List of Symbols/Abbreviations

A Area under the breakthrough curve AAS Atomic Absorption Spectroscopy

b Langmuir constant related to the affinity of binding sites (L/mg)

BDST Bed Depth Service Time Model

BET Brauner-Emmett-Teller

C Intercept called boundary layer effect

C_{AE} Equilibrium concentration of the solute on the adsorbent (mg/L)

 C_{ads} Adsorbed metal ion concentration C_b Breakthrough metal ion concentration

C_e equilibrium concentration of the adsorbate (mg/L) in batch mode concentration of the adsorbate remaining after adsorption has taken place over a time period of t (mg/L), in batch mode

effluent metal ion concentration (mg/L) in continuous mode

C₀ initial adsorbate concentration

Conc. concentration (mg/L)

E Mean free energy of the adsorption (kJ/mol)

e.g. for example et al. and others

EDX Energy Dispersive X-ray Analysis

FTIR Fourier-transform infrared

i.e. that is to say

h hour

E% Elution efficiency F Polanyi potential

ΔG Gibbs free energy (kcal/mol)

GO Graphene Oxide

h initial sorption rate of pseudo second order kinetics of

adsorption(mg/g/min)

ΔH enthalpy change (kcal/mol)

k constant obtained by multiplying the Q° and b (Langmuir's

constant)

 C_t

k_a rate constant of BDST model (L/mg/min)

K_F Freundlich constant which indicate relative adsorption capacity

 $(mg^{1-1/n}/gL^{1/n})$

k_s equilibrium rate constant of pseudo-first-order kinetics adsorption

 (\min^{-1})

 k_{id} rate constant of intraparticle diffusion (mg/gh^{0.5})

 K_c equilibrium constant k_L column life factor

 $k_{2'}$ equilibrium rate constant of the pseudo-second-order kinetics of

adsorption

m mass of the adsorbent per unit of volume (g/L)

M adsorbate

MgO Magnesium oxide

n Freundlich constant indicative of the nature and strength of the

adsorption process and the distribution of the adsorption sites

 $egin{array}{ll} N_b & \mbox{bed volumes to breakthrough} \ N_0 & \mbox{Adsorption capacity of bed} \ \end{array}$

nm nanometre
ppm parts per million
Q Volumetric flow rate

Q° Langmuir constant represents the monolayer adsorption capacity

(mg/g)

q uptake capacity of the nanoadsorbent (mg/g)

qe amount of adsorbate adsorbed at equilibrium (mg/g)

 q_m amount of adsorbate adsorbed (mmol/L)

q_t adsorption capacity of the adsorbent at time t (mg/g)

q_{tot} total adsorbed metal ion quantity (mg)
R universal gas constant [8.314 J/mol/K]
R_L dimensionless separation constant

rpm Rotation per minute R² correlation coefficient

SEM Scanning Electron Microscopy

 ΔS Entropy change T Temperature

t time

t_b breakthrough time (min) t_{b.i} initial breakthrough time (min)

t_e bed exhaustion or saturation time (min)

Temp. temperature (°C)

u linear velocity (cm/min)V Volume of the solution (L)

V_{eff} Effluent volume (L)

Vb Volume of the solution treated at breakthrough time

W Mass of the adsorbent WHO World Health Organization

Xm maximum adsorption capacity of the adsorbent (mmol/g)

XRD X-Ray Diffraction

XPS X-ray photoelectron spectroscopy

zpc zero point charge Z Bed height (cm)

 Z_0 Critical Bed Depth (cm) $Z_{0,i}$ initial critical bed depth (cm)

ZrO₂ Zirconium oxide

 β_t Mass transfer coefficient (cm/sec)

β full width at half maximum

λ Wavelength