A	Area under the breakthrough curve
AAS	Atomic Absorption Spectroscopy
b	Langmuir constant related to the affinity of binding sites (L / mg)
BDST	Bed Depth Service Time Model
BET	Brauner-Emmett-Teller
C	Intercept called boundary layer effect
$\mathrm{C}_{\text {AE }}$	Equilibrium concentration of the solute on the adsorbent (mg/L)
$\mathrm{C}_{\text {ads }}$	Adsorbed metal ion concentration
$\mathrm{C}_{\text {b }}$	Breakthrough metal ion concentration
$\mathrm{C}_{\text {e }}$	equilibrium concentration of the adsorbate (mg / L) in batch mode
$\mathrm{C}_{\text {t }}$	concentration of the adsorbate remaining after adsorption has taken place over a time period of $t(\mathrm{mg} / \mathrm{L})$, in batch mode
C_{t}	effluent metal ion concentration (mg / L) in continuous mode
C_{0}	initial adsorbate concentration
Conc.	concentration (mg / L)
E	Mean free energy of the adsorption (kJ/mol)
e.g.	for example
et al.	and others
EDX	Energy Dispersive X-ray Analysis
FTIR	Fourier-transform infrared
i.e.	that is to say
h	hour
E\%	Elution efficiency
F	Polanyi potential
$\Delta \mathrm{G}$	Gibbs free energy (kcal/mol)
GO	Graphene Oxide
h	initial sorption rate of pseudo second order kinetics of adsorption($\mathrm{mg} / \mathrm{g} / \mathrm{min}$)
$\Delta \mathrm{H}$	enthalpy change ($\mathrm{kcal} / \mathrm{mol}$)
k	constant obtained by multiplying the Q° and b (Langmuir's
constant)	
k_{a}	rate constant of BDST model ($\mathrm{L} / \mathrm{mg} / \mathrm{min}$)
K_{F}	Freundlich constant which indicate relative adsorption capacity $\left(\mathrm{mg}^{1-1 / \mathrm{n}} / \mathrm{gL}^{1 / \mathrm{n}}\right)$
$\mathrm{k}_{\text {s }}$	equilibrium rate constant of pseudo-first-order kinetics adsorption (min^{-1})
$\mathrm{k}_{\text {id }}$	rate constant of intraparticle diffusion ($\mathrm{mg} / \mathrm{gh}^{0.5}$)
$\mathrm{K}_{\text {c }}$	equilibrium constant
k_{L}	column life factor
$k_{2}{ }^{\prime}$	equilibrium rate constant of the pseudo-second-order kinetics of adsorption
m	mass of the adsorbent per unit of volume (g / L)
M	adsorbate
MgO	Magnesium oxide

n	Freundlich constant indicative of the nature and strength of the adsorption process and the distribution of the adsorption sites
N_{b}	bed volumes to breakthrough
N_{0}	Adsorption capacity of bed
nm	nanometre
ppm	parts per million
Q	Volumetric flow rate
Q°	Langmuir constant represents the monolayer adsorption capacity (mg / g)
q	uptake capacity of the nanoadsorbent (mg/g)
qe	amount of adsorbate adsorbed at equilibrium (mg / g)
q_{m}	amount of adsorbate adsorbed ($\mathrm{mmol} / \mathrm{L}$)
q_{t}	adsorption capacity of the adsorbent at time $\mathrm{t}(\mathrm{mg} / \mathrm{g})$
$\mathrm{q}_{\text {tot }}$	total adsorbed metal ion quantity (mg)
R	universal gas constant [8.314 J/mol/K]
R_{L}	dimensionless separation constant
rpm	Rotation per minute
R^{2}	correlation coefficient
SEM	Scanning Electron Microscopy
$\Delta \mathrm{S}$	Entropy change
T	Temperature
t	time
$\mathrm{tb}_{\text {b }}$	breakthrough time (min)
$\mathrm{t}_{\mathrm{b}, \mathrm{i}}$	initial breakthrough time (min)
t_{e}	bed exhaustion or saturation time (min)
Temp.	temperature (${ }^{\circ} \mathrm{C}$)
u	linear velocity ($\mathrm{cm} / \mathrm{min}$)
V	Volume of the solution (L)
$\mathrm{V}_{\text {eff }}$	Effluent volume (L)
Vb	Volume of the solution treated at breakthrough time
W	Mass of the adsorbent
WHO	World Health Organization
Xm	maximum adsorption capacity of the adsorbent ($\mathrm{mmol} / \mathrm{g}$)
XRD	X-Ray Diffraction
XPS	X-ray photoelectron spectroscopy
zpc	zero point charge
Z	Bed height (cm)
Z_{0}	Critical Bed Depth (cm)
$\mathrm{Z}_{0, \mathrm{i}}$	initial critical bed depth (cm)
ZrO_{2}	Zirconium oxide
β_{t}	Mass transfer coefficient ($\mathrm{cm} / \mathrm{sec}$)
β	full width at half maximum
λ	Wavelength

