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Analysis of the Imaging Algorithms for Shape Detection and Shape
Identification of a Target Using Through-the-Wall Imaging System

Akhilendra P. Singh1, *, Smrity Dwivedi1, and Pradip K. Jain1, 2

Abstract—Through-the-Wall Imaging systems are a promising method for on-line applications,
especially in disaster areas, where victims are buried under collapsed walls. These applications require
such systems to identify the shape of the target. The foremost step while performing the task of shape
recognition of stationary targets behind a wall is to first detect the target position, its approximate shape
and size, and then, subsequent processing of these images with the use of signal processing techniques
for the shape recognition of targets. For determining highly accurate information about target location
and its approximate shape, a high-resolution image of the target is required. In literature, various
imaging algorithms have been reported, some of which are back projection, delay sum, and frequency-
wavenumber imaging algorithm. However, the use of these algorithms for shape detection of the target
has not been explored so far. Therefore, it becomes essential to explore the use of these algorithms on
TWI data to select an effective imaging algorithm for detecting approximate shape and size of the target.
For this purpose, an experiment has been performed. The performances of these imaging algorithms
have been analyzed and evaluated. The detected target images do not correspond to the actual shape
and size of targets; therefore, a novel methodology using an artificial neural network has been presented
for predicting the actual shape of the target. From the experimental data, the retrieved result of shape
has been found in good agreement with the target original shape.

1. INTRODUCTION

Through wall radar imaging (TWRI) system is an emerging technology that is used to sense objects
behind a wall using electromagnetic waves. This technology can be used for various applications such
as military, law enforcement, and search and rescue missions [1]. These applications always require such
systems to detect the target position, its approximate shape, and size, and subsequently identify the
target behind walls. In previous articles, the use of time-frequency image or Doppler signatures for the
identification of non-stationary targets has been reported. However, in the absence of frequency-domain
or time-domain variation associated with a stationary target, these techniques become ineffective for
the identification of stationary targets behind walls.

In previously reported article, identification of target in TWRI is achieved with the use of high
range resolution profile (HRRP) based feature on segmented 3D dimensional through-the-wall images
of the target [2]. As noted in their works, although the authors have obtained a good quality of results
in the same orientation, but the proposed framework has not been modeled explicitly for orientation
of the target. Thus, it will assign separate features for different orientations of the same target rather
than having a single feature that covers all orientations. This will make the process complex and
computationally intensive. A more promising technique for identifying the target is to estimate the
shape of the target [3]. So, our main focus is laid on a shape identification of hidden objects, which is
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also of great interest in many non-destructive applications especially in disaster areas, where victims
are buried under collapsed walls, and small weapon detection through walls [4, 5]. Various authors
have proposed a methodology for the shape estimation of the target behind a wall. In a previously
reported article, the shape of the target has been estimated with the use of the Inverse Boundary
Scattering Transform (IBST) on B-scan data [3] and the envelope of modified spheres on C-scan data
[4]. With these algorithms, a quite accurate shape of the target has been achieved; however, these
methods often need complex preprocessing like the IBST where wavefronts need to be recognized and
estimated and the envelope of modified spheres where the curvature of target shape has to be estimated
[6]. Recent development has achieved even higher accuracy but with a significant increase in complexity
and computational time [6–8].

In the present article, a novel methodology for shape recognition of the target from TWRI images
using wavelet descriptors and an artificial neural network is presented. This methodology is less complex
and easy to implement. The proposed methodology can predict the shape of the target irrespective of
its orientation and size. Instead of analyzing three-dimensional image of the target, we have analyzed
a two-dimensional through-the-wall image of the target (horizontal cross-range vs vertical cross-range).
The two-dimensional image of the target is extracted from a three-dimensional image of the target by
selecting a plane at a fixed target range bin, which is selected by observing the range profile. The
foremost step while performing the task of shape recognition of stationary targets behind a wall is to
first detect the target position, its approximate shape and size, and then subsequent treatment of these
images with the use of signal processing techniques for the shape recognition of targets. To determine
highly accurate information about target location and its approximate shape, a high-resolution image of
the target is required. Thus, one of the significant challenges in TWI is to develop an efficient imaging
algorithm that can give maximum information about target [1]. In previous articles, various imaging
algorithms have been reported in the literature. So, it becomes essential to explore the use of these
algorithms with through-wall imaging (TWI) data to analyze the effect of imaging and evaluating the
performance [9]. The most commonly used technique in TWI for image formations is back projection
(BP) [10], delay and sum beamforming (DS) [11], and frequency-wavenumber (F-K) [12]. So far, very
little work has been reported for the application of these three imaging techniques on the same data and
checking the consequences and effects of imaging. Therefore, the main focus of this paper is to first see
the possibility of these imaging techniques on real data and compare their results to select the effective
imaging algorithm. The through-the-wall radar images show very little resemblance to optical images
due to which it becomes difficult to interpret from the imaged scene. Therefore, this through-the-wall
image of the target is further processed using the artificial neural network (ANN) for determining the
actual shape of the target. An effective training technique is used to improve the effectiveness of the
proposed algorithm. The paper is organized as follows. Section 2 describes different imaging techniques
commonly used in TWI and experimental setup and measurement procedures used in TWI. Section 3
describes the shape recognition model and results obtained from it, which is followed by conclusions in
Section 4.

2. ANALYSIS OF IMAGING ALGORITHM

Imaging algorithms play an essential role in determining the approximate shape and size of the target for
which numerous imaging algorithms have been reported. In the present article, back projection, delay
and sum beamforming, and frequency-wavenumber imaging algorithms have been considered for the
formation of high-resolution images. Backprojection imaging algorithm is a traditional range migration
or time-domain algorithm and has been widely used for focusing in through wall imaging (TWI) and
ground penetrating radar (GPR) application [10, 13, 14]. In this method, the data received at each scan
point using the SFCW system are Inverse Fourier Transformed to produce a range domain before forming
the image. This method correlates the spatial position of scan point and pixels of the desired image map
to the range profile. The idea is to correlate data collected at each scan point position as a function of
round-trip delay. It coherently sums the sampled radar returns for each scan point position. The delay
and sum imaging algorithm derived from the beamforming algorithm is a traditional frequency-domain
algorithm and is also widely used for focusing in TWI systems [11]. For cases where the frequency steps
are not even, images are formed by delay and sum imaging algorithm [10]. In this method, for each pixel
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in the image, the frequency data are phase adjusted one frequency at a time. Frequency-wavenumber
imaging technique is also a traditional frequency-domain algorithm and has been used for focusing in
TWI and GPR [12–14]. This gives a less computation time with respect to the back projection and
delay sum imaging algorithms. Brief discussions about the implementation of these imaging algorithms
are as follows.

2.1. Back Projection

For the monostatic stepped frequency continuous wave (SFCW) radar system, the received signal
measured at scan point position x, y scattered from P point targets at the position xpi , ypi , zpi can
be given as [10]

S (x, y, fk) =
P∑

i=1

a (xpi , ypi , zpi) exp(−α(j2πfkτpi)) (1)

where fk is the frequency point; τpi is the propagation delay from the scan point at position x, y to the
pixel at position xpi , ypi , zpi and then back to the same scan point; a(xpi , ypi , zpi) is the target reflectivity;
α is the attenuation constant of wall. Backprojection is an image reconstruction technique applied on
range profile data. In order to implement backprojection algorithm on SFCW TWI data, Inverse
Fourier Transform has been carried out on TWI data measured at each scan point. The data received
S(x, y, fk) in frequency-domain for each scan point at position x, y is Inverse Fourier Transformed to
produce received TWI data in the range domain S (x, y, z) using Eq. (2) as proposed in [15].

S (x, y, z) =
L∑

k=1

S (x, y, fk) exp(j2πfk(2z/c)) (2)

where L is number of frequency points, and Rpi is the distance traveled from scan point at position x, y
to target point at the position xpi , ypi , zpi . For each pixel in the desired image map, the propagation
range Rpi , i.e., the distance traveled from the scan point at position x, y to the pixel at the position
xpi , ypi , zpi and then back to the same scan point, is calculated using Eq. (3) as proposed in [11]

Rpi = 2lairtowall + 2
√
εlwall + 2lwalltoair (3)

The variables lairtowall, lwall, lwalltoair represent the distance traveled by a signal before, through, and
beyond the wall from scan point at position x, y to the pixel in desired image map at position xpi , ypi , zpi .
The details of the calculation of the propagation range are described in [11].

The propagation range is further used to select the range cell in the range profile to get the value of
the in-phase and quadrature components of the scattered field for that range cell for all the scan points.
The values of the in-phase and quadrature components for all the scan points are summed for each pixel
in the image map. Thus, the value of a pixel I(xpi , ypi , zpi) at the position xpi , ypi , zpi corresponding to
a point scatter at the position xpi , ypi , zpi can be given by using Eq. (4) as proposed by [15]

I (xpi , ypi , zpi) =
M∑

x=1

N∑
y=1

S (x, y, z = Rpi) (4)

The above backprojection imaging algorithm can be implemented in the following steps:

i. The C-scan data representing back-scattered electric field S(x, y, fk) in the frequency domain is
collected.

ii. The data received at each scan point are inverse Fourier transformed to produce a range profile
S(x, y, z).

iii. The whole image map is divided into small pixels.
iv. The propagation range is calculated from one scan point to the pixel position and then back to the

same scan point for each pixel in the desired image-map.
v. The propagation range calculated is further used to select the range bin in the range profile.
vi. The Corresponding received range bin amplitude value of scattered field is recorded.
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vii. The above step is repeated for all scan points.
viii. The values of the recorded amplitude value from all scan points are added for each pixel in image

map.

2.2. Delay and Sum Beamforming

The delay and sum beamforming is a frequency-domain image reconstruction technique [11]. For the
monostatic SFCW radar system, the received signal measured S(x, y, fk) at scan point position x, y
scattered from P point targets at positions xpi , ypi , zpi can be given as [10]

S (x, y, fk) =
P∑

i=1

a (xpi , ypi , zpi) exp(−α(j2πfτpi)) (5)

For each pixel in the desired image map, the propagation delay from one scan point at position x, y to
the pixel at the position xpi , ypi , zpi and then back to the same scan point is calculated using Eq. (6) as
proposed by [11]

τpi =
2lairtowall

c
+

2lwall

v
+

2lwalltoair

c
(6)

Here c is the velocity of signal propagation in air, and v is the velocity of signal propagation through the
wall. The variables lairtowall, lwall, lwalltoair represent the distance travelled by a signal before, through,
and beyond the wall from scan point at position x, y to the pixel in desired image map at position
xpi , ypi , zpi . The detailed calculation of propagation delay can be found in [11].

The value of each pixel I(xpi , ypi , zpi) at position xpi , ypi , zpi is estimated after applying phase
delays exp(j2πfkτpi ) to outputs of the C-scan data in frequency-domain S(x, y, fk) to synchronize the
signal arrived at all scan points and then summing the delayed signals using Eq. (7) as proposed in [11]

I(xpi , ypi , zpi) =
M∑

x=1

N∑
y=1

L∑
k=1

S(x, y, fk) exp(j2πfkτpi) (7)

where L represents the number of frequency points.
The above delay and sum beamforming imaging algorithm can be implemented in the following

steps:
i. The C-scan data representing back-scattered electric field S(x, y, fk) in the frequency domain are

collected. Divide the whole image map into small pixels.
ii. The propagation delay is calculated from one scan point to the pixel position and then back to the

same scan point for each pixel in the desired image-map.
iii. The propagation delay has been applied to the data collected at each antenna location for all

frequency points.
iv. The received data for all the frequency points are added.
v. The above step is repeated for all scan points.
vi. The results obtained for all scan points are summed to form the image.

2.3. Frequency-Wave Number

For the monostatic SFCW radar system, the received signal measured at scan point scattered from a
single point target can be given in terms of wavenumber as [13, 14]

S (x, y, f) = ρ · exp(−j2kd) (8)
where k = 2πf/ν is the wavenumber vector, and ρ is the strength of the field scattered from the
point target. The received field from P point targets located at different (xi, yi, zi) positions assuming
homogeneous wall can be given as [13, 14]

S (x, y, f) =
P∑

i=1

ρi · exp(−jk(2
√

z2
i +(x−xi)2+(y−yi)2) (9)
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Applying two-dimensional 2D Fourier transform to S (x, y, f) along the x-direction and y-direction, the
frequency-wavenumber domain of scattered data can be represented as [12]

S(kx, ky, f) =
P∑

i=1

ρi ·
∞∫

∞

∞∫
−∞

(
exp(−jk(2

√
z2
i +(x−xi)2+(y−yi)2))

)
· exp(jkxx) dx exp(jkyy) dy (10)

This is the received signal data in kxky − f domain. It can be assumed that a total of P point
targets are ideally imaged in real coordinates as

S(x, y, z) =
P∑

i=1

ρi · δ(x− xpi , y − ypi, z − zpi) (11)

where δ(x, y, z) is the two-dimensional impulse function. After applying the three-dimensional Fourier
transform to this ideal image data with respect to x, y, and z, the following scattered field value
S̄(kx, ky , kz) in the spatial-frequency domain is obtained which is given as

S̄(kx, ky, kz) =
P∑

i=1

ρi · exp(−jkxxpi−jkyypi−jkzzpi) (12)

Then, mapping of S(kx, ky, f) data is done from kxky−f domain to kxkykz domain by using interpolation
to obtain S̄ (kx, ky, kz) by relating the values of S (kx, ky, f) at each f point to the values of S̄ (kx, ky, kz)

at kz points with the help of the frequency mapping equation kz =
√

4k2 − k2
x − k2

y . Afterward, the final
focused image spotting the true locations of the point target is obtained by taking the three-dimensional
IFFT of Eq. (10) as [12, 13]

I (xpi
, ypi

, zpi
) =

1
(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

S̄(kx, ky , kz) exp(jkx·x+jky·y+jkz·z) dkxdkydkz (13)

Here, I (xpi
, ypi

, zpi
) represets the value of a pixel at the position xpi , ypi

, zpi
in the image domain.

The above frequency-wavenumber imaging algorithm can be implemented in the following steps:

i. The C-scan data representing back-scattered electric field S(x, y, f) in the frequency domain is
collected. Divide the whole image map into small pixels.

ii. A two-dimensional Fourier transform is applied on S(x, y, f) along synthetic aperture x and y to
get S(kx, ky, f) and normalizes it.

iii. S(x, y, f) is interpolated on to a rectangular mesh in kxkykz domain to obtain S̄(kx, ky, kz).
iv. A three-dimensional IFFT S̄(kx, ky, kz) is taken to form the final focused three-dimension image

I(xpi
, ypi

, zpi
) in Cartesian coordinates.

2.4. Performance of Imaging Algorithms

To analyze the effect of imaging algorithms on real data, an experiment is carried out with the help
of a monostatic (SFCW) radar system. Figure 1 shows a schematic representation of the monostatic
SFCW radar system. The system consists of an Anritsu VNA MS2037C and horn, which works in
the frequency range of 3.5–5.5 GHz. Table 1 shows typical values of designed SFCW radar parameters
considered for imaging.

The antenna is placed on a 2D moving platform for movement in horizontal direction and vertical
direction. The radar is kept at 220 cm from the wall. The target is kept at 122 cm on the other side of
the wall. The target is placed on a wooden stand which is covered with an absorbing sheet to minimize
any reflection from the stand. Four targets with different shapes and sizes, T1, T2, T3, and T4, have
been considered. The details of the targets are given in Table 2. In order to acquire entire information
of scene behind walls, S-parameter S11 is collected at 21 horizontal and 21 vertical scan points to cover
the target completely. The inter-element spacing between scan points is 5 cm.
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Figure 1. Schematic diagram for through-the-wall radar imaging system [15].

Table 1. Typical values of SFCW radar parameters.

Radar parameters Value
Frequency range 3.5 GHz–5.5 GHz

Bandwidth 2 GHz
Number of frequency points 201

Power Transmitted −3 dBm
Down Range Resolution 7.5 cm
Cross-range Resolution 11.06 cm

Antenna Type Horn
Beam Width 20 degree

Gain 18 dB

Table 2. List of target samples used in experiment.

Target ID Shape Size (Length × Width) Orientation Material
T1 Circle Dia = 30 cm 0 Metal
T2 Circle Dia = 35 cm 0 Metal
T3 Square 30 cm × 30 cm 0 Metal
T4 Rectangle 50 cm × 30 cm 0 Metal

Before forming the 2D TWRI image of the target, it is essential to know the characteristics of the
wall (i.e., dielectric constant), presence of the target, and its location. These things affect the quality
of the image. Estimation of wall dielectric is done in a similar manner as proposed by Muqaible and
Safaai-Jazi [16]. The dielectric value of the wall is found to be 6.4. For finding target location, the range
profile at one of the scan points from the measured C-scan data using measurement setup is analyzed.
The range profile can be represented as [15]

S(z) =
201∑

m=1

S (fk) exp(j2πfk(2z/c+Rdelay+2dwall(
√

εwall−1)/c)) (14)

where Rdelay is the delay due to antenna system, dwall the wall thickness, εwall the wall dielectric, and
fk the frequency. To estimate the delay due to the antenna system, a separate experiment has been
carried out similarly as described in [15]. Figure 2 shows the range profile plot for one of the scan points



Progress In Electromagnetics Research B, Vol. 85, 2019 187

Figure 2. Range profile plot.

of the C-scan data at which target reflections occurs. In the shown range profile plot, the first two peaks
are due to reflections from the front and rear sides of the wall, and the third peak shows reflection from
the target. Thus, the target downrange location has been calculated from the range profile.

Once the wall parameter and target downrange position are estimated, the acquired C-scan data
are further processed for the formation of 2D through-the-wall radar images using back projection,
frequency wavenumber, and delay and sum beamforming. The two-dimensional image of the target
(height vs cross-range) is plotted by considering a Y plane at a fixed target range bin (z = ztarget)
which is selected by observing range profile. Thus, a virtual imaging plane of size 50 × 50 is created.

Different imaging algorithms have been applied on acquired TWI data with various shapes of
considered targets T1, T2, T3, and T4 to analyze the effect of the imaging. The 2D TWRI image
of considered targets using each imaging algorithm is shown in Figures 3(a)–(l). In Figures 3(a)–(l),
X-axes represent cross-range, and Y -axes represent the height of the target.

The shape of the target has been extracted after applying thresholding on the 2D TWRI using the
statistical method [17]. The threshold value is calculated as

Th = mean+ standard deviation (15)
The thresholded 2D TWRI shape of considered targets using each imaging algorithm is shown in
Figures 4(a)–(p) along with the reference shape of the target. The number of target pixels of reference
target shape has been obtained based on a priori information of target size, location, and size of pixel [18–
20]. As per experimental results with various target samples, a considerable difference between the
output images of algorithms from the focusing point of view is observed. From Figures 4(a)–(p), it
is observed that though the considered imaging algorithm has accurately detected the position of the
target, BP and F-K algorithms perform poorly in detecting approximate size and shape of the target.
The shape and size of the target detected are compared with the reference target shape. The comparison
between the number of target pixels detected using each imaging algorithm and the number of target
pixels in reference target shape is shown in Table 3. From Table 3, it is observed that with the delay
sum imaging technique, the numbers of target pixels detected are close to the number of target pixels
of reference target shape as compared to frequency-wavenumber and backprojection imaging technique.
This shows that delay and sum imaging algorithm proves to be a more effective imaging tool than
backprojection and frequency-wavenumber imaging algorithms for detecting approximate shape and
size of the target.

Moreover, we have analyzed the useful information about the statistics of the target image formed
with considered imaging algorithms. Using the thresholded binary image, the raw 2D TWRI image
is masked, producing 2D TWRI image with the target region only. The statistics of the target image
are obtained using commercially available, easy fit software [21]. Various probability density functions
(pdf), available in easy fit software, are analyzed for evaluating the probability density function of the
target image. For evaluating the probability density function target image, a Kolmogorov-Smirnov (KS)
goodness of fit test is performed on various probability density functions. Only those pdf functions have
been selected, which have passed the KS test on the basis that statistic value should be less than critical
value and that p-value is greater than the level of significance (5%). The probability density functions
of the target image are evaluated for considered targets of different shapes for each imaging algorithm.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3. (a) Raw 2D TWRI Image obtained using backprojectionimaging method on imaging plane
along X and Y axis of target id T1. (b) Raw 2D TWRI Image obtained using delay and sum imaging
method on imaging plane along X and Y axis of target id T1. (c) Raw 2D TWRI Image obtained using
frequency wave number imaging method on imaging plane along X and Y axis of target id T1. (d) Raw
2D TWRI Image obtained using back projection imaging method on imaging plane along X and Y axis
of target id T2. (e) Raw 2D TWRI Image obtained using delay and sum imaging method on imaging
plane along X and Y axis of target id T2. (f) Raw 2D TWRI Image obtained using frequency wave
imaging number method on imaging plane along X and Y axis of target id T2. (g) Raw 2D TWRI
Image obtained using backprojectionimaging method on imaging plane along X and Y axis of target id
T3. (h) Raw 2D TWRI Image obtained using delay and sum imaging method on imaging plane along
X and Y axis of target id T3. (i) Raw 2D TWRI Image obtained using frequency wave number imaging
method on imaging plane along X and Y axis of target id T3. (j) Raw 2D TWRI Image obtained
using back projection imaging method on imaging plane along X and Y axis of target id T4. (k) Raw
2D TWRI Image obtained using delay and sumimaging method on imaging plane along X and Y axis
of target id T4. (l) Raw 2D TWRI Image obtained using frequency-wavenumber imaging method on
imaging plane along X-axis and Y -axis of target id T4.
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(m) (n) (o) (p)

(i) (j) (k) (l)

(e) (f) (g) (h)

(a) (b) (c) (d)

Figure 4. (a) Raw 2D TWRI Image obtained using backprojection imaging method on imaging plane
along X and Y axis of target id T1. (b) Raw 2D TWRI Image obtained using delay and sum imaging
method on imaging plane along X and Y axis of target id T1. (c) Raw 2D TWRI Image obtained using
frequency-wave number imaging method on imaging plane along X and Y axis of target id T1. (d)
Reference target shape of target id T1. (e) Raw 2D TWRI Image obtained using backprojection imaging
method on imaging plane along X and Y axis of target id T2. (f) Raw 2D TWRI Image obtained using
delay and sum imaging method on imaging plane along X and Y axis of target id T2. (g) Raw 2D
TWRI Image obtained using frequency-wavenumber imaging method on imaging plane along X and Y
axis of target id T2. (h) Reference target shape of target id T2. (i) Raw 2D TWRI Image obtained
using back projection imaging method on imaging plane along X and Y axis of target id T3. (j) Raw
2D TWRI Image obtained using delay and sum imaging method on imaging plane along X and Y axis
of target id T3. (k) Raw 2D TWRI Image obtained using frequency-wavenumber imaging method on
imaging plane along X and Y axis of target id T3. (l) Reference target shape of target id T3. (m)
Raw 2D TWRI Image obtained using backprojection imaging method on imaging plane along X and
Y axis of target id T4. (n) Raw 2D TWRI Image obtained using delay and sum imaging method on
imaging plane along X and Y axis of target id T4. (o) Raw 2D TWRI Image obtained using frequency
wavenumber imaging method on imaging plane along X and Y axis of target id T4. (p) Reference
target shape of target id T4.



190 Singh, Dwivedi, and Jain

Table 3. No. of target pixels detected in 2D TWRI of the considered target using different imaging
algorithm.

Targets

No. of targets
pixels detected In
Backprojection

image

No. of target
pixels detected

In Delay
Sum image

No. of target pixels
detected In

Frequency-Wavenumber
image

No. of target
pixels in reference

target shape

T1 470 173 381 144
T2 470 210 466 196
T3 362 184 351 144
T4 362 272 342 240

Table 4. KS statistics and fitting parameter for distributions of target image in 2D TWRI for target
Id T1, T2, T3, and T4 for different imaging algorithm.

Imaging

Algorithms
Pdf Statistics Target T1 Target T2 Target T3 Target T4

Back-

projection
Beta

Statistics 0.02683 0.0176 0.01701 0.01944

P-value 0.87848 0.99815 0.9999 0.99881

Critical value 0.06264 0.06264 0.07137 0.07137

Fitting

Parameters

α1 = 1.1474

α2 = 1.0165

a = 0.68875

b = 1.0

α1 = 0.96525

α2 = 0.81424

a = 0.68231

b = 1.0

α1 = 0.94697

α2 = 0.99075

a = 0.54975

b = 1.0

α1 = 0.90775

α2 = 1.0182

a = 0.51176

b = 1.0

Delay

and Sum
Beta

Statistics 0.07459 0.05245 0.04368 0.05667

P-value 0.27683 0.59145 0.85869 0.33415

Critical value 0.10325 0.09371 0.10011 0.08234

Fitting

Parameters

α1 = 0.55899

α2 = 1.1222

a = 0.27584

b = 1.0125

α1 = 0.62207

α2 = 0.87022

a = 0.26461

b = 1.0

α1 = 0.61138

α2 = 1.0845

a = 0.3427

b = 1.0

α1 = 0.75844

α2 = 0.739

a = 0.39348

b = 1.0

Frequency-

wavenumber
Weibull

Statistics 0.04569 0.05318 0.06759 0.0698

P-value 0.39223 0.13821 0.07726 0.06803

Critical value 0.06957 0.06291 0.07248 0.07343

Fitting

Parameters

α = 1.6266

β = 0.17504

γ = 0.60852

α = 3.7796

β = 0.38852

γ = 0.43273

α = 1.9381

β = 0.28158

γ = 0.41659

α = 1.287

β = 0.24285

γ = 0.42861

The pdf of the target image of the considered target for each imaging algorithm is shown in Table 4.
From Table 4, it is observed that the probability distribution of the target images changes with imaging
algorithm. For example, backprojection and beamforming have Beta distribution, whereas frequency-
wavenumber has Weibull distribution. The probability density function of Weibull and Beta is given by
[22]

f (x) =
α

β

(
x− y

β

)α−1

exp
(

x−y
β

)α

(16)
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where α, β are shape parameters, and γ is the continuous location parameter.

f (x) =
1

B (α1, α2)
(x− a)α1−1 (b− x)α2−1

(b− a)α1+α2−1 (17)

where α1 and α2 are shape parameters, and a and b are continuous boundary parameters.
It is also observed that the pdf of the target image with delay sum imaging algorithm, back

projection, and frequency-wavenumber imaging technique appears to consistently follow a single
probability density function for different considered targets. This shows that a single probability density
based function captures the true properties of the backscattered signal. However, the shape parameter
of weibull distribution changes with the small change in target geometry, and shape parameter of beta
distribution remains almost constant with change in target geometry. This shows that a small change in
target geometry provides a large change in the probability distribution of target image with a frequency-
wavenumber algorithm, hence the possibility of the false alarms rate while performing detection of the
target will be higher with frequency-wavenumber imaging algorithm and lower with backprojection and
beamforming imaging technique.

Further, to analyze quality of 2D through-the-wall radar image of the target with these imaging
algorithms, Peak to Signal Noise ratio (PSNR) is computed. PSNR is computed using Eqs. (14), (15)
as

MSE =
1

MXN

N∑
i=1

M∑
j=1

(F (i, j) − I(i, j))2 (18)

PSNR(dB) = 10 log
(

1
MSE

)
(19)

where I represents a 2D TWRI image without a target; F represents a raw 2D TWRI image with the
target; M represents the number of pixels in row; and N represents the number of pixels in columns.
The image quality of different algorithms can be visibly observed from the obtained results. From
Table 5, it is observed that peak to signal noise of formed images using delay and sum beamforming
imaging technique is high and closely followed by backprojection and frequency-wavenumber imaging
algorithm. A high PSNR shows that a good contrast is present between the pixels corresponding to the
target and background pixels. Thus, the shape of the target can be easily detected.

Table 5. PSNR (dB) value of imaging algorithm for target id T1, T2, T3, T4.

Targets Backprojection Delay and Sum Frequency-wavenumber
T1 9.3175 11.7132 10.9223
T2 9.2833 11.4005 10.5186
T3 11.2491 11.8652 12.1104
T4 11.4193 11.7823 11.7669

In the present paper, our main aim is to select an efficient image reconstruction algorithm that can
give maximum information about targets such as its location, approximate shape, and size. For this
purpose, we have analyzed the effect of delay and sum beamforming, backprojection, and frequency-
wavenumber imaging algorithms image reconstruction on approximate shape and size of the target,
peak to signal noise ratio of image, and probability distribution of target image with different shapes
and sizes of TWI data. For detecting target pixels with a low false alarm, the probability distribution of
target image should not change with target geometry, and the contrast of image should be high. From
the experimental results, it is observed that peak to signal noise of formed images using delay sum
imaging technique is high and closely followed by backprojection and frequency-wavenumber imaging
algorithm which shows that a high-quality 2D TWI images of the target can be obtained with delay and
sum beamforming algorithm, backprojection, and frequency-wavenumber imaging algorithm. It is also
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observed that the probability distribution of the target images changes with the imaging algorithm. For
example, backprojection and beamforming have Beta distribution, whereas frequency-wavenumber has
Weibull distribution. Moreover, a small change in target geometry provides a large change in the shape
parameters of Weibull distribution whereas shape parameters of Beta distribution do not change much
with small change target geometry. It shows that the probability distribution of frequency-wavenumber
image of target changes as target geometry changes, hence possibility of the false alarms rate will
be higher with frequency-wavenumber imaging algorithm. Thus, delay and sum beamforming and
backprojection algorithm are useful for detecting the location of a target with a low false alarm. However,
backprojection and frequency-wavenumber imaging algorithms have poorly reconstructed approximate
shape and size of the target compared to the delay and sum beamforming imaging algorithm. It has been
observed that with delay and sum beamforming imaging technique, numbers of target pixels detected are
close to the number of target pixels of reference target shape in comparison with frequency-wavenumber
and backprojection imaging technique. Thus, delay and sum, and backprojection imaging algorithms
can be used to detect the target with a low false alarm, but for detecting approximate shape and
size of the target, delay and sum imaging algorithm proves to be a more effective imaging tool than
backprojection and frequency-wavenumber imaging algorithms.

3. DEVELOPMENT OF MODEL FOR SHAPE IDENTIFICATION OF TARGET

From the previous discussion, it has been observed that BP and F-K imaging techniques perform poorly
in determining approximate shapes and sizes of the target as compared to delay and sum beamforming
imaging techniques. Therefore, delay and sum beamforming imaging has been considered for the
development of a target shape recognition model. The detected target images do not correspond to
the actual shape and size of targets; therefore, there is a need for a methodology for the analysis of
radar images, which can automatically perform recognition tasks and thereby help in decision making.
Therefore, this 2D TWRI of the target using delay and sum beamforming imaging algorithm is further
processed using an artificial neural network (ANN) to determine the actual shape of the target. The
image formed has 50 × 50 pixels, which is a low-resolution image. The image resolution is increased
by interpolation. Shape-preserving interpolation is used [17]. To identify the shape of the target, a
feature that gives a description of target is required. The feature is extracted by applying 1D Wavelet
Transform on the boundary of target. Shape identification of target can be achieved by comparing and
matching the descriptors of the retrieved target image with descriptors of the synthetic image. One of
the major problems which occurs in recognizing the shape of the targets is with its orientation. It is
difficult to identify the particular shape of the target with a slight orientation effect. Thus, in order to
make model orientation and scale-invariant, an orientation and scale-invariant feature is required. The
feature is obtained by applying one-dimensional discrete wavelet transform (1D DWT) on the boundary
of each shape. Using the 4-level Daubechies 1D DWT, the boundary of each shape described as (xi; yi)
is decomposed into approximated residual signals and detailed signals. This representation is presented
as [

x(m)
y(m)

]
=

[
xa(m)
ya(m)

]
+

M∑
n=k

[
xdn(m)
ydn(m)

]
(20)

where xa(m) and ya(m) are the approximated residual signals, and xdn(m) and ydn(m) are the detailed
signals corresponding to the mth point of the sequence. The approximated signals in terms of scaling
functions φmk is gives as [23, 24]

xa(m) =
∑

k
akφMk(m)

ya(m) =
∑

k
ckφMk(m)

(21)

where subscript M means the maximum level of decomposition, and k is the translation index. The
detailed signals in terms of wavelet functions ψml are given as [21, 22]

xdn(m) =
∑

n
rpnψpn(m)

ydn(m) =
∑

n
dpnψpn(m)

(22)



Progress In Electromagnetics Research B, Vol. 85, 2019 193

where subscripts p = 1, 2, . . . ,M mean the succeeding levels of decomposition. The wavelet descriptors
are created here by coefficients an, cn, representing the approximated signal and by the set of rpndpn

(p = 1, 2, . . . ,M), representing the detailed signals of M applied levels of decomposition.
The complete WT features are arranged into one-dimensional vector. These features are further

normalised, making them independent of the scale and orientation [24]. As a result of such normalization,
we get wavelet descriptors invariant to the scale and rotation. Further, to make the feature vector
compact, the first 100 coefficients are selected from the rest of the descriptor without losing relevant
information of the target. This feature provides the identity to shape of the target. With the use of
these descriptors, the target can be discriminated. After feature vectors are obtained, these feature
vectors will be fed to ANN for training. Although many classifiers are available in the literature, neural
network is very promising over other classifiers. Further, to increase the detection accuracy of the
ANN model, a lot of training data are required. Therefore to increase data, synthetic data of three
common shapes of various sizes and orientations of target are generated using Boolean values as given
in Appendix A [18, 19]. The synthetic target shape has been obtained based on a priori information of
target size, location, and size of pixel [20]. For example, synthetic data of rectangular shape of sizes
(50 × 30), (45 × 25) cm, (55 × 35) cm, (60 × 40) cm, and (65 × 45) at orientations 0, 30, 60, 90, 120,
150, and 180 degrees have been generated. Similarly, synthetic data of square shape of sizes (30 × 30),
(35 × 35) cm (40 × 40) cm, (45 × 45) cm, and (50 × 50) cm at orientations 0, 30, 60, 90, 120, 150, and
180 degrees have been generated, and synthetic data of circle shape of sizes (30 × 30), (35 × 35) cm
(40×40) cm, (45×45) cm, and (50×50) cm at orientation 0 have been generated. The number of target
pixels in the synthetic image is obtained based on a priori information of target size, location, and size
of pixel [16]. Figures 5(a), (b) & (c) show synthetic image of circular, square, and rectangular shapes
of sizes 30 cm × 30 cm, 30 cm × 30 cm, and 50 cm × 30 cm. In Figure 5, X-axis represents the height,
and Y -axis represents the horizontal cross-range. On X and Y axes, pixel points are shown having 1
unit = 0.5 cm.

(a) (b) (c)

Figure 5. (a) Synthetic image of the circular shape of size 30 cm. (b) Synthetic image of the rectangle
shape of size 50 cm × 30 cm. (c) Synthetic image of the square shape of size 30 cm × 30 cm.

Thus, a total of 75 synthetic samples S1-S75 of data have been used to train the neural network.
From these synthetic data, the feature is extracted. After obtaining all the features of the particular
shape of a target for example circular, it is arranged in the form of a column vector. Similarly, features
for square shape and rectangular shape have been obtained and arranged in the form of a column vector.
A simple feed-forward network with one hidden layer and one output layer with backprojection training
algorithm is used to train the network [25]. Among the 75 samples, we have randomly selected 70%
of samples for training and the remaining 30% for validation, and testing point of view in ratios of
15% and 15%, respectively. The desired neural network configuration setup is shown in Figure 6. The
number of neurons in input layer is equal to feature vector dimension. The hidden layer consists of
50 neurons. The numbers of neurons are chosen on the basis of trial and error in order to maintain
the balance between ANN system complexity as well as minimizing the output error. The output layer
consists of 3 neurons. The teaching pattern for circular shape object is (1, 0, 0), for square shape object
is (0, 1, 0), and for rectangular shape object is (0, 0, 1). Sigmoid transfer function is chosen for the
hidden and output layer so that output of a neural network lies between 0 and 1 which is required for
image reconstruction. Mean squared error (MSE) criterion is used as learning algorithm to train the
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Figure 6. Neural network configuration for shape identification.

neural network which is defined as

mse =
1
N

N∑
i=1

e2i =
1
N

N∑
i=1

(ri − ai)2 (23)

where ‘a’ is the network outputs, and ‘r’ is the target outputs. In MSE criteria the neural network
first produces its own output vector ‘a’ according to fed input vector and then compares the output
vector with the desired target vector ‘t’. If an error occurs, then the weights are adjusted using the
scaled conjugate gradient method to reduce the difference until MSE reaches below 0.01 for optimum
performance. The performance of the neural network is better for the lower value of mean square error.

Table 6. List of real independent target samples used for testing of neural network.

Target ID Shape Size (Length × Width) Orientation Material

RT1 Square 30 cm × 30 cm 0 Wood

RT2 Square 35 cm × 35 cm 135 Wood

RT3 Rectangle 50 cm × 30 cm 0 Wood

RT4 Rectangle 50 cm × 30 cm 45 Wood

RT5 Rectangle 55 cm × 35 cm 135 Wood

RT6 Square 30 cm × 30 cm 45 Metal

RT7 Square 35 cm × 35 cm 0 Metal

RT8 Rectangle 50 cm × 30 cm 45 Metal

RT9 Rectangle 55 cm × 35 cm 135 Metal

RT10 Circle Dia = 35 cm 0 Metal

After training, the performance of a trained artificial neural network needs to be verified through
independent data to confirm its usefulness and practicality. For this purpose, ten independent test
samples RT1, RT2, RT3, RT4, RT5, RT6, RT7, RT8, RT9, and RT10 of different shapes and sizes
of targets are experimentally generated by real scanning of target. These test samples have not been
used earlier for training in any form. The details of the targets are given in Table 6. The raw 2D
TWRI images of test samples T2, T5, T6, T7, T8, T9, T10, T11, T12, and T13 are shown in Table 7.
The test samples are thresholded using Eq. (13) as shown in Table 7, and then features are extracted
using the wavelet transform from the boundary of their target. These features are input to the trained
neural network to get the output. Table 7 shows the outcomes of the developed ANN models for
different independent target samples. It can be observed that with these test samples, the trained
neural network shows fairly good performance. The experimental result shows that the retrieved result
of shape is in good agreement with original shape. Thus, the experimental results confirm the capability
of the proposed orientation and scale-invariant neural network for shape recognition of the considered
three regular target shapes. Further, the proposed neural network methodology can also be checked on
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Table 7. Results of developed ANN model with independent test data sample.

Real Test Sample Thresholded image Actual Shape

Square

Square

Rectangle

Rectangle

Shape Identified 

using ANN

Square

Square

Rectangle

Rectangle

Target RT1

Target RT2

Target RT3

Target RT4

Rectangle

Square

Rectangle

Square

Target RT5

Target RT6
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Square

Rectangle

Rectangle

Square

Rectangle

Rectangle

Target RT7

Target RT8

Target RT9

Target RT10

Circle Circle

different irregular target shapes. As a future work plan, more sophisticated and practical target shapes
will be considered for shape recognition.

4. CONCLUSION

In this paper, our main focus is to first critically analyze different imaging algorithms on real data to
select an effective imaging algorithm. Different imaging techniques have been applied to TWI data,
and a comparison of obtained images is carried out. As per our experimental observations with various
target samples, a considerable difference between the output images of algorithms from the focusing
point of view is found. Though the considered imaging algorithm can accurately locate the position of
the target, BP and F-K algorithms perform poorly in detecting target sizes and shapes compared to
delay and sum beamforming imaging algorithms. It is observed that peak to signal noise ratio of formed
images using the delay and sum beamforming imaging technique is high compared to backprojection and
frequency-wavenumber imaging algorithms. It is also observed that delay and sum imaging algorithm
can be effectively used to detect approximate shape and size of the target with low false alarm as
compared to frequency-wavenumber and backprojection. However, the processing time required for
the delay and sum algorithm is high as compared to the frequency-wavenumber algorithm. Further,
a wavelet descriptor based ANN model has been developed for shape recognition of target from the
through-the-wall images formed using delay and sum beamforming. The experimental results show that
the developed ANN model has correctly recognized the shape of real target samples irrespective to the
orientation of the target.
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APPENDIX A.

Table A1. List of samples used for training of neural network.

Target ID Shape Size (length × width) Orientation Generated Image
S1 Circle Dia = 30 cm 0 Synthetic
S2 Circle Dia = 35 cm 0 Synthetic
S3 Circle Dia = 40 cm 0 Synthetic
S4 Circle Dia = 45 cm 0 Synthetic
S5 Circle Dia = 50 cm 0 Synthetic
S6 Rectangle 45 cm × 25 cm 0 Synthetic
S7 Rectangle 45 cm × 25 cm 30 Synthetic
S8 Rectangle 45 cm × 25 cm 60 Synthetic
S9 Rectangle 45 cm × 25 cm 90 Synthetic
S10 Rectangle 45 cm × 25 cm 120 Synthetic
S11 Rectangle 45 cm × 25 cm 150 Synthetic
S12 Rectangle 50 cm × 30 cm 0 Synthetic
S13 Rectangle 50 cm × 30 cm 30 Synthetic
S14 Rectangle 50 cm × 30 cm 60 Synthetic
S15 Rectangle 50 cm × 30 cm 90 Synthetic
S16 Rectangle 50 cm × 30 cm 120 Synthetic
S17 Rectangle 50 cm × 30 cm 150 Synthetic
S18 Rectangle 55 cm × 35 cm 0 Synthetic
S19 Rectangle 55 cm × 35 cm 30 Synthetic
S20 Rectangle 55 cm × 35 cm 60 Synthetic
S21 Rectangle 55 cm × 35 cm 90 Synthetic
S22 Rectangle 55 cm × 35 cm 120 Synthetic
S23 Rectangle 55 cm × 35 cm 150 Synthetic
S24 Rectangle 60 cm × 40 cm 0 Synthetic
S25 Rectangle 60 cm × 40 cm 30 Synthetic
S26 Rectangle 60 cm × 40 cm 60 Synthetic
S27 Rectangle 60 cm × 40 cm 90 Synthetic
S28 Rectangle 60 cm × 40 cm 120 Synthetic
S29 Rectangle 60 cm × 40 cm 150 Synthetic
S30 Rectangle 65 cm × 45 cm 0 Synthetic
S41 Rectangle 65 cm × 45 cm 30 Synthetic
S42 Rectangle 65 cm × 45 cm 60 Synthetic
S43 Rectangle 65 cm × 45 cm 90 Synthetic
S44 Rectangle 65 cm × 45 cm 120 Synthetic
S45 Rectangle 65 cm × 45 cm 150 Synthetic
S46 Square 30 cm × 30 cm 0 Synthetic
S47 Square 30 cm × 30 cm 30 Synthetic
S48 Square 30 cm × 30 cm 60 Synthetic
S49 Square 30 cm × 30 cm 90 Synthetic



198 Singh, Dwivedi, and Jain

S50 Square 30 cm × 30 cm 120 Synthetic
S51 Square 30 cm × 30 cm 150 Synthetic
S52 Square 35 cm × 35 cm 0 Synthetic
S53 Square 35 cm × 35 cm 30 Synthetic
S54 Square 35 cm × 35 cm 60 Synthetic
S55 Square 35 cm × 35 cm 90 Synthetic
S56 Square 35 cm × 35 cm 120 Synthetic
S57 Square 35 cm × 35 cm 150 Synthetic
S58 Square 40 cm × 40 cm 0 Synthetic
S59 Square 40 cm × 40 cm 30 Synthetic
S60 Square 40 cm × 40 cm 60 Synthetic
S61 Square 40 cm × 40 cm 90 Synthetic
S62 Square 40 cm × 40 cm 120 Synthetic
S63 Square 40 cm × 40 cm 150 Synthetic
S64 Square 45 cm × 45 cm 0 Synthetic
S65 Square 45 cm × 45 cm 30 Synthetic
S66 Square 45 cm × 45 cm 60 Synthetic
S67 Square 45 cm × 45 cm 90 Synthetic
S68 Square 45 cm × 45 cm 120 Synthetic
S69 Square 45 cm × 45 cm 150 Synthetic
S70 Square 50 cm × 50 cm 0 Synthetic
S71 Square 50 cm × 50 cm 30 Synthetic
S72 Square 50 cm × 50 cm 60 Synthetic
S73 Square 50 cm × 50 cm 90 Synthetic
S74 Square 50 cm × 50 cm 120 Synthetic
S75 Square 50 cm × 50 cm 150 Synthetic

REFERENCES

1. Baranoski, E. J., “Through-wall imaging: Historical perspective and future directions,” Journal of
the Franklin Institute, Vol. 345, 556–569, 2008.

2. Smith, G. E. and B. G. Mobasseri, “Robust through-the-wall radar image classification using a
target-model alignment procedure,” IEEE Transactions on Image Processing, Vol. 21, 754–767,
2011.

3. Hantscher, S., B. Praher, A. Reisenzahn, and C. G. Diskus, “Comparison of UWB target
identification algorithms for through-wall imaging applications,” IEEE European Radar Conference,
104–107, 2006.

4. Kidera, S., T. Sakamoto, and T. Sato, “High-resolution 3-D imaging algorithm with an envelope
of modified spheres for UWB through-the-wall radars,” IEEE Transactions on Antennas and
Propagation, Vol. 57, 3520–3529, 2009.

5. Dogaru, T. and C. Le, Through-the-wall Small Weapon Detection Based on Polarimetric Radar
Techniques, Army Research Lab Adelphi MD Sensors and Electronic Devices Directorate, No. ARL-
TR-5041, 2009.

6. Mirbach, M. and W. Menzel, “A simple surface estimation algorithm for UWB pulse radars based
on trilateration,” IEEE International Conference on Ultra-Wideband (ICUWB), 273–277, 2011.



Progress In Electromagnetics Research B, Vol. 85, 2019 199

7. Wu, S., Y. Xu, J. Chen, S. Meng, G. Fang, and H. Yin, “Through-wall shape estimation based on
UWB-SP radar,” IEEE Geoscience and Remote Sensing Letters, Vol. 10, 1234–1238, 2013.

8. Dehmollaian, M., “Through-wall shape reconstruction and wall parameters estimation using
differential evolution,” IEEE Geoscience and Remote Sensing Letters, Vol. 8, 201–205, 2010.

9. Ahmad, F., M. G. Amin, and S. A. Kassam, “Synthetic aperture beamformer for imaging through
a dielectric wall,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 41, 271–283, 2005.

10. Hunt, A. R., “Use of a frequency-hopping radar for imaging and motion detection through walls,”
IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, 1402–1408, 2009.

11. Ahmad, F., Y. Zhang, and M. G. Amin, “Three-dimensional wideband beamforming for imaging
through a single wall,” IEEE Geoscience and Remote Sensing Letters, Vol. 5, 176–179, 2008.

12. Hantscher, S., B. Praher, A. Reisenzahn, and C. G. Diskus, “Analysis of imaging radar algorithms
for the identification of targets by their surface shape,” Int. Conf. on UWB, 2006.

13. Yigit, E., S. Demirci, C. Ozdemir, and A. Kavak, “A synthetic aperture radar-based focusing
algorithm for B-scan ground penetrating radar imagery,” Microwave and Optical Technology
Letters, Vol. 49, 2534–2540, 2007.

14. Ozdemir, C., S. Demirci, and E. Yigit, “Practical algorithms to focus B-scan GPR images: Theory
and application to real data,” Progress In Electromagnetics Research B, Vol. 6, 109–122, 2008.

15. Verma, P. K., A. N. Gaikwad, D. Singh, and M. J. Nigam, “Analysis of clutter reduction techniques
for through wall imaging in UWB range,” Progress In Electromagnetics Research B, Vol. 17, 29–48,
2009.

16. Muqaibel, A. H. and A. Safaai-Jazi, “A new formulation for characterization of materials based on
measured insertion transfer function,” IEEE Transactions on Microwave Theory and Techniques,
Vol. 51, 1946–1951, 2003.

17. Chandra, R., A. N. Gaikwad, D. Singh, and M. J. Nigam, “An approach to remove the clutter and
detect the target for ultra-wideband through-wall imaging,” Journal of Geophysics and Engineering,
Vol. 5, 412–419, 2008.

18. Singh, D., N. K. Choudhary, K. C. Tiwari, and R. Prasad, “Shape recognition of shallow buried
metallic objects at X-band using ANN and image analysis techniques,” Progress In Electromagnetics
Research B, Vol. 13, 257–273, 2009.

19. Ibrahim, K. M., K. F. A. Hussein, and A.-E.-H. A.-E.-A. Ammar, “Land-buried object detection
and target-shape recognition in lossy and dispersive soil,” Progress In Electromagnetics Research
B, Vol. 57, 279–298, 2014.

20. Kumar, B., R. Upadhyay, and D. Singh, “Development of an adaptive approach for identification of
targets (match box, pocket diary and cigarette box) under the cloth with MMW imaging system,”
Progress In Electromagnetics Research B, Vol. 77, 37–55, 2017.

21. “Easyfit by mathwave technologies,” [Online]. Available:http://www.mathwave.com/easyfit-
distribution-fitting.html.

22. Forbes, C., E. Merran, H. Nicholus, and P. Brian, Statistical Distributions, John Wiley and Sons,
New Jersey, 2011.

23. Gonzalez, S. and W. Richards, Digital Image Processing, Dorling Kindersley, New Delhi, 2009.
24. Osowski, S., “Fourier and wavelet descriptors for shape recognition using neural networks — A

comparative study,” Pattern Recognition, Vol. 35, 1949–1957, 2002.
25. Haykin, S., Neural Network a Comprehensive Foundation, Pearson Education, New Delhi, 2005.


