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3.1 Introduction 

Theory of Weibull model and experimentation procedures has been explained in 

brief in subsequent sections of this chapter. Procedure for estimation of Weibull 

characteristic strength, effective volume and area has been explained with 

unimodular and bimodular assumptions. These parameters characterize the 

reliability of graphite components or structures, where even two identical 

specimens exhibit large variability in strength. The theory related to the effect of 

size on the strength of graphite specimen using weakest link theory has been 

explained. The implementation of bimodular finite element model has been 

discussed in this chapter. The influence of bimodularity on failure and fracture 

characterizing parameters has been illustrated. 

 

3.2 Weakest Link Theory  

 

The use of advanced high purity graphite materials and similar ceramic materials 

in structural applications requiring high component integrity has led to the 

development of a probabilistic design methodology due to the large scatter in 

strength and randomness of failure behaviour. Reliability of high risk components 
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involving nuclear grade graphite should not be compromised and endeavors are 

being made to propose a sound design philosophy. Though their true nature 

deviates from a classical elasticity problem posing a challenge to research 

community, the advent of efficient computational and experimental methodology 

has also been progressed to tackle such complexity. Therefore, a new spectrum of 

bimodular probabilistic design methodology has been developed for modeling the 

failure and fracture behavior of such components.   

The methodology combines: 

(1) Fracture mechanics theory for brittle failure of bimodular materials and 

(2) Weibull analysis of random failure strength data 

Inherent to this design procedure is that the requirement of reliability and safety of 

the component be relaxed at an acceptable limit. The statistical nature of fracture 

in engineering materials can be conceptualized by Weibull model(Weibull 1939b) 

based on the weakest-link theory as originally proposed by Pierce (Peirce 1926). 

The weakest-link model assumes that the structure is analogous to a chain with n 

links. Each link may have a different limiting strength. When a load is applied to 

the structure such that the weakest link fails, then the structure fails. Observations 

show that advanced monolithic ceramics closely follow the weakest-link theory. 

Weibull WLT model does not consider failure caused by purely compressive 

stress states, because the compressive strength is much larger than the tensile 

strength for ceramics. Consequently, failure is predominant by tensile strength, so 

the compressive stresses are neglected. In other words, the compressive and 

tensile principal stresses in each element are compared. When principal 

compressive stress exceed three times the maximum principal tensile stress in a 

given element, compressive stress state is assume to be predominated, and the 
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corresponding reliability of the element is set to be one. The weakest link theory 

predicts size effect on the strength of structural components. The flaws or defects 

present in structural components depend upon the material volume or surface area. 

Moreover, the strength of the structural component is directly related to effective 

volume and effective surface area. The number of flaws in smaller component is 

lesser than larger components, which lead to lesser chance to fail at similar 

strength. That means the characteristic failure strength is lesser for larger 

components than smaller components. On the other hand the largest flaw present 

in the larger component is more critical than the smaller component. The 

component failure may not be initiated at maximum nominal stress zone. A large 

flaw may exist in a region, which is other than the nominal maximum stress 

region. Therefore, for accurate analysis the complete stress solution of a 

component is required. Multiaxial stress state behavior is not predicted by 

classical weakest link theory. Various concepts like Principle of Independent 

een used to 

account for multiaxial stress state. In this work PIA criterion has been taken for 

the analysis of multiaxial stress state behavior. For understanding the basic 

mathematics, let us assume a stressed component containing many flaws, and 

assume that failure is due to any number of independent and mutually exclusive 

links (elements). Suppose, the infinitesimal probability of failure of each element 

is fP . The whole component is discretized into n incremental elements. Then the 

probability of survival of ith element is 

1s fi i
P P        (3.1) 
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where, s i
P is probability of survival. The overall probability of survival of the 

whole component is defined as the product of the probabilities of survival 

individual element 

1 1

1
n n

s fi i
i i

P P        (3.2) 
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Consider an existence of a function N , representing the crack density function, 

which is defined as the number of flaws per unit volume having a strength equal 

to or less than uniform tensile strength ( ).The probability of failure of ith 

element is in form of crack density function is 

( )f ii
P N V        (3.5) 

 

where, iV  is elemental volume. Expression of f i
P  is substituted in  Eq. (3.4), 

we get: 

1 1

exp ( )
n n

s ii
i i

P N V       (3.6) 

Resultant probability of survival is  

1

exp ( )
n

s i
i

P N V        (3.7) 

And overall probability of failure will be 

1

1 exp ( )
n

f i
i

P N V       (3.8) 

The probability of failure in integral form, the above equation is changed into  



51 
 

1 exp ( )f

V

P N dV       (3.9) 

1 expfP B         (3.10) 

Where B is risk of rupture as said by Weibull(Weibull 1939b). Risk of rupture is 

commonly used in reliability analysis. Eq.(3.9) and (3.10) are also be applicable to 

characterize flaws distributed over surface, if the elemental volume and volume 

dependent crack density function are replaced  by elemental surface area and 

surface area dependent crack density function. 

According to Weibull distribution, crack density function is replace by three 

parameter power function and  

0

1 exp
Vm

uV
f

VV

P dV       (3.11) 

where, u is threshold stress, 0V is scale parameter corresponds to the stress level 

where 63.21 percent of specimens with unit volumes would fracture and Vm is 

shape parameter or Weibull Modulus. The shape parameter is very important to 

characterize size effect. These Weibull parameters are material properties and it 

depends on environmental test conditions and processing.  Threshold parameter is 

usually taken zero for ceramic or graphite and by eliminating the threshold stress 

Eq. (3.11) will be  

0

1 exp
Vm

f
VV

P dV       (3.12) 

The above equation used to analyze fracture strength data from simple uniaxial 

specimen tests. For the analysis of the multiaxial stress state, PIA model has been 

based on principal stresses ( 1 2 3 ), which are assumed to act independently: 

1 2 3
0

1
1 exp

V

V V V

m

m m m
f

V V

P dV     (3.13) 
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In the present work, PIA model is used to estimate the size effect and the 

numerical approach for evaluation of effective volume and effective surface area. 

 

3.3 Size Effect on Strength 

 

Though size effect on strength has long been recognized with the era of Leonardo 

da Vinci (1452  1519), where he has conducted tests to determine the strength of 

iron wires, the scaling of design parameter, geometry and strength from one size 

(let us say laboratory specimen) to the prototype has been challenging enough to 

boost any confidence on prevailing laid down design principles. He postulated an 

inverse relationship between the strength and the length keeping the wire diameter 

constant (Timoshenko 1953)  can 

be quoted as follows (Irwin and Wells 1965). 

Observe what the weight was that broke the wire, and in what part the wire 

supports; and then make it one quarter of its original length, and so on, making 

various lengths, and nothing the weight that breaks each one and the place in 

which it breaks.  

When, the results of U.S. Naval research Laboratory (1958) on the strength of 

glass fibers as reported in literature (Irwin 1964), corroborated the early findings 

of Leonardo da Vinci, one can only awe inspire the findings of what a Genius he 

might be to motivate further work in the field. For brevity, bimodular material 

behavior was not recognized and presumably at a natal stage in later years to 

investigate its influence on size effect and strength dependency. The problem now 

becomes a stress dependent elasticity phenomenon, where intriguingly, state of 
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stress itself becomes a function of modulus of elasticity and the former happen to 

be an unknown as a priori. 

For design engineers, the size effect is, probably the most compelling reason for 

using fracture mechanics and statistical approach to deal strength of a structural 

component. The size effect is defined through a comparison of geometrically 

similar structures of different sizes, and is conveniently characterized in terms of 

the strength, which is same for geometrically similar structures of different sizes, 

then it is said to be, there is no size effect. A dependence of strength on the 

structural component size is called the size effect. Generally the strength of larger 

specimens is lesser than the smaller specimen. During actual application the 

strength of the structural component which might be much larger than the 

laboratory tested specimens, which mean the strength of structural component is 

significantly lower than the laboratory tested specimen. So, for design of critical 

component inside the reactor core of nuclear reactor, the size effect analysis is 

mandatory. For characterization and accurate accountability of size effect 

comparison between two different sizes of specimens, the concept of Weibull 

effective volume and effective surface area has been used. The Weibull weakest-

link theory leads to a strength dependency on specimen size is 

When volume flaws dominated: 

1/
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When surface flaws dominated: 
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                  (3.15) 

Where, 1, 2 are the characteristic strength of the specimen type 1 and 2; 

VE1, VE2 are effective volumes of the specimen type 1 and 2; AE1, AE2 are effective 

surfaces of the specimen type 1 and 2; mV and mA is Weibull modulus for effective 

volume and effective surface. 

 

3.4 Weibull effective volume and effective surface area 

 

Effective volume is the volume of a hypothetical tensile specimen, which, when 

subjected to the maximum stress has the same probability of failure as the tested 

specimen (flexural, C-ring, O-ring) stressed at same maximum stress. The 

effective volume is given by  

max

Vm

E V
V dV         (3.16) 

where, the max  is maximum stress. And effective surface area is given by: 

max

Am

E A
A dA        (3.17) 

By using above expression (3.16) and (3.17) the effective volume and effective 

surface have derived respectively. 

 

3.5 Numerical Evaluation of Effective Volume and Effective Surface Area 

 

Experimental testing of the appropriate number of specimens of similar type has 

been conducted. The random variable data sets of failure strength of different size 
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specimens have been estimated from experimental testing. The obtained random 

failure data has been gone through the Weibull distribution by the help of 

WeibPar software.  And estimation of Weibull parameter is performed. After, 

estimation of Weibull parameter and analytical derivation of effective volume and 

effective surface area, numerical estimation has been performed with help of finite 

element software and WeibPar and CARES life estimation software and self-

developed code. Now, unimodular and bimodular finite element models have been 

developed for the stress analysis. Then, with the help of WeibPar and CARES, 

effective volume has been evaluated for unimodular material model. The 

unimodular finite element results file for various flexural loading condition have 

been incorporated as input file to the CARES-life program. The CARES natural 

file so generated stores the data of stress, strain, displacement, coordinates of each 

and every node for use in reliability analysis and effective volume calculation. 

The flow chart in Fig. 3.1 describes the calculation procedure of effective volume 

both for unimodular and bimodular specimens. The experimental unimodular 

strength based Weibull model using various estimators is followed by Weibpar 

and CARES-life analysis program (WeibPar V-4.3 and CARES V-9.3) to evaluate 

the effective volume employing Principal of Independent Action. The evaluated 

experimental based effective volume for bimodular specimens have been 

compared with the analytical results of unimodular specimens. However, for 

bimodular effective volume evaluation, program subroutines have been written to 

calculate the effective volume from the bimodular finite element model. 
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Fig. 3.1 Flow diagram to calculate the experimental based effective volume and 

effective surface area calculation using Weibpar and CARES in unimodular case 

and bimodular FE model followed by sub routine. 

 

Bimodular strength based Weibull model has been developed using linear 

regression, biased maximum likelihood estimator and unbiased maximum 

likelihood estimator. Effective volume (bimodular) has been evaluated from the 

bimodular FE model using principal of independent action.  
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3.6 Finite Element Implementation of Bimodularity 

 

The FE model for bimodular material is developed based on the stress-dependent 

elasticity concept.  The linearized and non-linearized constitutive model as shown 

in Fig. 3.2 exhibiting different elastic moduli in tension and compression requires 

iterative numerical procedures for evaluating the state of stress of bimodular 

material specimen. The present work follows the bimodular Ambartsumyan 

constitutive model (Ambartsumyan 1966, 1969, Ambartsumyan and Khachatryan 

1966b, a; Ambartsumyan, S.A.; Khachatryan 1966) for characterizing the 

bimodular strength scaling. The bimodular theory postulates the tension-

compression stress-strain plots into two straight lines, whose tangents at the origin 

are discontinuous. This seems adequate for efficient modeling of the fracture 

behavior of many natural and man-made brittle materials demonstrating 

bimodularity.  

TC EE
TC EE

   

                       (a)                                  (b)                                        (c) 

Fig. 3.2 Bimodular constitutive model: (a) Bilinear model when TE > CE  (b) 

bilinear model when TE < CE and (c) non-linear model for actual condition 

      

The elastic continuum mechanics approach has the assumption that the stressed 

body is continuous, homogeneous, and isotropic and all deformations are small 

enough to have theory of superposition valid for all response characteristics. The 
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bimodular constitutive model for tensile and compressive state of stress has been 

defined as  

T
T

TE
     and C

C
CE

          (3.18) 

where, , , and E 

T C

the constituent tensile and compressive parameters. Since the modulus of 

elasticity itself is a function of state of stress and the latter being an unknown as a 

priori; a step function approach is adopted as similar to a Dirac delta functional 

having a value of either one or zero depending on the state of stress. The model 

step function of the bilinear bimodular material for representing the stress-

dependent elasticity problem can be written as 

( ) ( )b b
b b

T C

U U

E E
      (3.19) 

 

Where, U is a step function defined as 

 

 = 0  if 0;  

= 1  if 0        (3.20) 

                                  

   

The superscript b implies bimodularity; b and b  represent the bimodular strain 

and stress field respectively. The constitutive model for the three-dimensional 

tensile state of stress is given as  

ij ijkl kl

T T Ta                                                                                             (3.21)        
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and for compressive region 

ij ijkl kl

C C Ca          (3.22) 

Bimodular constitutive relationship is given by  

ij ijkl kl

b b ba
         (3.23)

 

The flexibility coefficient tensor,
ijkl

ba  for bimodular state of stress is defined as 

 ( ) ( )
ijklmn ijklmn

b T b C b
ijkl mn pq mn pqa a U f a U f    (3.24) 

ij

T , 
ij

C and 
kl

T
, 

kl

C
are strain tensor and stress tensor in tensile and compressive 

region respectively. 
ijkl

Ta , 
ijkl

Ca are the respective flexibility coefficient tensor in 

tensile and compressive state. The functions mnf  are the functions of state of 

stress. The constitutive equations so developed should satisfy the principle of 

coordinate invariance. Therefore, mnf are independent of coordinate rotation being 

isotropic functions of their arguments. Hence, the function mnf is expressed as an 

argument as follows. 

1 2 3, ,mn mnf f I I I           (3.25) 

where, 1I , 2I and 3I are the well-known stress invariant of elasticity theory, which 

satisfy the following cubic equation.  

3 2 2
1 2 3 0I I I          (3.26) 

0mnf  if m n  and 

mn if  if m n                     (3.27) 

( )mn pq rf  where, r=I, II, III are the three roots of Eq. (3.26). Since the 

bimodular elastic constants are the functions of the sign of principal stresses, this 
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can be incorporated to Eq. (3.23) for defining the general form of bimodular 

elasticity. So we obtain 

( ) ( )b T C b
ij ijklr r ijklr r kla U a U      (3.28) 

 where, the b
ij , b

kl are the bimodular tensorial strain and stress matrix, whereas 

r is function of  principle stress. However, with reference to the principle of 

coordinate invariance for any arbitrary plane, the mean principal stress or 

octahedral normal stress o  is considered as a function of r and the step function 

with reference to Eq. (3.20) is defined as follows. 

 = 0 if 1 2 3

3
< 0;      (3.29) 

  = 1 if 0 

The strain tensor so developed being the function of octahedral normal stress field 

is expressed as 

( ) ( )b T C b
ij ijklo o ijklo o kla U a U

      (3.30)
 

Now the above expression is incorporated in FE bimodular model. Appropriately, 

program subroutines have been written to incorporate the above condition in the 

finite element software COMSOL-multiphysics to model the stress dependent 

elasticity problem of crack progression behaviour iteratively. The detail of the 

programing flowchart has been shown in Fig. 3.3. The computational time on the 

server based parallel computing depends upon the tolerance accuracy of stress 

dependent elasticity. 

The first iteration has been solved assuming the material to be isotropic and 

unimodular. The neutral surface and geometric symmetric mid-surface both 

located at the same place. Then the iteration invokes the step function to define 
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the bimodularity based on the sign of function o

state of stress is carried out. The do loop is carried forward till the convergence 

criteria is satisfied. The accuracy of this three-dimensional problem for 

determining neutral surface iteratively is very much mesh sensitive and depends 

on the number of sub steps for each iteration. Fig. 3.3 demonstrates this logic flow 

chart for the bimodular flexural problem.   

 

Fig. 3.3 Program flow chart for evaluation of neutral surface in a bimodular 

flexure specimen 
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The flow chart starts with location of neutral axis for taking the tensile modulus as 

unimodular stress field. According to the sign of the principal stress function 

parameter, the domain of the tensile stress filed has been identified separately 

from the compressive stress field for each subsequent iteration. Subsequently, the 

tensile and compressive modulus of elasticity is assigned to the tensile and 

compressive region. The bimodular effect now can be observed in the flexural 

simulation of the graphite specimen due to non-uniform tensile and compressive 

zones. In the next iteration the region of tensile and compressive zone again 

changes and so also the neutral axis is shifted. The procedure is repeated till a 

predefined tolerance limit of close to 0.001 has been achieved. The change of 

state of stress between two consecutive iterations if remain constant for 99.99% of 

the assigned nodes, then the iteration is stopped. To lessen the computational 

time, advantage of parallel processing has been invoked for each bimodular index. 

On the basis of above discussion, the bimodular finite element models for the 

three point and four point bend specimens have been simulated. In order to test 

the accuracy of finite element results, comparison needs to be made with exact 

analytical solutions, if available. Alternatively, as the finite element method 

minimizes a prescribed functional then the solution will converge to the true value 

with increasing mesh density and therefore, comparison of global response by 

mesh refinement technique is also an accepted procedure for such convergence 

studies.  
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3.7 Experimental Characterization of Bimodularity 

 

Experimentation for tensile, compressive and fracture test data have been 

conducted as per relevant ASTM standards. The fracture data has been obtained 

by using digitalized image correlation software with continuous image capturing 

through high speed camera attachment to the INSTRON machine set up. The 

tensile and compressive specimens are prepared from the cuboidal shape graphite 

log of size as 1040x650x350mm3 and cut down in the way that it occupies 

horizontal orientation or against the gravity as shown in Fig. 3.4. The modulus of 

elasticity in tension and compression has been evaluated for this sample of 

horizontal oriented specimens.  

 

 

Fig. 3.4 The specimens making in the two orientations vertical (with gravity:Y-

axis) and horizontal (against gravity: X-axis) within specific graphite block size 

1040x650x350mm3. 
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The fracture specimens are also prepared in the similar orientation according to 

ASTM D7779 standard (ASTM D7779-11 2011). Fracture experimentation have 

been conducted to determine the critical stress intensity factor and strain energy 

release rate for the three point single edged notched bend (SENB) specimens 

prepared from the same log and subjected to displacement controlled point load.  

 

 

Fig. 3.5 Tensile specimen with fixture train 
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Fig. 3.6 Compressive specimen with fixture  

High purity machined graphite tensile and compressive specimens of 20 mm gage 

diameter have been tested as per ASTM C-749 and ASTM C-695 for assessing 

the bimodular behavior. The tensile test specimen with fixture train is shown in 

Fig. 3.5 while for compressive cylindrical specimen is presented in Fig. 3.6. 

The gauge length of tensile specimen is 80 mm and for compression specimen is 

40 mm (ASTM C695- . Proper care and 

specimen protection has been invoked during the testing for determining 

appropriate cross head speed so that the specimen should not break at the fixture 

clamp during tensile loading. Twenty specimens from each category are tested at 

room temperature using INSTRON UTM and the results are recorded for 

assessing the bimodular behaviour. Utmost care has been taken for preparing the 

specimens as per ASTM standard with reference to surface finish and planeness 

of the specimens within the tolerance values. A crosshead speed of 0.2 mm/min 

has been maintained throughout the testing. 
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The stress-strain plot is drawn using the DIC procedures. The correct value of 

obtained in Digital image co-relation. The slope of the linear fit gives the modulus 

value. The details can be found elsewhere in ASTM E 111. The stress-strain plot 

for the tension specimen is represented in the Fig. 3.7. 

 
Fig. 3.7 Stress-strain plot for large tensile test (specimen no. 01) from digital 

image co-relation 

The  experimental results for the breaking stress, strain at break, extension at 

break and breaking load for large tensile specimen (diameter 20 mm, Gauge 

length 80 mm) tested according to ASTM: C-749 and tabulated in the Table 3.1. 

Similarly for the compressive stress-strain plot is represented in the Fig. 3.8, by 

using the DIC procedures. And the  experimental test results for the breaking 

stress, strain at break, extension at break and breaking load for compressive 
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specimens (diameter 20 mm, Gauge length 40 mm) tested according to ASTM: C-

695 and tabulated in the Table 3.2.  

Table 3.1: Breaking stress, strain at break, extension at break and breaking load 

for large tensile specimen (diameter 20 mm, Gauge length 80 mm) tested 

according to ASTM: C-749. 
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Fig. 3.8: Stress-strain plot for large compressive test (specimen no. 01) from 

digital image co-relation 

The stress strain plot is drawn by the data points found from the digital image co-

relation. For the estimation of Modulus of elasticity, the initial chord modulus has 

been taken from the strain range (0 to 0.006 mm/mm) by using ASTM E111. The 

reason behind that is maximum fracture strain has been observed is .006 mm/mm. 

The fracture in the flexural condition most of the ceramics materials has been 

initiated in tensile region, because the compressive strength is much higher than 

the tensile strength. The bimodular ratio has been provided by ratio of the average 

of Modulus of elasticity in tension and compression. 
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Table 3.2: Breaking stress, strain at break, extension at break and breaking load 

for compressive specimen (diameter 20 mm, length 40 mm) tested according to 

ASTM: C-695. 

 

 
 

3.7.1. Bimodularity Index from Tension Compression Data Set 

T = 8.502 GPa and the compressive 

C = 5.618 GPa are evaluated according to ASTM 

E111 standard(ASTM E111-04 2010). Modulus of elasticity values for tension 

and compression are the corresponding average value estimated from the test 

results for all twenty specimens tested in tension and compression and the same 
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has been tabulated in Table 3.3 be bimodular and its 

bimodular index is determined as 1.51. 

 

Table 3.3: 

elasticity (ASTM E111). 

Tensile Specimen  ET (GPa) Compressive Specimen EC (GPa) 
Sample1 8.285 Sample1 5.582 
Sample2 8.623 Sample2 5.653 
Sample3 8.452 Sample3 5.624 
Sample4 8.499 Sample4 5.591 
Sample5 8.523 Sample5 5.673 
Sample6 8.534 Sample6 5.431 
Sample7 8.105 Sample7 5.745 
Sample8 8.384 Sample8 5.513 
Sample9 8.455 Sample9 5.534 
Sample10 8.683 Sample10 5.535 
Sample11 8.577 Sample11 5.712 
Sample12 8.469 Sample12 5.596 
Sample13 8.578 Sample13 5.656 
Sample14 8.607 Sample14 5.565 
Sample15 8.484 Sample15 5.656 
Sample16 8.453 Sample16 5.672 
Sample17 8.589 Sample17 5.578 
Sample18 8.747 Sample18 5.677 
Sample19 8.598 Sample19 5.689 
Sample20 8.399 Sample20 5.685 
Average  Value of ET 8.5022 Average  Value of EC 5.61835 
 

3.8 Probabilistic Fracture Mechanics 

 

The strength of nuclear graphite components is controlled by microstructure 

features, in addition to the sample size and geometry. For an example, a 

significant difference between bend and tensile strength in nuclear graphite is 

being observed, with the measured surface strain to failure is being higher in 

bending. Along with this, the relatively low notch sensitivity of nuclear graphites 
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was due to an effect of the stress gradient on the maximum stress developed. The 

effective volume under high stress might be very small relative to the 

microstructure scale in the presence of steep stress gradients. This implies a 

reduced probability of a large flaw being in this volume. Furthermore, in 

conditions where the maximum stress is sufficient to initiate fracture, the average 

strain energy within the small volume could be insufficient for fracture to 

propagate. Stable crack growth could therefore occur. Consequently, the Weibull 

modulus should not be expected to be independent of sample geometry, and may 

depend on the distribution of inherent flaws and their relation to the stressed 

volume in which they lie.  

Now, it is well recognized that the great majority of mechanical failures result 

from a combination of fracture, fatigue, corrosion and material degradation 

processes. In order to maintain an acceptable level of structural integrity in large 

modern structures and components that are being subjected to more and more 

demanding service conditions, design and system engineers have shown an 

increasing concern over both these detrimental processes and in ways of 

describing and counteracting them. But, complexity and size become major 

obstacles when one has to perform real life tests to assess design parameters. The 

tests are either too costly or simply not feasible which forces the engineer to rely 

on data obtained from relatively simple laboratory testing of components, 

specimens or systems. Secondly, it is further recognized that data obtained from 

these tests exhibit a relatively large amount of scatter that must be associated with 

the material microstructure itself, i.e., with random distributions of lattice defects, 

impurity atoms, slip systems, crystal sizes, grain boundary parameters, and macro 

defects such as porosity, cracks and casting defects. All attest to the random 
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nature of material damage processes and suggests a probabilistic rather than a 

deterministic approach to the problems associated with the implementation of 

modern materials such as low impurity nuclear graphites in high temperature 

nuclear reactors. Brittle materials exhibit a scatter in their fracture strength. 

Literature says that such a scatter is caused by the distribution of microscopic 

flaws intrinsic in the material. However, many other properties, such as corrosion 

resistance, low thermal conductivity, etc., of this class of materials have made 

them very attractive for use as a structural material. One of their chief attractions 

is high-temperature strength and thus their structural applications have focused on 

heat engines, turbine blades, and reactor cores. Their brittle characteristics (linear 

or non-linear stress-strain behavior to fracture) and their near-zero ductility, 

combined with the large scatter in fracture strength, have led to a probabilistic 

approach for a design philosophy to be established in high risk structures. 

 

 

  


