LIST OF TABLES

Table 2.1		Summary of results reported by authors based on	30
		conventional size tubes	
Table 2.2		Summary of results reported by authors based on mini	34
		size tubes	
Table 3.1		Geometrical configurations of helical coils	38
Table 3.2		Location of RTD	39
Table 3.3		Experimental uncertainties	45
Table 4.1		Percent deviation between present and other correlation	61
		for present data	
Table 4.2		Percent deviation between predicted values and	63
		experimental data of Cioncolini and Santini's (2006) data	
Table 4.3		Percent deviation between present correlation and other	71
		for present data	
Table 4.4		Percent deviation between predicted values and	73
		experimental data of Kahani et al.'s (2013)	
Table D.1		Thermo physical properties of working fluids	117
	D.1.1	Thermo physical properties of water	117
	D.1.2	Thermo physical properties of methanol	117
	D.1.3	Thermo physical properties of acetone	119
Table D.2		Calibration of measuring devices	120
	D.2.2	Calibration of flow measuring device	121
	D.2.3	Calibration of power	121
Table D.3		Friction factor in straight tube sections	122
	D.3.1	Friction factor in a straight tube of inner diameter 720 μ m	123
		for water	
	D.3.2	Friction factor in a straight tube of inner diameter 720 μ m	123
		for methanol	
	D.3.3	Friction factor in a straight tube of inner diameter 720 μ m	124
		for acetone	
	D.3.4	Friction factor in a straight tube of inner diameter 850 µm	124

for water

	D 2 5		105
	D.3.5	Friction factor in a straight tube of inner diameter $850 \ \mu m$	125
		for methanol	
	D.3.6	Friction factor in a straight tube of inner diameter 850 μ m	125
		for acetone	
	D.3.7	Friction factor in a straight tube of inner diameter 1000	126
		μm for water	
	D.3.8	Friction factor in a straight tube of inner diameter 1000	126
		μm for methanol	
	D.3.9	Friction factor in a straight tube of inner diameter 1000	127
		μm for acetone	
Table D.4		Friction factor in helical coils	128
	D.4.1	Friction factor in a helical coil of inner diameter 720 μm	129
		for water	
	D.4.2	Friction factor in a helical coil of inner diameter 720 μm	129
		for methanol	
	D.4.3	Friction factor in a helical coil of inner diameter 720 μ m	130
		for acetone	
	D.4.4	Friction factor in a helical coil of inner diameter 850 μ m	130
		for water	
	D.4.5	Friction factor in a helical coil of inner diameter 850 μ m	131
		for methanol	
	D.4.6	Friction factor in a helical coil of inner diameter 850 μ m	131
		for acetone	
	D.4.7	Friction factor in a helical coil of inner diameter 1000 μ m	132
		for water	
	D.4.8	Friction factor in a helical coil of inner diameter 1000 μ m	132
		for methanol	
	D.4.9	Friction factor in a helical coil of inner diameter 1000 μ m	133
		for acetone	
Table D.5		Average heat transfer coefficient in a helical coil	134
	D.5.1	Average heat transfer coefficient in a helical coil of inner	135

diameter 720 µm for water

D.5.2	Average heat transfer coefficient in a helical coil of inner	135
	diameter 720 µm for methanol	

D.5.3 Average heat transfer coefficient in a helical coil of inner 136 diameter 720 μm for acetone

Table D.6Average Nusselt number in a helical coil137

- D.6.1 Average Nusselt number in a helical coil of inner 138 diameter 720 µm for water
- D.6.2 Average Nusselt number in a helical coil of inner 138 diameter 720 µm for methanol
- D.6.3 Average Nusselt number in a helical coil of inner 139 diameter 720 μm for acetone
- Table D.7Experimentally calculated friction factor ratio 140 (f_c / f_s) and those predicted from present correlation
 - D.7.1 Friction factor ratio helical coil to that for straight tube of 141 inner diameter 720 µm for water
 - D.7.2 Friction factor ratio helical coil to that for straight tube of 141 inner diameter 720 µm for water
 - D.7.3 Friction factor ratio helical coil to that for straight tube of 142 inner diameter 720 μm for acetone
 - D.7.4 Friction factor ratio helical coil to that for straight tube of 142 inner diameter 850 µm for water
 - D.7.5 Friction factor ratio helical coil to that for straight tube of 143 inner diameter 850 µm for methanol
 - D.7.6 Friction factor ratio helical coil to that for straight tube of 143 inner diameter 850 µm for acetone
 - D.7.7 Friction factor ratio helical coil to that for straight tube of 144 inner diameter 1000 µm for water
 - D.7.8 Friction factor ratio helical coil to that for straight tube of 144 inner diameter 1000 µm for methanol
 - D.7.9 Friction factor ratio helical coil to that for straight tube of 145 inner diameter 1000 μm for acetone

Table D.8		Experimentally calculated friction factor ratio	146
		(f_c/f_s) and those predicted from correlations of Mishra	
		and Gupta (1979), Ito (1969), White (1934) and Mori and	
		Nakayama (1967)	
	D.8.1	Friction factor ratio helical coil to that for straight tube of	147
		inner diameter 720 μm for water	
	D.8.2	Friction factor ratio helical coil to that for straight tube of	148
		inner diameter 720 µm for water	
	D.8.3	Friction factor ratio helical coil to that for straight tube of	148
		inner diameter 720 µm for acetone	
	D.8.4	Friction factor ratio helical coil to that for straight tube of	149
		inner diameter 850 µm for water	
	D.8.5	Friction factor ratio helical coil to that for straight tube of	149
		inner diameter 850 µm for methanol	
	D.8.6	Friction factor ratio helical coil to that for straight tube of	150
		inner diameter 850 µm for acetone	
	D.8.7	Friction factor ratio helical coil to that for straight tube of	150
		inner diameter 1000 µm for water	
	D.8.8	Friction factor ratio helical coil to that for straight tube of	151
		inner diameter 1000 µm for methanol	
	D.8.9	Friction factor ratio helical coil to that for straight tube of	151
		inner diameter 1000 µm for acetone	
Table D.9		Cioncolini and Santini's (2006) friction factor data	152
Table D.10		Cioncolini and Santini's (2006) experimental friction factor data and (f_c/f_s) predicted from present	152
Table D.11		correlation Cioncolini and Santini's (2006) experimental friction	153
		factor data and (f_c/f_s) predicted from correlations of	
		Mishra and Gupta (1979) and Ito (1969)	
Table D.12		Cioncolini and Santini's (2006) experimental friction	153
		factor data and (f_c/f_s) predicted from correlations of	
		White (1934) and Mori and Nakayama (1967)	
Table D.13		Experimental friction factor ratio (f_c/f_s) of both	154

(present and Cioncolini and Santini (2006)) and those predicted from the generalized correlation

- D.13.1 Friction factor ratio in tube diameter of 720 μm and those 155 predicted from generalized correlation for water
- D.13.2 Friction factor ratio helical coil in tube diameter of 720 155 µm and those predicted from generalized correlation for water
- D.13.3 Friction factor ratio in tube diameter of 720 μm and those 156 predicted from generalized correlation for acetone
- D.13.4 Friction factor ratio in tube diameter of 850 µm and those 156 predicted from generalized correlation for water
- D.13.5 Friction factor in tube diameter of 850 µm and those 157 predicted from generalized correlation for methanol
- D.13.6 Friction factor ratio in tube diameter of 850 μm and those 157 predicted from generalized correlation for acetone
- D.13.7 Friction factor ratio in tube diameter of 1000 μm and 158 those predicted from generalized correlation for water
- D.13.8 Friction factor ratio in tube diameter of and those 158 predicted from generalized correlation for methanol
- D.13.9 Friction factor ratio in tube diameter of 1000 μm and 159 those predicted from generalized correlation for acetone
- D.13.10 Friction factor ratio of Cioncolini and Santini (2006) 159 those predicted from generalized correlation
- Table D.14Experimental Nusselt number and those predicted from 160present correlation in a helical coil
 - D.14.1 Experimental Nusselt number and those predicted from 161
 present correlation in a helical coil of inner diameter 720
 μm for water
 - D.14.2 Experimental Nusselt number and those predicted from 161
 present correlation in a helical coil of inner diameter 720
 μm for methanol
 - D.14.3 Experimental Nusselt number and those predicted from 162

present correlation in a helical coil of inner diameter 720 μm for acetone

- Table D.15Experimental Nusselt number and those predicted from 163correlations of Kalb and Seider (1974) and Dravid et al.(1971) in a helical coil
 - D.15.1 Experimental Nusselt number and those predicted from 164 correlations Kalb and Seider (1974) and Dravid et al. (1971) in a helical coil for water
 - D.15.2 Experimental Nusselt number and those predicted from 164 correlations Kalb and Seider (1974) and Dravid et al. (1971) in a helical coil for methanol
 - D.15.3 Experimental Nusselt number and those predicted from 165 correlations Kalb and Seider (1974) and Dravid et al. (1971) in a helical coil for acetone
- Table D.16Kahani et al.'s (2006) heat transfer data165
- Table D.17Kahani et al.'s (2013) experimental Nussult number and
those predicted from present correlation168
- Table D.18Kahani et al.'s (2013) experimental Nussult number and
those predicted from correlations of Kalb and Seider
(1974) and Dravid et al. (1971)
- Table D.19Experimental Nusselt number of both (present and 171
Kahani et al. (2013)) and those predicted from the
generalized correlation
- Table D.20Uncertainty in friction factor for straight tubes174
 - D.20.1 Uncertainty in friction factor for a straight tube of inner 175 diameter 720 μm with water
 - D.20.2 Uncertainty in friction factor for a straight tube of inner 175 diameter 720 μm with methanol
 - D.20.3 Uncertainty in friction factor for a straight tube of inner 176 diameter 720 μm with acetone
 - D.20.4 Uncertainty in friction factor for a straight tube of inner 176 diameter 850 μm with water
 - D.20.5 Uncertainty in friction factor for a straight tube of inner 177 diameter 850 μm with methanol
 - D.20.6 Uncertainty in friction factor for a straight tube of inner 177

		diameter 850 µm with acetone	
	D.20.7	Uncertainty in friction factor for a straight tube of inner	178
		diameter 1000 µm with water	
	D.20.8	Uncertainty in friction factor for a straight tube of inner	178
		diameter 1000 µm with methanol	
	D.20.9	Uncertainty in friction factor for a straight tube of inner	179
		diameter 1000 µm with acetone	
Table D.21		Uncertainty in friction factor for helical coils	179
	D.21.1	Uncertainty in friction factor for a helical coil of inner	179
		diameter 720 µm with water	
	D.21.2	Uncertainty in friction factor for a helical coil of inner	180
		diameter 720 µm with methanol	
	D.21.3	Uncertainty in friction factor for a helical coil of inner	180
		diameter 720 µm with acetone	
	D.21.4	Uncertainty in friction factor for a helical coil of inner	181
		diameter 850 µm with water	
	D.21.5	Uncertainty in friction factor for a helical coil of inner	181
		diameter 850 µm with methanol	
	D.21.6	Uncertainty in friction factor for a helical coil of inner	182
		diameter 850 µm with acetone	
	D.21.7	Uncertainty in friction factor for a helical coil of inner	182
		diameter 1000 µm with water	
	D.21.8	Uncertainty in friction factor for a helical coil of inner	183
	D A 1 A	diameter 1000 µm with methanol	100
	D.21.9	Uncertainty in friction factor for a helical coil of inner	183
		diameter 1000 μ m with acetone	104
Table D.22		Uncertainty in Nusselt number for a helical coil	184
	D.22.1	Uncertainty in Nusselt number for a helical coil of inner	184
		diameter 720 µm with water	
	D.22.2	Uncertainty in Nusselt number for a helical coil of inner	185
		diameter 720 µm with methanol	
	D.22.3	Uncertainty in Nusselt number for a helical coil of inner	185
		diameter 720 µm with acetone	