 204
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( ) 2 2( 1)

R
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E m
r

Lm
V r R r dr

R m
   (5.18) 

 

Similarly, for four-point-1/3 point flexure loading (Fig. 5.5), , and 

the equation for EV  for this case becomes 
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Fig. 5.9 Effect of bi-modularity on effective volume in four-point-1/3 point 

flexure specimen.  

 

In a similar way, for three point flexure loading,  and the Eq. 5.17 turns 

out to be 
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Fig. 5.10 Effect of bi-modularity on effective volume in three point bend 

specimen 

 

5.3.2 Effective Volume for Beam Subjected to Uniform Bending with Bimodular 

property 

 

Approaching in a similar way like the 4-point bend specimen, now, the expression 

of  in case of beam subjected to uniform bending, (Fig. 5.3) becomes 
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Inserting Eq. 5.15 and Eq. 5.21 into Eq. 5.4 yields 
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Fig. 5.11 Effect of bi-modularity on effective volume in uniform bending 

specimen 

 

After carrying out the second integration numerically, and combining with the 

first part of the Eq. 5.18-5.20 and Eq 5.22, the effective volumes of the four point 

and three point flexure specimens for different loading configurations as well as 

for the uniform bending specimen, have been plotted as a function of the Weibull 

modulus, m, for different ratio, Figs. 5.8 - 5.11. The effective volume is a 

function of the specimen shape and dimension as well as the Weibull modulus. 

From all the four figures above it is reflected that the ratio of  has a 

significant effect on effective volume; also the lowest  configuration has 

the largest effective volume and with the increase in the Weibull modulus value 

there is asymptotic decrease in the value of the effective volume. Also with the 
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increase in Weibull modulus value, it is observed that the differences in the 

effective volume values reduce gradually for the range of . Table 5.1 

provides a comparison of the results obtained for VE and AE for all four different 

kinds of flexural loading from the present formulation with the results obtained 

from the expressions developed in earlier literature by Quinn(Quinn 2003a) with 

unimodular assumption.  

Table 5.1 Comparison of the results ( EV and 
EA ) obtained from the newly 

developed semi-analytical expressions in this chapter with the analytical 

expression developed by Quinn (Quinn 2003a); Unimodular beam with Weibull 

Modulus m = 10, R = 3.2 mm and L0 = 51 mm. 

 

Beam Configuration 

and Loading 

EV  as per 

(Quinn 

2003a)(mm3) 

EV , Present 

Method 

(mm3) 

EA  as per 

(Quinn 

2003a)(mm2) 

EA  , Present 

Method 

(mm2) 

Four-point ¼ point 

flexure specimen 
18.35247 18.347218 68.82142 68.8189 

Four-point 1/3 point 

flexure specimen 
13.2546 13.2508 49.7047 49.7025 

Three point flexure 3.058692 3.0579 11.47024 11.4698 

Uniform bending 33.64643 33.6366 126.1726 126.1679 

 

The qualitative and quantitative agreement of the results justifies the 

appropriateness of the present work towards the more generalized bimodular 

formulations. However, elaborate experimentation for each category of loading 

can be considered as a future work for such bimodular materials like graphite, for 

which these expressions become the impetus of further study. As a matter of fact, 

bimodular experimentations are not only rare in literature, but also if their 

readings are not properly calibrated, they shall be much more prone to errors in 
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predicting the strength scaling from one specimen size to another and from one 

loading configuration to another.  

 

Moreover, it should be noted here that in case of tubular and C-ring specimens, 

similar kinds of qualitative results were obtained by the previous researchers 

(Jadaan et al. 1991; Shelleman et al. 1991; Duffy et al. 2005). The reason for 

lowest configuration having the largest effective volume is that the 

specimen in this case possesses the largest volume which is stressed in tension. 

 

5.3.3 Effective Surface Area for Four Point Flexural Beam with Bimodular 

Property 

 

After putting the Eq. 5.15-5.16 into Eq. 5.5, one may have 
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After simplification, one gets 
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For four-point- ¼ point flexure loading,  and Eq. 5.23 leads to 
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Fig. 5.12 Effect of bi-modularity on effective surface in four-point- ¼ point 

flexure specimen 

 

For four-point- 1/3 point flexure loading,  and the above equation 

leads to 
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 Fig. 5.13 Effect of bi-modularity on effective surface in four-point- 1/3 point 

flexure specimen  

For three point flexural loading,  and the Eq 5.23 leads to 
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Fig. 5.14 Effect of bi-modularity on effective surface in three point bend 

specimen 
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5.3.4 Effective Surface Area for Beam Subjected to Uniform Bending with 

Bimodular property 

 

Inserting Eq. 5.15 and Eq. 5.21 into Eq. 5.5 yields 
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Simplification yields 

1

2

sin

2
sin

2
mo

E m

R

LR
A R d

R
       (5.27) 

 

Fig. 5.15 Effect of bi-modularity on effective surface in uniform bending, 

 

Approaching in a similar way, after carrying out the second integration 

numerically, and combining with the first part of the Eq. 5.24  5.27, the effective 
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surface areas of the four point and three point flexure specimens along with the 

beam in uniform bending for different loading configurations, have been plotted 

as a function of the Weibull modulus, m, for different ratio, Fig. 5.12  

Fig. 5.15. Like effective volume, here also, from all the four figures above it is 

revealed that the ratio of  has a significant effect on effective surface; as 

well the lowest configuration has the largest effective surface and with the 

increase in the Weibull modulus value there is asymptotic decrease in the value of 

the effective surface.  

Table 5.2 Final expressions of the effective volume for cylindrical beam loaded in 

flexure 

(a) Effective Volume (Integral Form Expression) 
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(b) Effective Volume (Closed Form Solution) 
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Table 5.3 Final expressions of the effective surface for cylindrical beams loaded 

in flexure 

Four point general 
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5.4 Strength Scaling 

 

The present section provides strength scaling ratios of flexural cylindrical 

specimen with bi-modular property for both surface and volume flaw distribution. 

Strength scaling ratios are derived below for the conversion of strengths among 

the various flexural loading configurations.  

When volume distributed flaws dominate, strength scaling ratio for the four-point 

1/3 point flexural strength to the four-point ¼ point flexural strength, is 
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         (5.28)
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Once, the cross-sections are same, and lengths are according to the fixtures size, 

ISO 14704 and ISO 17565, (ISO 17565 2003; ISO 14704 2008), the strength ratio 

correspondingly becomes 

 

1/

4 ,1/3

4 ,1/4

2 2

3

m

pt

pt

m

m
       (5.29)

 

    

 

In a similar way, when surface distributed flaws dominate, strength scaling 

depends on effective area of the specimen and the ratio is  
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 (5.30)

 

 

 

In case of same cross sections and when the lengths are according to the fixtures 

size mentioned in (ISO 17565 2003; ISO 14704 2008), the above ratio turns out to 

be 
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                                                         (5.31) 

        

 

Therefore, it can be interestingly observed here that the strength scaling ratios for 

the four-point-1/3 point flexural strength to the four-point-1/4 point flexural 
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strength are identical, irrespective of the flaw distribution in the specimen 

provided that the cross-section remains the same. So 
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Approaching in a similar way, strength scaling ratio for three-point flexural 

strength to the four-point-1/3 point flexural strength (when cross sections are 

remaining the same) is  
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Table 5.4 Conversion factor for converting strengths among four-point and three-

point flexure specimens having similar dimension but different loading 

configurations 

 

Weibull Modulus 
(m) 

Conversion factor 
W1 W2 W3 

5 1.118427 1.216729 1.284735 
6 1.100642 1.200937 1.259921 
7 1.087596 1.187673 1.239698 
8 1.077593 1.176343 1.222845 
9 1.069668 1.166529 1.208544 

10 1.063229 1.157930 1.196231 
12 1.053389 1.143530 1.176047 
15 1.043311 1.126878 1.153350 
20 1.032967 1.107211 1.127378 
25 1.026619 1.093456 1.109720 
30 1.022325 1.083211 1.096825 

 
Likewise, strength scaling ratio for three-point flexural strengths to the four-point, 

1/4 point flexural strengths (when cross sections are remaining the same),  
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As a ready reference, the strength scaling conversion factors 1W , 2W  and 3W have 

been provided for various Weibull modulus in Table 5.4. 

 

5.5 Experimental Validation 

 

High purity machined graphite tensile and compressive specimens of 20 mm gage 

diameter have been tested as per ASTM C-749 and ASTM C-695 for assessing 

the bimodular behavior. Gage length of tensile specimen is 80 mm and for 

compression specimen is 40 mm (ASTM C695- . 

Twenty specimens from each category are tested at room temperature using 

INSTRON UTM and the results are recorded for assessing the bimodular 

behaviour. Utmost care has been taken for preparing the specimens as per ASTM 

standard with reference to surface finish and planeness of the specimens within 

the tolerance values. A crosshead speed of 0.2 mm/min has been maintained 

T = 8.502 GPa 

C = 5.618 GPa were 

proportional limit(ASTM E111-04 2010). Modulus of elasticity values are the 

average value for all twenty specimens tested in each tension and compression. 

Two size of flexural specimens are tested for flexural loading as shown in Fig. 

5.16, conveniently called (i) Large flexural specimen  and small flexural specimen 

of respective dimension 20 mm diameter, length 128 mm and 10 mm diameter, 
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length 64 mm (specimen made according to ASTM: D7972-14) for different 

loading conditions (ASTM D7972-14 2014).  

 

 

Fig. 5.16 Cylindrical flexural specimen 

 

     
                                (a)                                                                   (b)   
Fig. 5.17 Three point flexure assembly for (a) large, (b) small bimodular 

cylindrical graphite specimens 
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                              (a)                                                                       (b)      

Fig. 5.18 Four point 1/3 loading flexure assembly for (a) large, (b) small 

bimodular cylindrical graphite specimens 

 
  

 

       
                               (a)                                                                       (b)   

 
Fig. 5.19 Four point ¼ loading flexure assembly for (a) large, (b) small bimodular 

cylindrical graphite specimens. 

 
Table 5.5 Cylindrical loading span specifications for flexural specimen 
 

Flexural Loading 
condition 

Size Outer span 
(mm) 

Inner span 
(mm) 

Specimen 
Tested 

Three point bend 
specimen 

Small 50 0 60 
Large 100 0 60 

Four Point Bend 1/3 
loading 

Small 51 17 60 
Large 102 34 60 

Four Point Bend 1/4 
loading 

Small 50 25 58 
Large 100 50 55 

 
Sixty specimens each were tested for three point bend test, four point bend test 1/3 

loading condition and four point bend test 1/4 loading condition as shown in Fig. 

5.17-5.19 for every size of specimens. The following Table 5.5 represents the 
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support span (outer span) and loading span (inner span) for the different loading 

conditions. 

 

5.5.1 Evaluation of Weibull Parameters 

To evaluate the effective volume and effective surface area and to deal with the 

probability of failure for a component in a room temperature following ASTM 

standard, the component or test specimen should be treated as a system. This 

typical approach to design the structural components with varying complex stress 

fields encompasses discretizing the component in order to characterize the stress 

field using finite element solution. Because the component failure may initiate in 

any of the discrete elements as assume weakest link, it is appropriate to consider a 

component as a system and utilize system reliability theories. If a component is in 

series system then failure in one discrete element leads to a sudden catastrophic 

failure of the whole component. These types of catastrophic failure can be 

exhibited using the concept of weakest-link theory. Accordingly, one needs a 

distribution that describes this extreme phenomenon of the sudden failure of the 

whole component due to the failure of a small weakest link (element). The 

Weibull distribution with a weakest-link system approach is well-known as 

Weibull theory (Weibull 1939b).  

 



173 
 

 

(a) 

 

(b) 

Fig. 5.20  Quarter symmetry finite element mesh of the cylindrical four-point-

flexure 1/3 loading specimen. (a) Overall model with support blocks. (b) Mesh 

details at the load block.  

The quarter symmetric finite element model developed for the flexural specimen 

is shown in Fig. 5.20. The results are finite element mesh sensitive, it has taken 

rigorous effort to control the mesh to find the results, so it is convenient that the 

mesh was taken in a similar fashion as taken in(Nemeth et al. 2012), and model 

built in using ANSYS, Version 14.5 software.  The support and load blocks were 
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modeled for avoiding the stress singularity which directly affect the value of 

effective volume and effective surface dimensions for flexural tabulated in Table 

5. T value as found in 

taken as 0.35, whereas the Modulus of elasticity for support materials has been 

taken 1/10th of ET value for the high purity graphite. The pressure load on the 

block was arbitrarily 14.06 N/m2 (Pa) as taken in(Nemeth et al. 2012, 2013). 

 

Table 5.6 Support and block dimension in formulating finite element model. 

Flexural 
Loading 
condition 

Size Support 
block 
(mm) 

Load 
block 
(mm) 

Span of arc 
angle, 

quarter-
symmetric 
(degree) 

Width 
of the 
block 
(mm) 

Height 
of the 
block 

Three point 
bend specimen 

Small 1.2 1.2 5 0.44 0.5 
Large 2.4 2.4 5 0.88 1.0 

Four Point 
Bend 1/3 
loading 

Small 1.2 1.2 5 0.44 0.5 
Large 2.4 2.4 5 0.88 1.0 

Four Point 
Bend 1/4 
loading 

Small 1.2 1.2 5 0.44 0.5 
Large 2.4 2.4 5 0.88 1.0 

 

The support and load blocks were set to mimic a soft material to help mitigate 

stress concentrations from hertzian contact. The Weibull plot depicting the 

probability of failure for three point and four point bend specimen for two loading 

condition, namely flexural 1/3 loading and flexural ¼ loading condition have been 

shown in Fig. 5.21 to 5.26 with the aid of best possible fit line using Linear 

regression (LIN2), biased maximum likelihood estimator (MLE2-B) and unbiased 

maximum likelihood estimator (MLE2-U) for small and large size specimen using 

Weibpar (Weibull Distribution Parameter Estimation) version-4.3  and CARES 

(Ceramics Analysis and Reliability Evaluation of Structures) version-9.3.2.196 
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Software developed by Connecticut Reserve Technologies, (NASA) USA  

appropriate quarter symmetric finite element model. The meshing pattern for 

quarter-symmetric four point 1/3 flexural loading condition for small size 

specimen dimension is shown in Figure 20. Similar sort of meshing pattern has 

been developed for other different loading conditions and solved for specific 

boundary conditions. The finite elements results file has been taken as input file 

by the CARES software and generate the CARES Natural file which stores the 

data of stress, strain, displacement, coordinates for each and every nodes for using 

the data for reliability analysis. Weibpar is the software used in plotting the 

experimental data with Weibull distribution using weakest link theory. And the 

Weibull plots for different loading conditions has been shown in Fig. 5.21-5.26. 

 

  

(a) 
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(b) 

Fig. 5.21 Weibull plot for small three point bend specimen best fit line for LIN2 

(Linear regression with two parameter Weibull distribution), MLE2-B (Biased 

maximum likelihood estimator with two parameter Weibull distribution) and 

MLE2-U (Unbiased maximum likelihood estimator with two parameter Weibull 

distribution parameter Weibull distribution) (b) Weibull PDF and Normal PDF 

plot and the failure strength data plot in histogram form 
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(a) 

 

(b) 

Fig. 5.22 (a) Weibull plot for large three point bend specimen best fit line for 

LIN2 (Linear regression with two parameter Weibull distribution), MLE2-B 
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(Biased maximum likelihood estimator with two parameter Weibull distribution) 

and MLE2-U (Unbiased maximum likelihood estimator with two parameter 

Weibull distribution parameter Weibull distribution) (b) Weibull PDF and Normal 

PDF plot and the failure strength data plot in histogram form 

 

(a) 

  

(b) 
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Fig. 5.23 (a) Weibull plot for small four point flexural 1/3 loading specimen best 

fit line for LIN2 (Linear regression with two parameter Weibull distribution), 

MLE2-B (Biased maximum likelihood estimator with two parameter Weibull 

distribution) and MLE2-U (Unbiased maximum likelihood estimator with two 

parameter Weibull distribution parameter Weibull distribution) (b) Weibull PDF 

and Normal PDF plot and the failure strength data plot in histogram form 

 

(a) 
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(b) 

Fig. 5.24 (a) Weibull plot for large four point flexural 1/3 loading specimen best 

fit line for LIN2 (Linear regression with two parameter Weibull distribution), 

MLE2-B (Biased maximum likelihood estimator with two parameter Weibull 

distribution) and MLE2-U (Unbiased maximum likelihood estimator with two 

parameter Weibull distribution parameter Weibull distribution) (b) Weibull PDF 

and Normal PDF plot and the failure strength data plot in histogram form 
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(a) 

 

 
(b) 

 
Fig. 5.25 (a) Weibull plot for small four point flexural ¼ loading specimen, best 

fit line for LIN2 (Linear regression with two parameter Weibull distribution), 

MLE2-B (Biased maximum likelihood estimator with two parameter Weibull 

distribution) and MLE2-U (Unbiased maximum-likelihood estimator with two 
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parameter Weibull distribution parameter Weibull distribution) (b) Weibull PDF 

and Normal PDF plot and the failure strength data plot in histogram form. 

   
(a) 

 

 
(b) 

Fig. 5.26 (a) Weibull plot for large four point flexural ¼ loading specimen, best fit 

line for LIN2 (Linear regression with two parameter Weibull distribution), MLE2-
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B (Biased maximum likelihood estimator with two parameter Weibull 

distribution) and MLE2-U (Unbiased maximum likelihood estimator with two 

parameter Weibull distribution parameter Weibull distribution) (b) Weibull PDF 

and Normal PDF plot and the failure strength data plot in histogram form 

 

The two parameters Weibull distribution has been plotted with a 90% acceptable 

confidence level from the fracture stress data. However, a large number of test 

data exceeding hundred to thousand flexural experimentation might have given a 

better fit for the Weibull failure model. From the analysis of Weibull plot, the 

characteristic strength ( ) and Weibull modulus (m) for the four point flexural 

specimen have been shown in Table 5.7.  

From the Weibull plot, the goodness of fit for the failure data with their 

corresponding coefficient of determination (R2 value) from Weibull parameter 

estimator viz: LIN2, MLE2-B, MLE2-U has been obtained and found to be more 

than 94% implying the sufficiency of number of test specimens for assessing the 

Weibull parameter. Small four point 1/4 flexural specimen test results depicted 

that the failure probability of the cylindrical beam with Weibull statistical 

distribution, two different size of flexural specimen (shown in Fig. 1) have been 

tested according to ASTM: D7972-14 and ASTM: C651-15. Sixty test specimen 

in each size has been taken for flexural testing. 
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Table 5.7: The characteristic strength (strength at 63.21% of probability of 

failure) and Weibull Modulus for large and small flexural specimen having 

corresponding co-efficient of determination for different loading configurations 

 
Loadin

g 
conditi

on 

Size m  R2-value 

LIN
2 

MLE2
-B 

MLE2
-U 

LIN
2 

MLE2
-B 

MLE2
-U 

LIN
2 

MLE2
-B 

MLE2
-U 

3-PBT 
specim

en 

Small 16.8
0 

17.53 17.12 75.2
3 

75.22 75.22 .989 .987 .988 

Large 16.1
2 

16.89 16.49 66.6
2 

66.59 66.59 .989 .987 .989 

4-PBT 
1/3 

loading 

Small 14.7
7 

17.25 16.84 78.0
9 

77.89 77.90 .964 .943 .949 

Large 16.7
3 

17.00 16.60 68.4
0 

68.41 68.41 .979 .978 .979 

4-PBT 
1/4 

loading 

Small 15.3
8 

17.92 17.48 77.0
6 

76.91 76.91 0.98
6 

0.980 0.983 

Large 16.6
5 

17.95 17.50 67.1
3 

67.09 67.09 0.97
7 

0.955 0.961 

 
The fracture test data for small and large size three point flexural specimens sets, 

four point 1/3 flexural specimens and four point 1/3 flexural specimens are used 

in developing Weibull plots.  The Weibull plot for the respective flexure specimen 

is delineated in Fig. 5.21 to 5.26 for small and large bend specimen and best 

possible fit line using Linear regression, biased maximum likelihood estimator 

and unbiased maximum likelihood estimator with two parameter Weibull 

distribution have been presented. The blue dots are the actual data sets and red 

line represents the linear regression whereas the blue and black line shows the 

best fit line by maximum likelihood biased and unbiased estimator.  

 
The characteristic strength ( ) and Weibull modulus (m) for large and small 

tensile specimen have been collected in Table 5.7 after analysis of plots in Fig. 

5.21(a) to 5.26(a). It is noticed that the behaviour of three point specimens have 

slightly lower strength than the four point flexural specimens. Also Weibull 

modulus variation between small and large specimen is very less signifying its 
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material constant value for the tested specimens. The Figure 5.21(b) to 5.26 (b) 

illustrates the failure data in the form of histogram and probability distribution 

function plot based on Normal and Weibull distribution with three estimators as 

LIN2, MLE2-B and MLE2-U in the form of dotted and full bell shaped lines. It 

has been seen clearly that Weibull distribution fits better than the normal 

distribution for the experimental data. CARES and WeibPar software code is used 

to compare and validate semi analytical results for effective volume and effective 

surface from the experimental fracture data. Some post processing code has been 

developed which takes the input results from finite element bimodular model 

simulation using general purpose COMSOL FE software for the validation of 

bimodular graphite fracture data with the Newton-Raphson solution of analytical 

integral formulation developed earlier in Table 5.2 and 5.3.   

The stress, strain, deformation and geometry data of bimodular finite element 

model results file of COMSOL finite element program is imported to Fortran 

programming for evaluating Weibull effective surface and effective volume based 

on the Principle of Independent Action. The principal of independent action (PIA) 

is taken as fracture criteria for the analysis. The same has been carried out for all 

category of flexural specimen considering both unimodular and bimodular elastic 

characteristics. Also, the effective volume of the cylindrical specimen is evaluated 

by CARES and WeibPar software considering the material as unimodular and 

formula (Quinn 2003a) and the mode difference is found to be 9.57% and 8.92 % 

for small and large flexural specimen with Four Point Bend 1/4 loading. Similar 

error percentage for each category has been noted for both the Weibull effective 
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surface and volume. Typically for effective surface area the error percentage with 

bimodular model is much less than that of unimodular assumption. 

Table 5.8 Effective volume tabulation for analytical and experimental analysis  
 
Flexural 
Loading 
condition 

Size Calculated 
from  

integral in 
the present 

work 
(mm3) 

Developed 
FE Model 
and post 

processing  
code (mm3) 

using 
bimodular 

Experimental 
Flexure Test 

data 

Mode 
Error  
(%) 

Calculated 
from CARES 
and Weibpar 
(mm3) from 
unimodular 
FE model  

unimodular  
Experimental 
Flexure Test 

data 

Calculated 
from above 
integral for 
unimodular 
assumption 

(mm3) 

paper 
Formula 
(Quinn 
2003a) 

Mode 
Error 
(%) 

3-PBT 
specimen 

Small  1.88 1.96 4.25 2.01 2.15 6.51 

Large  16.47 16.86 2.31 17.32 18.80 7.87 
4-PBT 

1/3 
loading 

Small  13.19 13.46 2.04 14.01 15.09 7.15 

Large  107.84 
 

109.72 1.74 115.26 123.37 6.57 

4-PBT 
1/4 

loading 

Small  17.51 17.21 1.71 18.03 19.9889 9.57 

Large  139.99 138.01 1.14 145.31 159.65 8.92 

Table 5.9 Tabulation of Effective volume for analytical and experimental analysis  
 

Flexural 
Loading 
condition 

Size Calculated 
from  

integral in 
the 

present 
work 

(mm2) 

Calculated 
from FE 

Model and 
post 

processing  
code 

(mm2) 

Mode 
Error   
(%) 

Calculated 
from Cares 

and WeibPar 
(mm3) 
Using 

Unimodular 
assumption 

(mm2)  

Calculated 
from above 
integral for 
unimodular 
assumption 

(mm2) 

Formula 
(Quinn 2003a) 

Mode 
Error   
(%) 

Three 
point 
bend 

specimen 

Small  7.82 7.95 1.66 8.05 8.32 3.2 

Large  33.02 33.56 1.63 33.96 34.76 2.44 

Four 
Point 

Bend 1/3 
loading 

Small  54.05 53.56 0.90 55.01 56.89 3.30 

Large  218.01 219.74 0.79 237.46 229.46 3.48 

Four 
Point 

Bend 1/4 
loading 

Small  74.48 74.98 0.67 76.12 77.87 2.23 

Large  298.75 300.02 0.42 304.57 311.31 2.29 

 
A detailed comparison of Weibull effective volume and Weibull effective surface 

area with and without bimodular material consideration for small and large 

flexural specimens is provided in Table 5.8 and 5.9. Comparing all columns in 

these table, it is seen that column 4 demonstrating the use of bimodular test data in 
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Weibull effective volume and surface evaluation is more close to the predicted 

analytical integral data (Column 3 of Table 5.8 and 5.9) derived in this work in 

comparison to column 6 (CARES unimodular model) and Column 7 (Quinn's 

unimodular model). Therefore appropriate design corrections are necessary for 

assessing the structural integrity of bimodular material made structures. 

 

5.6 Conclusions 

In the present work, the semi analytical expressions for Weibull effective volume 

and surface area for beam of circular cross section possessing bimodularity and 

loaded in different flexural configuration have been derived. In a bimodular beam, 

neutral axis is shifted from centroidal axis and thereby volume in tension and 

maximum tensile stress in the specimen are different as compared to the 

unimodular case and hence cause changes in the Weibull effective volume and 

effective surface area. This has been reflected in the Weibull effective volume and 

effect ) has a 

significant effect on the asymtotatic variation of Weibull volume/surface vs 

Weibull modulus variation. This suggests the importance of bimodularity for high 

risk bimodular material structures. Additionally, it has been shown that strength 

scaling ratios are independent of whether the flaws are volume or surface 

distributed for the beams having same cross-sectional shape and size. Conversion 

factors have been tabulated for different flexural configurations. Weibull model 

has been developed using concept of weakest link for experimental validation of 

proposed integrals for effective volume/ surface area. Experimentations have been 

conducted to assess the Weibull characteristic strength and Weibull modulus for 

bimodular high purity graphite specimens with a 90% confidence bound level 
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with the help of Weibpar and CARES software using appropriate finite element 

model. A post processing code has been written in FORTRAN language to 

quantify the effect of bimodularity.   It is perceived from Weibull models 

developed for experimental data sets that it is difficult to prove experimentally the 

effect of bimodularity on three point bend specimens because of comparatively 

low value of effective volume and surface area, whereas for the four point bend 

specimen, proposed integral matched more convincingly with the bimodular 

Weibull model value. Some small errors (between Column 3 and Column 4, Table 

5.8 and 5.9) have been reported between analytical and experimental effective 

volume/surface comparison which might be attributed to the lower sample size of 

fracture test data undertaken in the analysis. Nevertheless, consideration of the 

influence of bimodularity has minimized the error percentage between predicted 

analytical integral formulation and experimental evaluation. 

 
 

  


