LIST OF FIGURES

No.	Figure Title	Page No.
1.1.	NDDs: A report from WHO	2
1.2.	Multifactorial events leading to NDDs	3
1.3.	Neurodegenerative drug discovery approaches	4
1.4.	Schematic representation of MTDL strategy	6
1.5.	Substrates of MAO	8
1.6.	Catalytic reaction pathways of MAO	10
1.7.	MAO catalyzed formation of cytotoxic chemical species and their consequential neuronal effects	11
1.8.	Ribbon diagram of monomeric unit of (A) human MAO-A enzyme and (B) human MAO-B enzyme	13
1.9.	Schematic representation of active site of MAO-B	16
1.10.	Hydrolysis of ACh by AChE	21
1.11.	Role of AChE in neurodegeneration	24
1.12.	Structure of hAChE. (A) Ribbon diagram. (B) Schematic diagram showing β -strands (cyan) and α -helices (red)	25
1.13.	Schematic representation of binding sites of hAChE	26
1.14.	Binding orientation of ACH within the binding pockets of hAChE (ES, AS, ABS, OH and PAS)	27
1.15.	(A) Interaction of ACh with the catalytic triad and 'oxyanion hole' of hAChE. (B) The transfer state of substrate, tetrahedral intermediate, 'oxyanion hole' and the catalytic triad.	28
1.16.	FDA approved AChE inhibitors	30
1.17.	Dual role of AChE inhibitors in the management of NDDs	31
1.18.	Various actions of ladostigil	32
1.19.	Various actions of M30 and HLA20	33
2.1.	Various biological actions of hydrazones	35
2.2.	Reactive centers of hydrazones	36
2.3.	Synthesis and numbering scheme of semicarbazones	40
2.4.	Amido-iminol tautomerism of semicarbazone	41
2.5.	Geometry of O atom trans to the azomethine N atom	41
2.6.	Different coordination modes of semicarbazones with transition metals	41
2.7.	General scheme for the synthesis of semicarbazones	42
2.8.	Various biological actions of semicarbazones	43

2.9.	Structure of isatin	47
2.10.	Synthesis of isatin and its derivatives	48
2.11.	Various biological actions of isatin and its derivatives	48
2.12.	Structure and active centers of thiazole	53
2.13.	Resonance in thiazole	53
2.14.	Various applications of thiazoles	54
2.15.	Various applications of benzothiazole nucleus	58
2.16.	Tautomerism in benzothiazole	59
2.17.	Structure of 1,3-benzodioxole	62
2.18.	1,3-Benzodioxole – a multifunctional nucleus	63
2.19.	Structure of tadalafil containing 1,3-benzodioxole moiety	65
2.20.	Antitumor agents possessing 1,3-benzodioxole nucleus	65
2.21.	Antimicrobial candidates containing 1,3-benzodioxole nucleus	67
2.22.	Dual MAO-ChE inhibitor created from the combination of rasagiline and rivastigmine	69
2.23.	Dual MAO-AChE-A β inhibitor created from the combination of donepezil and PF9601N	70
2.24.	Dual MAO-iron chelation inhibitors M30 and HLA20 created from the combination of rasagiline and VK-28	71
2.25.	Multifunctional ligand M30D created by combining rivastigmine and M30	72
2.26.	Multifunctional ligand HLA20D created by combining rivastigmine and HLA20	72
3.1.	Structure of reference MAOIs showing the shared pharmacophoric features	77
3.2.	Structures of semicarbazone based lead MAO inhibitors identified in our laboratory	78
3.3.	Structure of reference AChE inhibitors showing the shared pharmacophoric features	79
3.4.	Structures of reference MTDLs showing the shared pharmacophoric features for both MAO and AChE inhibitions	80
3.5.	Designing strategy for MTDLs targeting dual inhibition	82
3.6.	Design approach of extended hydrazones incorporating 6- nitrobenzothiazole moiety	83
3.7.	Designed compounds for BTA library (BTA-1 to BTA-30)	84
3.8.	Design approach of semicarbazones bearing 5-nitrothiazole moiety	85
3.9.	Designed compounds for NTA library (NTA-1 to NTA-18)	85

3.10.	Design approach of semicarbazones bearing 3,4- (methylenedioxy)phenyl moiety	86
3.11.	Designed compounds for MDA library (MDA-1 to MDA-14)	87
3.12.	Design approach of 3-hydroxy-3-substituted oxindole analogues of isatin	88
3.13.	Designed compounds for HPO library (HPO-1 to HPO-14)	88
4.1.	Reaction mechanism for synthesis of extended hydrazones	94
4.2.	IR spectrum of BTA-3	116
4.3.	¹ H NMR spectrum of BTA-3	117
4.4.	¹³ C NMR spectrum of BTA-3	117
4.5.	IR spectrum of BTA-7	118
4.6.	¹ H NMR spectrum of BTA-7	118
4.7.	¹ H NMR (D_2O exchange) spectrum of BTA-7	119
4.8.	¹³ C NMR spectrum of BTA-7	119
4.9.	IR spectrum of BTA-10	120
4.10.	¹ H NMR spectrum of BTA-10	120
4.11.	¹³ C NMR spectrum of BTA-10	121
4.12.	IR spectrum of BTA-17	121
4.13.	¹ H NMR spectrum of BTA-17	122
4.14.	¹³ C NMR spectrum of BTA-17	122
4.15.	XR-PD spectrum of BTA-17	123
4.16.	IR spectrum of BTA-21	123
4.17.	¹ H NMR spectrum of BTA-21	124
4.18.	¹³ C NMR spectrum of BTA-21	124
4.19.	IR spectrum of BTA-25	125
4.20.	¹ H NMR spectrum of BTA-25	125
4.21.	¹³ C NMR spectrum of BTA-25	126
4.22.	IR spectrum of BTA-26	126
4.23.	¹ H NMR spectrum of BTA-26	127
4.24.	¹³ C NMR spectrum of BTA-26	127
4.25.	Mass spectrum of BTA-26	128
4.26.	IR spectrum of BTA-28	128
4.27	¹ H NMR spectrum of BTA-28	129
4.28.	¹³ C NMR spectrum of BTA-28	129
4.29.	Mass spectrum of BTA-28	130

4.30.	Principle of Ellman's assay	136
4.31.	Conversion of DPPH free radical to DPPH by an antioxidant	141
4.32.	Reaction mechanism for synthesis of semicarbazones	145-146
4.33.	IR spectrum of NTA-5	156
4.34.	¹ H NMR spectrum of NTA-5	156
4.35.	¹³ C NMR spectrum of NTA-5	157
4.36.	Mass spectrum of NTA-5	157
4.37.	XR-PD spectrum of NTA-5	158
4.38.	IR spectrum of NTA-10	158
4.39.	¹ H NMR spectrum of NTA-10	159
4.40.	¹³ C NMR spectrum of NTA-10	159
4.41.	Mass spectrum of NTA-10	160
4.42.	IR spectrum of NTA-16	160
4.43.	¹ H NMR spectrum of NTA-16	161
4.44.	¹ H NMR (D ₂ O exchange) spectrum of NTA-16	161
4.45.	¹³ C NMR spectrum of NTA-16	162
4.46.	IR spectrum of NTA-17	162
4.47.	¹ H NMR spectrum of NTA-17	163
4.48.	¹³ C NMR spectrum of NTA-17	163
4.49.	Mass spectrum of NTA-17	164
4.50	IR spectrum of NTA-18	164
4.51.	¹ H NMR spectrum of NTA-18	165
4.52.	¹³ C NMR spectrum of NTA-18	165
4.53.	IR spectrum of MDA-2	176
4.54.	¹ H NMR spectrum of MDA-2	177
4.55.	¹³ C NMR spectrum of MDA-2	177
4.56.	XR-PD spectrum of MDA-2	178
4.57.	IR spectrum of MDA-3	178
4.58.	¹ H NMR spectrum of MDA-3	179
4.59.	¹³ C NMR spectrum of MDA-3	179
4.60.	Mass spectrum of MDA-3	180
4.61.	IR spectrum of MDA-6	180
4.62.	¹ H NMR spectrum of MDA-6	181
4.63.	¹³ C NMR spectrum of MDA-6	181
4.64.	IR spectrum of MDA-8	182

4.65.	¹ H NMR spectrum of MDA-8	182
4.66.	¹³ C NMR spectrum of MDA-8	183
4.67.	Mass spectrum of MDA-8	183
4.68.	IR spectrum of MDA-9	184
4.69.	¹ H NMR spectrum of MDA-9	184
4.70.	¹³ C NMR spectrum of MDA-9	185
4.71.	IR spectrum of MDA-12	185
4.72.	¹ H NMR spectrum of MDA-12	186
4.73.	¹ H NMR (D ₂ O exchange) spectrum of MDA-12	186
4.74.	¹³ C NMR spectrum of MDA-12	187
4.75.	Proposed mechanism of condensation reaction between isatin and substituted acetophenone	190
4.76.	IR spectrum of HPO-4	198
4.77.	¹ H NMR spectrum of HPO-4	198
4.78.	¹³ C NMR spectrum of HPO-4	199
4.79.	Mass spectrum of HPO-4	199
4.80.	XR-PD spectrum of HPO-4	200
4.81.	IR spectrum of HPO-5	200
4.82.	¹ H NMR spectrum of HPO-5	201
4.83.	¹³ C spectrum of HPO-5	201
4.84.	IR spectrum of HPO-9	202
4.85.	¹ H NMR spectrum of HPO-9	202
4.86.	¹³ C NMR spectrum of HPO-9	203
4.87.	Mass spectrum of HPO-9	203
4.88.	IR spectrum of HPO-10	204
4.89.	¹ H spectrum of HPO-10	204
4.90.	¹³ C spectrum of HPO-10	205
5.1.	Kinetics of rat brain MAO-A inhibition by BTA-3 and MAO-B inhibition by BTA-29 . Time-dependent MAO-A inhibition by BTA-3 and MAO-B inhibition by BTA-29	216
5.2.	Structural screenshot of superimposed MAO-A inhibitors docked into the binding pocket of MAO-A	217
5.3.	Structural screenshot of superimposed MAO-B inhibitors docked into the binding pocket of MAO-B	219
5.4.	Kinetics of rat brain AChE inhibition by BTA-29	226
5.5.	Time-dependant inhibition of AChE catalyzed oxidation of ACTI by BTA-29	227

5.6.	Structural screenshot of superimposed AChE inhibitors docked into the active site gorge of AChE	228
5.7.	Antidepressant activity of 2-amino-6-nitrobenzothiazole derived extended hydrazones	231
5.8.	Anxiolytic activity of 2-amino-6-nitrobenzothiazole derived extended hydrazones using elevated plus maze apparatus.	232
5.9.	Sedative hypnotic activity of 2-amino-6-nitrobenzothiazole derived extended hydrazones	233
5.10.	Microphotograph of the section of hematoxylin and eosin stained rat liver.	236
5.11.	Kinetics of rat brain MAO-A inhibition by NTA-18 and MAO-B inhibition by NTA-1	251
5.12.	Time-dependant inhibition of MAO-A by NTA-18 and MAO-B by NTA-1	252
5.13.	Structural screenshot of superimposed MAO-A inhibitors docked into the binding pocket of MAO-A	254
5.14.	Structural screenshot of superimposed MAO-A inhibitors docked into the binding pocket of MAO-A	254
5.15.	Structural screenshot of superimposed MAO-B inhibitors docked into the binding pocket of MAO-B	257
5.16.	Structural screenshot of superimposed MAO-B inhibitors docked into the binding pocket of MAO-B	257
5.17.	Kinetics of rat brain AChE inhibition by NTA-18	261
5.18.	Time-dependant inhibition of AChE catalyzed oxidation of ACTI by NTA-18 .	261
5.19.	Structural screenshot of superimposed AChE inhibitors docked into the binding pocket of AChE	263
5.20.	Structural screenshot of superimposed AChE inhibitors docked into the binding pocket of AChE	263
5.21.	Antidepressant activity of 2-amino-5-nitrothiazole derived semicarbazones.	264
5.22.	Anxiolytic activity of 2-amino-5-nitrothiazole derived semicarbazones.	265
5.23.	Sedative hypnotic activity of 2-amino-5-nitrothiazole derived semicarbazones.	266
5.24.	Microphotograph of the section of hematoxylin and eosin stained rat liver.	269
5.25.	Kinetics of rat brain MAO-A inhibition by MDA-9 and MAO-B inhibition by MDA-7 .	282
5.26.	Time-dependent inhibition of MAO-A by MDA-9 and MAO-B by MDA-7	282

5.27.	Structural screenshot of superimposed MAO-A inhibitors docked into the active site of MAO-A	284
5.28.	Structural screenshot of superimposed MAO-B inhibitors docked into the active site of MAO-B	286
5.29.	(A) Kinetics of rat brain AChE inhibition by MDA-7 (B) Time- dependant inhibition of AChE catalyzed oxidation of ACTI by MDA-7	290
5.30.	Structural screenshot of superimposed AChE inhibitors docked into the active site of AChE	292
5.31.	Antidepressant activity of 3,4-(methylenedioxy)aniline derived semicarbazones	293
5.32.	Anxiolytic activity of 3,4-(methylenedioxy)aniline derived semicarbazones using elevated plus maze apparatus	294
5.33.	Sedative hypnotic activity of 3,4-(methylenedioxy)aniline derived semicarbazones	295
5.34.	Microphotograph of the section of hematoxylin and eosin stained rat liver	298
5.35.	Kinetics of rat brain MAO-A inhibition by HPO-9 and MAO-B inhibition by HPO-7	310
5.36.	Time-dependant inhibition of MAO-A by HPO-9 and MAO-B by HPO-7	310
5.37.	Structural screenshot of superimposed MAO-A inhibitors docked into the active site of MAO-A	312
5.38.	Structural screenshot of superimposed MAO-B inhibitors docked into the active site of MAO-A	312
5.39.	Structural screenshot of superimposed MAO-B inhibitors docked into the active site of MAO-B	315
5.40.	Structural screenshot of superimposed MAO-B inhibitors docked into the active site of MAO-B	315
5.41.	(A) Kinetics of rat brain AChE inhibition by HPO-9 (B) Time- dependant inhibition of AChE catalyzed oxidation of ACTI by compound HPO-9	320
5.42.	Structural screenshot of superimposed AChE inhibitors docked into the active site of AChE	322
5.43.	Structural screenshot of superimposed AChE inhibitors docked into the active site of AChE	322
5.44.	Antidepressant activity of 3-hydroxy-3-substituted oxindole analogues of isatin	323
5.45.	Anxiolytic activity of 3-hydroxy-3-substituted oxindole analogues of isatin	324
5.46.	Sedative hypnotic activity of 3-hydroxy-3-substituted oxindole	325

analogues of isatin

5.47.	Microphotograph of the section of hematoxylin and eosin stained rat liver.	328
6.1.	Structures of identified lead compounds possessing dual inhibition potential against MAO and AChE	334
6.2.	Lead MAO-B inhibitors	335
6.3.	Comparison of binding modes of (A) Hydrazone lead BTA-29 (violet) and semicarbazone leads NTA-1 (orange), MDA-7 (green) and SBTZ-18 (yellow) (B) Hydrazone lead BTA-29 and semicarbazone lead SBTZ-18	336
6.4.	Proposed three site PCP model for MAO-B inhibitors showing essential pharmacophoric features	337
6.5.	Lead MAO-A inhibitor	337
6.6.	Proposed PCP model for MAO-A inhibitors showing essential pharmacophoric features with distance constraints	338
6.7.	Lead AChE inhibitors	339
6.8.	Comparison of binding modes of lead AChE inhibitors BTA-29 (violet), NTA-18 (orange), MDA-7 (linear pose, green) and HPO-9 (yellow)	339
6.9.	Proposed 2D binding site model for AChE inhibitors showing essential pharmacophoric features	340
6.10.	Lead MAO/AChE and dual inhibitors	342