LIST OF FIGURES

Figure 1.1	Helical coil with secondary flow	4
Figure 3.1	Schematic diagram of experimental facility	36
Figure 3.2	Photograph of experimental setup	36
Figure 3.3	Test section showing of helical coils	37
Figure 3.4	Sketch diagram of helical coil	37
Figure 3.5	Helical coil with insulation	38
Figure 3.6	Peristaltic pump	39
Figure 3.7	DC power supply unit	40
Figure 3.8	Digital manometer	40
Figure 3.9	Data acquisition system	41
Figure 3.10	Pump speed (rpm) vs. flowrate	44
Figure 4.1	Pressure drop vs. velocity in a straight micro-diameter	49
	tube of 720 μm for all three fluids	
Figure 4.2	Pressure drop vs. velocity in a straight micro-diameter	50
	tube of 850 μm for all three fluids	
Figure 4.3	Pressure drop vs. velocity in a straight micro-diameter	50
	tube of 1000 μm for all three fluids	
Figure 4.4	Pressure drop vs. velocity in a helical coil of inner tube	51
	diameter 720 μm for all three fluids	
Figure 4.5	Pressure drop vs. velocity in a helical coil of inner tube	52
	diameter 850 μm for all three fluids	
Figure 4.6	Pressure drop vs. velocity in a helical coil of inner tube	52
	diameter 1000 μm for all three fluids	
Figure 4.7	Variation of friction factor with Reynolds number in	53
	straight micro-diameter tube and helical coil of tube	
	diameter 720 μm for all three working fluids	
Figure 4.8	Variation of friction factor with Reynolds number in	54
	straight micro-diameter tube and helical coil of tube	
	diameter 850 μm for all three working fluids	

Figure 4.9	Variation of friction factor with Reynolds number in	54
	straight micro-diameter tube and helical coil of tube	
	diameter 1000 μm for all three working fluids	
Figure 4.10	Present and Cioncolini and Santini's (2006) experimental	55
	friction factor data in helical coil of curvature ratio 0.012	
Figure 4.11	Variation of friction factor with Dean number in a helical	56
	coil of curvature ratio 0.012	
Figure 4.12	Variation of friction factor with Dean number in a helical	57
	coil of curvature ratio 0.014	
Figure 4.13	Variation of friction factor with Dean number in a helical	57
	coil of curvature ratio 0.017	
Figure 4.14	Comparison of experimental friction factor ratio (f_c/f_s)	58
	with those predicted from present correlation	
Figure 4.15	Comparison of experimental friction factor ratio (f_c/f_s)	59
	with values predicted from correlations of Mishra and	
	Gupta (1979) and Ito (1969)	
Figure 4.16	Comparison of experimental friction factor ratio (f_c/f_s)	60
	with values predicted from correlations of White (1929)	
	and Mori and Nakayama (1967)	
Figure 4.17	Comparison between Cioncolini and Santini's (2006)	61
	experimental values of f_c/f_s and values predicted from	
	present correlation	
Figure 4.18	Comparison between Cioncolini and Santini's (2006)	62
	experimental values of f_c/f_s and values predicted from	
	correlations of Mishra and Gupta (1979) and Ito (1969)	
Figure 4.19	Comparison between Cioncolini and Santini's (2006)	62
	experimental values of f_c/f_s and values predicted from	
	correlations of White (1934) and Mori and Nakayama	
	(1967)	
Figure 4.20	Comparison of experimental friction factor ratio (f_c/f_s)	64
	(both present Cioncolini and Santini's (2006)) and with	
	those predicted from the generalized correlation	

Figure 4.21	Average heat transfer coefficient vs. velocity in a helical	65
	coil for all three fluids	
Figure 4.22	Variation of average wall temperature with velocity in a	66
	helical coil	
Figure 4.23	Variation of bulk fluid temperature with velocity in a	67
	helical coil	
Figure 4.24	Nusselt number in a helical coil of curvature ratio 0.012	67
	for three working fluids	
Figure 4.25	Nu vs. Re plot: Present and Kahani et al.'s (2013)	68
	experimental Nusselt number in helical coils	
Figure 4.26	Variation of Nusselt number with Dean number in a	69
	helical coil of curvature ratio 0.012	
Figure 4.27	Predicted Nusselt number from present correlation vs.	70
	experimentally obtained Nusselt number	
Figure 4.28	Comparison of experimental Nusselt number with value	71
	predicted from correlations of Kalb and Seider (1974) and	
	Dravid et al. (1971)	
Figure 4.29	Comparison between Kahani et al.'s (2013) experimental	72
	results with values predicted from the present correlation	
Figure 4.30	Comparison between Kahani et al.'s (2013) experimental	73
	results with values predicted from Kalb and Seider's	
	(1974) and Dravid et al.'s (1971) correlations	
Figure 4.31	Comparison of experimental Nusselt number (both	74
	present and Kahani et al. (2013)) with those predicted	
	from the generalized correlation	
Figure A.1	Density of water vs. temperature	88
Figure A.2	Specific heat capacity of water vs. temperature	88
Figure A.3	Viscosity of water vs. temperature	90
Figure A.4	Density of methanol vs. temperature	92
Figure A.5	Vicosity of methanol vs. temperature	92
Figure A.6	Density of acetone vs. temperature	94
Figure A.7	Viscosity of acetone vs. temperature	94
Figure A.8	Thermal conductivity of water vs. temperature	99

Figure A.9	Specific heat capacity of methanol vs. temperature	100
Figure A.10	Thermal conductivity of methanol vs. temperature	101
Figure A.11	Specific heat capacity of acetone vs. temperature	102
Figure A.12	Thermal conductivity of acetone vs. temperature	103
Figure B.1	Friction factor for helical coil to that for straight tube	105
	(f_c/f_s) in case of laminar flow as a function of De	
	number	
Figure B.2	$(f_c / f_s - 1)$ vs. De	108
Figure B.3	$Nu / \Pr^{0.75}$ vs. De	109

Figure B.4
$$Nu / Pr^{0.89}$$
 vs. De 111