LIST OF FIGURES

		Page No.
Chapter 1	Introduction and Literature Review	
Figure 1.1	Crystal structure of Fe ₃ O ₄ .	4
Figure 1.2	The single domain size (D _{crit}) and superparamagnetic limit	
	(Dsp) for various ferro- or ferrimagnetic materials at room temperature.	5
Figure 1.4.1	Schematic diagram of the experimental setup for magnetic	12
	hyperthermia application.	
Chapter 3	Synthesis and Characterization of Zr- or Hf-substituted	
	Magnetite Nanoparticles.	
Figure 3.2.1	XRD patterns for $Zr_xFe_{3-x}O_4$ samples (a) $x=0.01$, (b) $x=0.01$	33
	0.02,(c) $x = 0.04$,(d) $x = 0.06$ and (e) $x = 0.09$ respectively.	
Figure 3.2.2	TEM micrographs for $Zr_xFe_{3-x}O_4$ samples (a) $x = 0.01$ and (b)	33
	x = 0.06. The insets show the corresponding SAD patterns for the samples.	
Figure 3.2.3	The variation of M _S , M _r and H _C for $Zr_xFe_{3-x}O_4$ (0.01 $\leq x \leq 1.0$)	35
	samples at room temperature and fields up to \pm 2 T.	
Figure 3.2.4	The M vs. T curves at 50 mT for the $Zr_xFe_{3-x}O_4$ (0.01 $\leq x \leq$ 0.6) samples.	35
	0.0) samples.	
Figure 3.2.5	The temperature vs. time curves for all the ferrofluids based	36
	on $Zr_xFe_{3-x}O_4$ (0.01 $\leq x \leq$ 1.0) nanoparticles in an AC field	
	with an amplitude of 25 mT and frequency of 112 kHz	

Figure 3.2.6	The temperatures achieved during magnetic hyperthermia vs . Zr concentration at different field strengths and frequencies for $Zr_xFe_{3-x}O_{4}$, $(0.01 \le x \le 1.0)$ samples.	38
Figure 3.2.7	The temperature vs. time curve under a field with amplitude of 23 mT and a frequency of 173 kHz with different concentrations of the MNPs (e.g. 5, 10, 20 and 40 mg mL ⁻¹) for samples (a) $x = 0.01$ and (b) $x = 0.5$.	39
Figure 3.2.8	The SAR values for the $Zr_xFe_{3-x}O_4$, $0.01 \le x \le 1.0$ samples at different field strengths and frequencies.	41
Figure 3.3.1	XRD patterns of $Hf_xFe_{3-x}O_4$ ($x = 0.01, 0.06, 0.2, 0.4, 0.6$ and 0.8) samples recorded at room temperature.	42
Figure 3.3.2	Variation in the lattice parameters of $Hf_xFe_{3-x}O_4$ (0.01 $\leq x \leq$ 0.8) with Hf -substitution.	43
Figure 3.3.3	TEM micrograph in bright field for a) Hf _{0.06} Fe _{2.95} O ₄ and b) Hf _{0.2} Fe _{2.8} O ₄ samples. Inset shows SAD pattern.	44
Figure 3.3.4	XPS spectra for (a) Fe 2p and (b) Hf 4d core level spectra for Hf _{0.6} Fe _{2.4} O ₄ whereas (c) Fe 2p and (d) Hf 4d core level spectra for Hf _{0.8} Fe _{2.2} O ₄ sample.	45
Figure 3.3.5	M vs. H curves for $Hf_xFe_{3-x}O_4$ (0.06 $\leq x \leq$ 0.8) samples at 300 K and $\pm 1.8T$.	46
Figure 3.3.6	Variation of M_S , M_r and H_C values with Hf concentration for $Hf_xFe_{3-x}O_4$ (0.01 $\leq x \leq$ 0.8) samples.	46
Figure 3.3.7	Magnetization vs. Temperature curves (field cooled data) for $Hf_xFe_{3-x}O_4$ (for $x = 0.06$, 0.2 and 0.8) at 10 mT.	48

Figure 3.3.8	Room temperature Mössbauer spectra of $Hf_xFe_{3-x}O_4$ ($x = 0.06$, 0.4 and 0.6) samples.	49
Figure 3.3.9	Variation in (a) hyperfine field (BHF), (b) isomer shift (d), and (c) quadrupole splitting (D) with Hf substitutions in $Hf_xFe_{3-x}O_4$ samples (for $x=0.06$, 0.4 and 0.6).	51
Figure 3.3.10	Temperature vs. time curves for $Hf_xFe_{3-x}O_4$ (0.06 $\leq x \leq$ 0.8) samples at a Field of amplitude 23 mT and a frequency 173 kHz.	54
Figure 3.3.11	Stable temperature vs . Hf-concentration plot for Hf _x Fe _{3-x} O ₄ $(0.01 \le x \le 0.8)$ samples at different Field and frequency. Points lying in 42 - 46 °C are indicated by arrow for clarity.	55
Figure 3.3.12	The SAR values vs. Hf substitution for $Hf_xFe_{3-x}O_4$ (0.01 < x \leq 0.8) samples at different frequencies and fields	56
Chapter4	Synthesis and Characterization of Al-substituted	
Chapter4	Synthesis and Characterization of Al-substituted Magnetite Nanoparticles.	
Chapter4 Figure 4.2.1		60
•	Magnetite Nanoparticles. (a) XRD patterns for $Al_xFe_{3-x}O_4$ ($x = 0.01, 0.07, 0.1, 0.5, 0.7$ and 1.0) samples and (b) lattice parameter variation with Al	60

Figure 4.2.4	XPS spectra of Al _{0.7} Fe _{2.3} O ₄ sample (a) Al 2p (b) Fe 2p and(c) O1s core level.	62
Figure 4.2.5	(a) Magnetization vs . magnetic field curves at 300 K and ± 2.0 T and (b) variation of M_S , M_r and H_C values for $Al_xFe_{3-x}O_4$ (0.01 $\leq x \leq 1.0$) samples.	63
Figure 4.2.6	(a) Temperature vs . time curves at a field of amplitude of 9 mT and a frequency of 640 kHz and (b) Temperature obtained during magnetic hyperthermia vs . Al-concentration curves at different fields and frequencies for $Al_xFe_{3-x}O_4$ (0.01 $\leq x \leq$ 1.0) samples.	65
Figure 4.2.7	The SAR values vs . All substitution of $Al_xFe_{3-x}O_4$ (0.01 $\leq x \leq$ 1.0) samples at different frequencies and fields.	66
Chapter 5	Synthesis and Characterization of Zn-substituted	
	Magnetite Nanoparticles.	
Figure 5.2.1	XRD patterns of $Zn_xFe_{3-x}O_4$ ($x = 0.01, 0.07, 0.2, 0.4$ and 0.8) nanoparticles.	72
Figure 5.2.2	Variation with increased Zn content in (a) lattice parameter, (b) crystallite size.	72
Figure 5.2.3	TEM micrograph and histogram of particle size distribution for Zn substituted (a, b) Zn _{0.2} Fe _{2.8} O ₄ and (c, d) Zn _{0.8} Fe _{2.2} O ₄ samples (Inset shows corresponding SAD pattern).	73

	Magnetite Nanoparticles.	
Chapter 6	Synthesis and Characterization of Li-substituted	
Figure 5.2.9	The SAR values vs. Zn substitution of $Zn_xFe_{3-x}O_4$ (0.01 $\leq x \leq$ 0.8) samples at different frequencies and fields.	83
Figure 5.2.8	(a) Temperature vs . time curves at a field of amplitude of 11 mT and a frequency of 478 kHz and (b) Temperature obtained during magnetic hyperthermia vs . Zn-concentration curves at different fields and frequencies for $Zn_xFe_{3-x}O_4$ (0.01 $\leq x \leq$ 0.8) samples.	82
Figure 5.2.7	Variation in (a)isomer shift (b) Quadrupole splitting and (c) hyperfine field with Zn substitutions in $Zn_xFe_{3-x}O_4(x = 0.01,0.07, 0.4 \text{ and } 0.8)$ samples.	79
Figure 5.2.6	Mössbauer spectra of $Zn_xFe_{3-x}O_4$ samples ($x = 0.01, 0.07, 0.4$ and 0.8).	77
Figure 5.2.5	(a) Magnetization vs. magnetic field curves at 300 K and ± 2.0 T (b) variation of M_S , M_r and H_C values and (c) M vs. T curves at 10 mT for $Zn_xFe_{3-x}O_4$ (0.01 $\leq x \leq$ 0.8) samples.	76
Figure 5.2.4	XPS spectra of Zn _{0.4} Fe _{2.6} O ₄ sample (a) Fe 2p (b) Zn2p and(c) O1s core level spectra.	74

Figure 6.2.1	X-ray diffraction patterns for $\text{Li}_x\text{Fe}_{3-x}\text{O}_4$ ($x = 0.06, 0.1, \text{ and } 0.3$) samples.	87
Figure 6.2.2	Variation with increased Li content in (a) lattice parameter, (b) crystallite size.	88
Figure 6.2.3	TEM bright field image of (a) Li _{0.06} Fe _{2.94} O ₄ and (b) Li _{0.3} Fe _{2.7} O ₄ samples (Inset shows corresponding SAD pattern).	89
Figure 6.2.4	XPS spectra of Li _{0.3} Fe _{2.7} O ₄ sample (a) Fe 2p (b) Li 1s and(c) O1s core level spectra.	90
Figure 6.2.5	Room temperature magnetization vs . field curves for Li _x Fe _{3-x} O ₄ ($x = 0.06, 0.1 \text{ and } 0.3$) samples.	91
Figure 6.2.6	Mössbauer spectra of $\text{Li}_x\text{Fe}_{3-x}\text{O}_4\text{samples}$ ($x = 0.06, 0.1$ and 0.3).	92
Figure 6.2.7	Variation in (a) hyperfine field, (b) isomer shift and (c) quadrupole splitting with Li substitutions in $\text{Li}_x\text{Fe}_{3-x}\text{O}_4$ samples ($x = 0.06, 0.1$ and 0.3).	93

Figure 6.2.8	(a) T vs. t curves at a field of amplitude of 24 mT and a	96
	frequency of 521 kHz and (b) T _S values obtained during	
	magnetic hyperthermia at different fields and frequencies for	
	$\text{Li}_x\text{Fe}_{3-x}\text{O}_4$ ($x=0.06, 0.1 \text{ and } 0.3$) samples.	
Figure 6.2.9	The SAR values vs. Li concentration of $\text{Li}_x\text{Fe}_{3-x}\text{O}_4$ ($x=0.06$,	97
	0.1 and 0.3) samples at different field and frequencies.	