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A Catalyst-Free Expeditious Green Synthesis of Quinoxaline, 

Oxazine, Thiazine, and Dioxin Derivatives in Water under 

Ultrasound Irradiation 

 

6.1 Introduction 

Quinoxaline, 1,4-oxazine, 1,4-thiazine and 1,4-dioxin derivatives are an important 

class of heterocycles gaining considerable attention due to their biological activities and 

pharmacological importance (Das et al. 2012, Sindhu et al. 2013, Soliman 2013, Vincent et 

al. 2014, Mohsen et al. 2015, Cheng et al. 2016, El‐Zahabi 2017, Gu et al. 2017, Paliwal et 

al. 2017).
 
These heterocyclic compounds are also the basic scaffold for the synthesis of 

solar cells (Shen et al. 2018),
 
dyes (Katoh et al. 2000), pigments (Dietz et al. 1994), organic 

semiconductors (Dailey et al. 2001) and chemical switches (Crossley et al. 2002).
 
There are 

many drugs possessing these core structural units like Quinacilline (penicillin drug), 

Ragaglitazar (anti-hypertensive drug), Chlorpromazine (antipsychotic drug), WB-4101 

(1B-adrenergic receptor), D 106669 (PI3K inhibitor), Ofloxacin (antibiotic) etc. (Figure 

6.1). Due to their wide range of biological activities many synthetic strategies have been 

reported in the literature. Synthesis of quinoxaline derivatives have been achieved by using 

different synthons with o-phenylenediamine like 1,2-dicarbonyl compounds, epoxides 

(Antoniotti et al. 2002), phenacyl bromide (Sarmah et al. 2017),  -acylthioformanilide  

(El-Sharief et al. 2009) etc. Among these 1,2-dicarbonyl compounds and o-

phenylenediamines are the best starting materials for quinoxaline synthesis. 
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Conventionally, quinoxaline derivatives were synthesized by the reaction of 1,2-

dicarbonyl compound and o-phenylenediamine using different catalysts such as acetic acid          

(Islami et al. 2008, Han et al. 2017), molecular iodine (Bhosale et al. 2005, More et al. 

2005),
 
o-iodoxybenzoic acid (Heravi et al. 2006),

 
montmorillonite K-10 clay (Huang et al. 

2008), polyaniline sulfate (Srinivas et al. 2007),
 
nitrilotris (methylenephosphonic acid)  

(Fathi et al. 2015),
 
aqueous HF (Shekhar et al. 2014), sulfamic acid (Darabi et al. 2007, 

Hegade et al. 2014), NH4Cl (Darabi et al. 2008), Amberlyst-15 (Liu et al. 2010) and metal 

catalysts such as cerium(IV) ammonium nitrate (CAN) (More et al. 2006), gallium(III) 

triflate (Cai et al. 2008), silica-supported antimony(III) chloride (Darabi et al. 2009), 

zirconium(IV) chloride (Aghapoor et al. 2010), SnCl2/SiO2 (Darabi et al. 2011),
 
ZnO 

(Hosseini-Sarvari 2012), FeCl3 (Bardajee et al. 2013),
 

Keplerate {Mo132} nanoballs 

(Rezaeifard et al. 2015) and sulfated polyborate (Indalkar 2017). Synthesis of quinoxalines 

have also been reported under microwave irradiation (Kidwai et al. 2005, Dwivedi et al. 

2014), ultrasound irradiation (Guo et al. 2009, Aghapoor et al. 2011) and using ball mill 

(Kaupp et al. 2002, Etman et al. 2011, Bhutia et al. 2017).  

Synthesis of the 1,4-oxazines were reported by the reaction of 1,2-aminophenol with 1,2-

dicarbonyl compound (Moghaddam et al. 2016) and phenacyl bromide (Anguiano et al. 

2013) while 1,4-thiazines were synthesized by 1,2-aminothiophenol and 1,2-dicarbonyl 

compound (Jadamus, Fernando and Freiser 1964), phenacyl bromide (Yang et al. 2013), 

chalcones (Lin et al. 2016), maleic anhydride (Jangir et al. 2015) etc. and some other 
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methods were also utilized which involves the sulphur insertion (Zhang et al. 2001, Gu et 

al. 2014). Similar to the quinoxalines, the best method of 1,4-oxazine and 1,4-thiazine 

synthesis involves the reaction of 1,2-aminophenol/ 1,2-aminothiophenol with 1,2-

dicarbonyl compounds under different experimental conditions like THF-MW, p-TSA etc. 

There are only few reports on the synthesis of indenoxazines and indenothiazines from the 

reaction of ninhydrin with o-aminophenol and o-aminothiophenol respectively (Schönberg 

et al. 1978, Simakov et al. 2001, Kaupp 2002);
 
but the reaction of ninhydrin with catechol 

and 3-hydroxy-2-aminopyridine leading to the formation of 4b,10a-dihydroxy-4bH-benzo 

[b]indeno[1,2-e][1,4]dioxin-11(10aH)-one and 5a-hydroxyindeno[2,1-b] pyrido[2,3-

e][1,4]oxazin-6(5aH)-one has not been reported till now. These reported methods for 

synthesis of quinoxaline, oxazine, thiazine and dioxin have some drawbacks such as harsh 

reaction conditions, longer reaction time, expensive catalysts, toxic solvents or tedious 

workup. Green synthesis of biologically active heterocyclic compounds is always on the 

priority of the synthetic organic chemists. Therefore, the development of facile and energy-

efficient greener methods for synthesis of these heterocyclic compounds is necessary.  

The use of appropriate solvents in organic synthesis is also very important from the 

green chemistry point of view. In this regard the use of water as solvent has attracted great 

deal of interest in recent years. Indeed, water offers many advantages because it is cheap, 

readily available, nontoxic, nonflammable and can be more selective than organic solvents 

(Lindstrom 2008, Gawande et al. 2013). Catalyst-free syntheses are in full agreement with 
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the idea of green chemistry because they reduce pollutant production, use of hazardous 

chemicals, and cost. The reaction occurs under mild conditions and usually requires easier 

workup procedures. 

 

Figure 6.1: Structures of some pharmacologically active compounds containing 

quinoxaline, oxazine, thiazine or dioxin core moieties. 

 

In this context, ultrasound assisted reactions have gained much attention because 

they offer milder reaction conditions, higher reaction rates, excellent yields and low energy 

consumption. Many organic transformations have been successfully achieved with the help 

of ultrasound irradiation. Therefore, ultrasound assisted organic synthesis, as a green 
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synthetic approach, is considered to be a powerful technique (Banerjee 2017, Nishtala et al. 

2017, Ghomi et al. 2018). 

The fascinating nature of water and the beneficial effects of ultrasound have prompted 

us to undertake the synthesis of quinoxaline, oxazine, thiazine and dioxin derivatives. 

Herein, we report the catalyst-free reaction of ninhydrin and isatin derivatives with 1,2-

difunctionalized benzene/ pyridine for the first time in water under ultrasound irradiation.      

6.2 Results and Discussion 

In order to optimize reaction conditions, the reaction of ninhydrin and                                

o-phenylenediamine was chosen as a model reaction for the synthesis of quinoxaline 

derivatives (Scheme 6.1). The reaction was carried out in various solvents under 

conventional and ultrasound irradiation methods. The reaction was performed at room 

temperature with 1.0 mmol of ninhydrin and 1.0 mmol o-phenylenediamine in 5.0 mL of 

solvent without any catalyst. The progress of the reaction was monitored by TLC. It was 

observed that under ultrasound irradiation the reaction was completed in shorter time with 

excellent yield (Table 6.1). Among the polar solvents tested (ethanol, methanol, 

isopropanol, water, acetonitrile, acetic acid, THF and dioxane) water was found to be the 

best, which gave 98% yield in 50 seconds under ultrasound irradiation (Table 6.1, Entry 4) 

while no product was detected at room temperature in case of nonpolar solvents (benzene 

and toluene) (Table 6.1, Entries 9 & 10). Pure product was separated as solid and collected 

by filtration. There was no requirement for further purification. 
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The rate of reaction was faster under ultrasound irradiation. This is attributed to the 

cavitation phenomena occurring during sonication. Cavitation results in formation of micro 

bubbles which adiabatically collapse and gives local hotspots. These hotspots generate high 

temperature and pressures of several thousand atmosphere which cause the reaction to 

proceed rapidly (Banerjee 2017). 

To examine the effect of ultrasound energy on reaction time and yield, the model 

reaction was carried out at different energies from 500 to 11000 J, and the results are shown 

in Table 6.2. The maximum yield of the product was obtained at 2000 J ultrasound energy 

(Table 6.2, Entry 4). An increase in the ultrasound energy above 2000 J did not show any 

significant improvement in terms of yield and reaction time. So, 2000 J ultrasound energy 

is considered as the optimum energy condition. In order to examine the effect of ultrasound 

amplitude on reaction rate we carried out this reaction at different ultrasound amplitudes 

from 20‒50% at room temperature. The maximum yield (98%) of the product (3a) was 

obtained at 20% amplitude. The increase in amplitude did not affect the yield of the 

reaction.  
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Scheme 6.1: Reaction of ninhydrin with o-phenylenediamine. 

 

Table 6.1: Effect of solvents on the yield of the product 3a under conventional and 

ultrasound irradiation methods. 

 

 

Entry 

 

Solvent 

Conventional
a
 Ultrasonication

b
 

Time (min) Yield (%)
c
 Time (min) Yield (%)

c
 

1 Ethanol 15 80 10 84 

2 Methanol 30 75 12 77 

3 Isopropanol 35 72 15 75 

4 Water 10 85 50 sec 98 

5 Acetonitrile 60 60 40 72 

6 Acetic acid 30 78 10 80 

7 THF NR -- NR -- 

8 Dioxane NR -- NR -- 

9 Benzene NR -- NR -- 

10 Toluene NR -- NR -- 

Reaction conditions: 
a 
Mixture of 1a (1.0 mmol) and 2a (1.0 mmol) in 5.0 mL of solvent was stirred at room 

temperature (30 
0
C). 

b 
Mixture of 1a (1.0 mmol) and 2a (1.0 mmol) in 5.0 mL of solvent was irradiated at 750 

W, 2000 J, 20% amplitude, 30 
0
C. 

c 
Pure isolated yield. 
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Table 6.2: Effect of ultrasound energy on the yield of the product 3a
a 

 

Entry US Energy (Joule) Time (sec) Yield (%)
b
 

1 500 260 90 

2 1000 180 92 

3 1500 100 95 

4 2000 50 98 

5 5000 45 95 

6 7500 35 96 

7 11000 35 95 

a 
Reaction condition: Mixture of ninhydrin 1a (1.0 mmol) and o-phenylenediamine 2a (1.0 mmol) in 

 5 mL of water  irradiated at 750 W, 20% amplitude at room temperature (30 
0
C). 

b 
Pure isolated yield. 

 

To explore the applicability of the optimized reaction conditions, various 

derivatives of the quinoxaline, oxazine, thiazine, and dioxin were synthesized by the 

reaction of ninhydrin and isatin derivatives (1) viz. ninhydrin (1a), isatin (1b)  1-

ethylindoline-2,3-dione (1c), 1-propylindoline-2,3-dione (1d), 1-benzylindoline-2,3-dione 

(1e), ethyl 2-(2,3-dioxoindolin-1-yl)acetate (1f) and ethyl 2-(5-chloro-2,3-dioxoindolin-1-

yl)acetate (1g) with several 1,2-difuncionalized benzenes and pyridines (2) viz. o-

phenylenediamine (2a),  4-methyl-o-phenylenediamine (2b), 4-chloro-o-phenylenediamine 

(2c), o-aminophenol  (2d), o-aminothiophenol (2e), catechol (2f), 2,3-diaminopyridine (2g) 

and 3-hydroxy-2-aminopyridine (2h) to give compound (3) viz.   11H-indeno[1,2-

b]quinoxalin-11-one (3a),   7-methyl-11H-indeno[1,2-b]quinoxalin-11-one (3b),                  
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7-chloro-11H-indeno[1,2-b] quinoxalin-11-one (3c), 10a-hydroxybenzo[b]indeno[1,2-

e][1,4]oxazin-11(10aH)-one (3d), 10a-hydroxybenzo[e]indeno[2,1-b][1,4]thiazin-

11(10aH)-one (3e), 4b,10a-dihydroxy-4bH-benzo[b]indeno[1,2-e][1,4]dioxin-11(10aH)-

one (3f), 6H-indeno[1,2-b]pyrido[3,2-e]pyrazin-6-one (3g), 5a-hydroxyindeno[2,1-

b]pyrido[2,3-e][1,4]oxazin -6(5aH)-one (3h), 6H-indolo[2,3-b]quinoxaline (3i), 3-methyl-

6H-indolo[2,3-b] quinoxaline (3j), 3-chloro-6H-indolo[2,3-b]quinoxaline (3k), 6-ethyl-6H-

indolo [2,3-b]quinoxaline (3l), 6-propyl-6H-indolo[2,3-b]quinoxaline (3m), 6-benzyl-6H-

indolo [2,3-b]quinoxaline (3n), ethyl 2-(6H-indolo[2,3-b]quinoxalin-6-yl)acetate (3o) and 

ethyl 2-(9-chloro-6H-indolo[2,3-b]quinoxalin-6-yl)acetate (3p) in good to excellent yield. 

The chemical structures of the synthesized compounds were established from their spectral 

data. The structure of the products along with their reaction time, m.p. and yields are 

summarized in (Table 6.3).  

The results shown in Table 6.3 reveal that in case of electron donating substituent      

(-CH3) on the o-phenylenediamine ring reaction goes faster (Entries 2 & 10) than electron 

withdrawing substituent (-Cl) (Entries 3 & 11). The reaction of ninhydrin with                            

o-substituted amines were completed within a minute in excellent yields >90% while isatin 

derivatives require longer time. The lower reactivity of the isatin derivatives is attributed to 

the presence of the amidic carbonyl group in these compounds. It is worth noting that the 

ultrasound irradiation facilitates nucleophilic addition-elimination reactions leading to the 

formation of fused quinoxaline, oxazine, thiazine, and dioxin derivatives. 
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Table 6.3: Reaction of 1,2-diketones with 1,2-difunctionalized benzene/pyridine in water 

under ultrasound irradiation
a 

 

Entry Diketone (1) 1,2-

difunctionalized 

benzene/pyridine 

(2) 

           Product 

(3) 

Time 

(sec) 

Yield 

(%)
b
 

MP 

(
0
C) 

 

1 

    

 

50 

 

98 

 

217-

18 

 

 

2 

 

 

35 

 

99 

 

 

175-

76 

 

 

3 

 

 

55 

 

96 

 

235-

36 

 

4 

 

 

60 

 

92 

 

255 
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5 

 

 

55 

 

95 

 

225-

26 

 

 

6 

 

 

55  

 

86 

 

233-

34 

 

7 

 

 

55 

 

92 

 

>30

0 

 

 

8 

 

 

50 

 

95 

 

252-

53 

 

9 

 

 

230 

 

92 

 

295-

96 
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10 

 

 

200 

 

95 

 

257-

58 

 

 

11 

 

 

250 

 

90 

 

275-

77 

  

 

12 

 

 

225 

 

87 

 

247-

48 

 

 

13 

 

 

220 

 

88 

 

218-

19 

 

14 

 

 

230 

 

91 

 

170-

71 
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15 

 

 

210 

 

90 

 

185-

86 

 

 

16 

 

 

220 

 

92 

 

275-

76 

 

a 
Reaction condition: Mixture of 1,2-diketone (1.0 mmol) and 1,2-difunctionalized benzene/pyridine (1.0 

mmol) in 5 mL of water was irradiated at 750 W, 2000 J energy, 20% ultrasound amplitude at room 

temperature. 
b
 Isolated yield. 

 

 

Figure 6.2: Plausible mechanism of synthesis of Quinoxaline, Oxazine and Thiazine 

derivatives. 
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6.3 Experimental section 

6.3.1 General procedure for synthesis of products (3a-p). 

 The equimolar amount of 1,2-diketone (1.0 mmol) and the corresponding 1,2-

difunctionalized benzene/ pyridine (1.0 mmol) were mixed in 5.0 ml of water. The reaction 

mixture was irradiated under ultrasonication at 750 W power, 2000 J energy, 20% 

amplitude at room temparature for the required time. The progress of the reaction was 

monitered using thin layer chromatography (ethyl acetate: n-hexane, 1:4). After completion 

of reaction solid product was separated by filtration, washed with disstilled water and 

recrystallized with appropiate solvents ethanol/toluene to obtain pure products (3a-p). 

6.4 Analytical data of the products 

11H-Indeno[1,2-b]quinoxalin-11-one (3a): Yellow solid; yield 98%; m.p. 217-18 
0
C;         

IR (KBr) (cm
–1

): 3036, 2358, 1790, 1728, 1607, 1565, 1509, 1462, 1336, 1247, 1190, 

1118, 1040, 1001, 939, 867, 825, 775, 740; 
1
H NMR (500 MHz, DMSO‒d6) δ (ppm): 8.21 

‒ 8.01 (m, 3 H), 7.92 ‒ 7.82  (m, 4 H), 7.71 (t, 1 H); 
13

C NMR (126 MHz, DMSO‒d6) δ 

(ppm): 189.29, 156.44, 149.81, 142.12, 141.82, 140.94, 136.93, 136.62, 132.76, 132.43, 

130.95, 130.35, 129.35, 124.21, 122.27. 

7-Methyl-11H-indeno[1,2-b]quinoxalin-11-one (3b): Yellow solid; yield 99%; m.p. 175-

76 
0
C; IR (KBr) (cm

–1
): 3040, 2910, 1974, 1726, 1609, 1564, 1506, 1462, 1332, 1244, 

1188, 1150, 1113, 1041, 1001, 965, 903, 834, 766, 731; 
1
H NMR (500 MHz, CDCl3) δ 

(ppm): 8.12 – 7.90 (m, 4 H), 7.77 ‒ 7.57 (m, 3 H), 2.53 (d, 3 H);  
13

C NMR (126 MHz, 
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CDCl3) δ (ppm): 190.24, 156.97, 143.86, 143.37, 141.73, 141.26, 136.88, 136.80, 134.81, 

132.62, 132.50, 131.26, 130.75, 129.29, 129.01, 124.83, 122.54, 22.19. 

7-Chloro-11H-indeno[1,2-b]quinoxalin-11-one (3c): Yellow solid; yield 96%; m.p. 245-

46 
0
C; IR (KBr) (cm

–1
): 3069, 2958, 2916, 2852, 2322, 1721, 1609, 1555, 1496, 1329, 

1256, 1182, 1017, 946, 877, 792; 
1
H NMR (500 MHz, CDCl3) δ (ppm): 8.05 (t, 4 H), 7.84 

– 7.48 (m, 3 H); 
13

C NMR (126 MHz, CDCl3) δ (ppm): 189.53, 157.53, 149.46, 143.62, 

141.24, 137.06, 133.04, 132.65, 131.29, 128.92, 124.98, 122.90. 

10a-Hydroxybenzo[b]indeno[1,2-e][1,4]oxazin-11(10aH)-one (3d): White solid; yield 

92%; m.p. 255-56 
0
C; IR (KBr) (cm

–1
): 3735, 2924, 2644, 2484, 1738, 1641, 1586, 

1460, 1414, 1347, 1291, 1201, 1147, 1112, 1062, 966, 919, 855, 755, 712; 
1
H NMR (500 

MHz, DMSO‒d6) δ (ppm): 8.55 (s, 1 H, D2O exchangeable), 8.18 (d, 1 H), 8.00 (dd, 2 H), 

7.90 – 7.81 (m, 1 H), 7.61 (dd, 1 H), 7.37 – 7.13 (m, 3 H); 
13

C NMR (126 MHz, DMSO‒

d6) δ (ppm): 192.22, 157.98, 144.79, 141.64, 137.55, 135.93, 134.01, 133.90, 128.94, 

127.57, 124.83, 123.70, 123.38, 118.04, 85.90.  

10a-Hydroxybenzo[e]indeno[2,1-b][1,4]thiazin-11(10aH)-one (3e): Green solid; yield 

95%; m.p. 225-26 
0
C; IR (KBr) (cm

–1
): 3738, 2949, 2701, 1728, 1635, 1636, 1585, 1458, 

1398, 1340, 1251, 1165, 1114, 1074, 1005, 953, 854, 820,762, 709; 
1
H NMR (500 MHz, 

DMSO‒d6) δ (ppm): 8.22 (d, 1 H), 8.08 – 7.97 (m, 2 H), 7.87 (t, 1 H), 7.80 (s, 1 H, D2O 

exchangeable), 7.68 (dd, 1 H), 7.57 (dd, 1 H), 7.41 (m, 1 H), 7.30 (m, 1 H);                       

13
C NMR (126 MHz, DMSO‒d6) δ (ppm): 195.42, 155.79, 142.95, 142.23, 137.94, 134.99, 

134.22, 129.42, 128.31, 127.31, 127.23, 124.86, 124.01, 120.86, 70.94. 
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4b,10a-Dihydroxy-4bH-benzo[b]indeno[1,2-e][1,4]dioxin-11(10aH)-one (3f): White 

solid; yield 86%; m.p. 233-34 
0
C; IR (KBr)(cm

–1
): 3742, 3615, 3380, 3312, 3187, 2356, 

1706, 1597, 1496, 1400, 1275, 1217, 1149, 1084, 941, 874, 762,722; 
1
H NMR (500 MHz, 

DMSO‒d6) δ (ppm): 9.45 (s, 1 H, D2O exchangeable), 8.03 – 7.84 (m, 4 H), 7.76 – 7.57 (m, 

2 H), 6.94 – 6.79 (m, 1 H), 6.77 – 6.65 (m, 2 H), 6.58 (s, 1 H, D2O exchangeable);  

13
C NMR (126 MHz, DMSO‒d6) δ (ppm): 199.38, 149.23, 144.54, 141.73, 136.58, 133.90, 

130.90, 126.55, 125.20, 122.79, 121.55, 117.52, 115.43, 110.16, 82.97. Elemental 

analysis: (Found: C, 66.59; H, 3.64. Calc. for C15H10O5: C, 66.67; H, 3.73%). 

6H-Indeno[1,2-b]pyrido[3,2-e]pyrazin-6-one (3g): Yellow solid; yield 92%; m.p.>300 

0
C; IR (KBr)(cm

–1
): 2912, 2350, 1914, 1714, 1555, 1490, 1375, 1331, 1233, 1152, 1094, 

1027, 934, 873, 781;
 1

H NMR (500 MHz, CDCl3) δ (ppm): 9.16 (d, 1 H), 8.60 (d, 1 H), 

8.25 (d, 1 H), 7.96 (d, 1 H), 7.88 – 7.60 (m, 3 H); 
13

C NMR (126 MHz, CDCl3) δ (ppm): 

188.86, 155.70, 140.35, 137.45, 133.56, 125.58, 125.08, 123.79.  

5a-Hydroxyindeno[2,1-b]pyrido[2,3-e][1,4]oxazin-6(5aH)-one (3h): White solid; yield 

95%; m.p. 252-53 
0
C; IR (KBr) (cm

–1
): 3027, 2647, 1723, 1643, 1596, 1537, 1460, 

1411, 1334, 1245, 1195, 1145, 1084, 1036, 950, 868, 737; 
1
H NMR (500 MHz, DMSO‒d6)                 

δ (ppm): 8.18 – 7.35 (m, 4 H), 6.88 (d, 2 H), 6.37 (d, 1 H), 5.41 (s, 1 H, D2O 

exchangeable); 
13

C NMR (126 MHz, DMSO‒d6) δ (ppm): 197.05, 150.46, 145.98, 139.26, 

137.21, 136.09, 123.88, 123.43, 119.08, 118.52, 114.02, 112.37. Elemental analysis: 

(Found: C, 66.48; H, 3.25; N, 11.23 Calc. for C14H8N2O3: C, 66.67; H, 3.20; N, 11.11%). 
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6H-Indolo[2,3-b]quinoxaline (3i): Yellow solid; yield 92%; m.p. 295-96 
0
C;                               

IR (KBr)(cm
–1

): 3071, 3007, 2831, 2779, 2682, 1945, 1710, 1608, 1461, 1406, 

1333,1245, 1206, 1132, 1010, 924, 829, 748 ; 
1
H NMR (500 MHz, DMSO‒d6) δ (ppm): 

12.04 (s, 1 H), 8.35 (d, 1 H), 8.24 (d, 1 H), 8.07 (d, 1 H), 7.80 (t, 1 H), 7.71 (dd, 2 H), 7.59 

(d, 1 H),  7.37 (t, 1 H); 
13

C NMR (126 MHz, DMSO‒d6) δ (ppm): 145.88, 144.04, 140.17, 

139.82, 138.61, 131.38, 129.11, 129.01, 128.81, 127.55, 127.46, 126.03, 122.33, 122.24, 

120.81, 120.75, 118.99, 112.04. 

3-Methyl-6H-indolo[2,3-b]quinoxaline (3j): Yellow Solid; yield 95%; m.p. 257-58 
0
C;      

IR (KBr)cm
–1

): 3065, 2916, 2850, 2353, 1895, 1737, 1595, 1459, 1399, 1331, 1242, 

1195, 1129, 1021, 816, 738; 
1
H NMR (500 MHz, CDCl3) δ (ppm): 9.56 (s, 1 H), 8.38 (t, 2 

H), 8.19 – 7.78 (m, 2 H), 7.67 – 7.25 (m, 4 H), 2.57 (d, 3 H); 
13

C NMR (126 MHz, CDCl3) 

δ (ppm): 165.44, 136.67, 131.43, 131.16, 131.00, 129.88, 129.12, 128.84, 128.54, 126.97, 

126.48, 122.90, 122.75, 121.46, 121.40, 111.64, 21.77. 

3-Chloro-6H-indolo[2,3-b]quinoxaline (3k): Yellow solid; yield 90%; m.p. 275-77 
0
C;      

IR (KBr)(cm
–1

): 3052, 2918, 2851, 2766, 1937, 1740, 1580, 1482, 1452, 1401, 1331, 

1234, 1182, 1107, 1068, 1021, 939, 824, 783, 737; 
1
H NMR (500 MHz, DMSO‒d6)  δ 

(ppm): 12.17 (s, 1 H), 8.35 (d, 1 H), 8.27 (d, 1 H), 8.12 (d, 1 H), 7.79 – 7.70 (m, 2 H), 7.60 

(d, 1 H), 7.39 (t, 1 H); 
13

C NMR (126 MHz, DMSO‒d6) δ (ppm): 146.14, 144.15, 140.58, 

137.10, 132.96, 131.67, 130.72, 126.37, 126.09, 122.36, 121.00, 118.79, 112.12. 
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6-Ethyl-6H-indolo[2,3-b]quinoxaline (3l): White solid; yield 87%; m.p. 247-48 
0
C;            

IR (KBr) (cm
–1

): 3054, 2923, 2856, 2217, 1896, 1727, 1579, 1462, 1405, 1354, 1279, 

1235, 1116, 1009, 932, 860, 808, 740; 
1
H NMR (500 MHz, CDCl3) δ (ppm): 8.49 (d, 1 H), 

8.30 (d, 1 H), 8.14 (d, 1 H), 7.72 (m, 3 H), 7.49 (d, 1 H), 7.38 (t, 1 H), 4.57 (q, 2 H), 1.53 (t, 

3 H); 
13

C NMR (126 MHz, CDCl3) δ (ppm): 145.42, 144.22, 140.73, 140.33, 139.36, 

131.11, 129.47, 128.88, 127.86, 126.04, 122.98, 120.94, 119.68, 109.48, 36.33, 13.79. 

6-Propyl-6H-indolo[2,3-b]quinoxaline (3m): Yellow solid; yield 88%; m.p. 218-19 
0
C;     

IR (KBr) (cm
–1

): 3056, 2922, 2856, 2359, 1729, 1579, 1461, 1405, 1363, 1276, 1203, 

1116, 1071, 983, 942, 893, 743; 
1
H NMR (500 MHz, CDCl3) δ (ppm):  8.49 (d, 1 H), 8.30 

(d, 1 H), 8.14 (d, 1 H), 7.80 – 7.63 (m, 3 H), 7.48 (d, 1 H), 7.38 (t, 1 H), 4.46 (t, 2 H), 2.00 

(dd, 2 H), 1.03 (t, 3 H); 
13

C NMR (126 MHz, CDCl3) δ (ppm): 145.87, 144.68, 140.79, 

140.18, 139.36, 131.05, 129.44, 128.83, 127.92, 126.02, 122.90, 120.89, 119.58, 109.67, 

43.20, 21.96, 11.74. 

6-Benzyl-6H-indolo[2,3-b]quinoxaline (3n): Yellow solid; yield 91%; m.p. 140-41 
0
C;         

IR (KBr) (cm
–1

): 2920, 2856, 1729, 1574, 1459, 1396, 1344, 1274, 1186, 1117, 1069, 

982, 940, 850, 813, 736; 
1
H NMR (500 MHz, CDCl3) δ (ppm): 8.49 (d, 1 H), 8.32 (d, 1 H), 

8.14 (d, 1 H), 7.83 – 7.54 (m, 3 H), 7.48 – 7.19 (m, 7 H), 5.71 (s, 2 H);                              

13
C NMR (126 MHz, CDCl3) δ (ppm): 145.94, 144.40, 140.79, 140.17, 139.65, 136.63, 

131.14, 129.47, 128.96, 128.93, 128.01, 127.81, 127.32, 126.26, 122.84, 121.30, 119.79, 

110.28, 45.13. 
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Ethyl 2-(6H-indolo[2,3-b]quinoxalin-6-yl)acetate (3o): White solid; yield 90%; m.p. 185-

86 
0
C; IR (KBr) (cm

–1
): 3054, 2976, 2359, 1950, 1732, 1587, 1475, 1417, 1357, 1213, 

1112, 1019, 925, 866, 771, 737; 
1
H NMR (500 MHz, CDCl3) δ (ppm): 8.49 (d, 1 H), 8.31 

(d, 1 H), 8.11 (d, 1 H), 7.83 – 7.61 (m, 3 H), 7.49 – 7.30 (m, 2 H), 5.24 (s, 2 H), 4.24 (d,            

J = 7.1 Hz, 2H), 1.25 (t, J = 7.1 Hz, 3H);
 13

C NMR (126 MHz, CDCl3) δ (ppm): 168.21, 

145.70, 144.38, 140.55, 140.31, 139.87, 131.27, 129.50, 129.05, 127.92, 126.48, 122.99, 

121.74, 119.97, 109.42, 62.00, 42.81, 14.27. 

Ethyl 2-(9-chloro-6H-indolo[2,3-b]quinoxalin-6-yl)acetate (3p): White solid; yield 92%; 

m.p. 275-76 
0
C; IR (KBr)(cm

–1
): 921, 2854, 2346, 2213, 1733, 1577, 1460, 1362, 1275, 

1209, 1120, 1019, 952, 871, 811, 739; 
1
H NMR (500 MHz, CDCl3) δ (ppm): 8.46 (s, 1 H), 

8.29 (d, 1 H), 8.11 (d, 1 H), 7.83 – 7.60 (m, 3 H), 7.29 (d, 1 H), 5.22 (s, 2 H), 4.24 (q, 2 H), 

1.26 (t, 3 H); 
13

C NMR (126 MHz, CDCl3) δ (ppm): 167.95, 145.78, 142.55, 140.79, 

140.05, 139.15, 131.10, 129.67, 129.53, 128.00, 127.45, 126.81, 122.75, 121.19, 110.57, 

62.12, 42.85, 14.27.  
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6.5 Spectral data of products 
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