List of Abbreviations

Abbreviations	Full Form
AD	Alzheimer's disease
ATP	Adenosine triphosphate
ADP	Adenosine diphosphate
ADME	Absorption, Distribution, Metabolism, and Excretion
ADT	Agar Diffusion Test
BBB	Blood-Brain Barrier
CHCl ₃	Chloroform
CDCl ₃	Deuterated Chloroform
CC ₅₀	Cytotoxic concentration required to kill 50% of the
	population
DL	Druglikeness
DCCD	N, N-Dicyclohexylcarbodiimide
DMF	Dimethylformamide
DCM	Dichloromethane
DMSO	Dimethyl sulfoxide
EPS	Extrapyramidal side-effects
EMEM	Eagle's Minimal Essential Medium
Et ₂ O	Diethyl ether
Et ₃ N	Triethylamine
FZ	Flumazinil
HTS	High Throughput Screening
HIV	Human Immunodeficiency Virus
HBA	Hydrogen Bond Acceptor
HBD	Hydrogen Bond Donor
HQNO	2-heptyl-4-hydroxyquinoline-N-oxide
IC ₅₀	Inhibitory concentration required to kill 50% of the
	population
IMVs	Inverted Membrane Vesicles
K_2CO_3	Potassium carbonate

KH ₂ PO ₄	Potassium dihydrogen phosphate
КОН	Potassium hydroxide
KI	Potassium iodide
MTT	3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-tetrazolium
	bromide
MeOH	Methanol
MgCl ₂	Magnesium chloride
NMR	Nuclear Magnetic Resonance
NaCl	Sodium chloride
ODCB	1-2-dichlorobenzene
PMF	Proton Motive Force
PAMPA	Parallel Artificial Membrane Permeability Assay
PDB	Protein Data Bank
PBL	Porcine Brain Lipid
Pe	Permeability
RMSD	Root Mean Square Deviation
SI	Selectivity Index
SAR	Structure-activity relationship
SEM	Standard Error of the Mean
TGI	Total Growth Inhibition
TLC	Thin-Layer Chromatography
TSA	Total Surface Area
TPSA	Topological Polar Surface Area
THF	Tetrahydrofuran
US-FDA	United States- Food and Drug Administration
UV	Ultraviolet
WHO	World Health Organization
3D	Three-Dimensional
5-HT	5-hydroxytryptamine

List of Symbols

Symbols	Meaning
α	Alpha
β	Beta
δ	Delta
3	Epsilon
°C	Degree Celsius
Å	Angstrom
©	Copyright
g	Gram; Gravitational force
mg	Milligram
μg	Micro gram
ng	Nano gram
μΜ	Micro Mole
mmol	Milli Mole
mL	Milliliter
μL	Microliter
mV	Millivolt
h	Hour
S	Second; Singlet
nm	Nanometer
μm	Micrometer
mm	Millimeter
cm	Centimeter
ppm	Parts per million
rpm	Revolutions per minute
Kcal	Kilocalories
Hz	Hertz
MHz	Megahertz
J	Coupling constant
d	Doublet
m	Multiplet
dd	Doublet of doublet

m/z	Mass to charge ratio
%	Percent
pH	Potential of hydrogen
\leq	Less than or equal
<	Less than
>	More than
±	Plus or minus

List	of	Tab	les
------	----	-----	-----

Table No.	Description	Page No.
1.1	Various pathological factors involved in AD	8
2.1	γ-Secretase inhibitors for AD	22
2.2	γ-Secretase inhibitors for AD	25
2.3	Piperidine N-arylsulfonamide derivatives with IC ₅₀ and	27
	CYP 3A4 inhibition activity.	
2.4	Natural products effective in AD therapy along with their	42
	mode of action.	
2.5	GSK-3 and tau-based investigational drugs in clinical	60
	development	
2.6	Biomarkers in the treatment of AD	75
2.7	Repurposing drugs in clinical trail	78
4.1	Aromatic and aliphatic piperazine derivatives with	113
	inhibitory activities (IC ₅₀) against AChE and MMP-2.	
4.2	Measurement of initial velocity of enzyme as a function of	118
	substrate concentration at an inhibitor concentrations of 0,	
	60 nM and 100 nM	
4.3	Permeability (Pe×10-6 cm/s) of the 9 commercial drugs to	119
	validate the PAMPA-BBB model	
4.4	Permeability, Pe (10-6 cm s1) determined by BBB-	121
	PAMPA study and DPPH based free radical scavenging	
	activity of synthesized compounds	
4.5	LD ₅₀ determination protocol for compound 52.	127
4.6	Effect of compound 52 on body wt. of animals at dose of	127
	300 mg/kg.	
4.7	Onset of toxicity with compound 52 in 72h.	128
4.8	LD ₅₀ determination protocol for compound 46	128
4.9	Effect of compound 46 on body wt. of animals at dose of	128
	300 mg/kg.	
4.10	Onset of toxicity with compound 46 in 72h	128
5.1	Behavioral effect, on OFT, of compounds 52, 53 and 55	144

5.2	Pharmacological effects of compounds 52, 53 and 55 on	148
	levels of monoamines, their metabolites and ratio in	
	amygdala.	
5.3	Flumazenil (FZ) antagonism on activity of diazepam and	149
	compound 52 in OFT experiment at dose of 1mg/kg	
6.1	Distance between pharmacophoric features in Å	198
6.2	Drug-likeliness, ADME and toxicity prediction of the	200
	compounds.	
6.3	Adamantyl (scheme I) and 1,4-disubstituted 1,2,3-triazoles	205
	(scheme II) analogues with inhibitory activities (IC ₅₀) viz.	
	MMP-2, A β_{1-42} % aggregation, EC ₅₀ of DPPH assay, and	
	neuroprotection assay against MC65 cell line showing cell	
	viability	
7.1	Binding energy of compound against AChE (PDB id	264
	4EY7), BuChE (PDB id 4BDS), and BACE-1 (PDB id	
	6EQM).	
7.2	Quinolinyl alkyl piperazine (scheme I) analogues with	268
	inhibitory activities (IC ₅₀) AChE, BuChE and BACE-1	
	assay \pm SE.	
7.3	Quinolinyl piperazine alkyl (scheme II) analogues with	269
	inhibitory activities (IC ₅₀) AChE, BuChE and BACE-1	
	assay \pm SE	
7.4	4 Permeability, Pe (10-6 cm s1) determined by BBB-	270
	PAMPA study	
7.5	Pharmacokinetic studies of compounds 76 and 95;	271
	concentration of compound in plasma, brain and	
	hippocampus after 30 min of dosing	

List of figures

Figure No.	Description	Page No.
1.1	Clearance pathway of $A\beta$ in normal brain	6
1.2	Various pathophysiological pathways of Alzheimer's disease	10
1.3	FDA approved AChE inhibitors for Alzheimer's disease	13
1.4	Structure of Memantine	13
2.1	γ -secretase cleavage site and catalytic core	18
2.2	Modification of 2,4,6-trisubstituted N-arylsulfonyl	26
	piperidines to find the agreement between CYP3A4	
	interaction and γ -secretase inhibition	
2.3	Binding of GSMs at luminal side of PS induces a	29
	conformational change in the catalytic center of γ -secretase	
	to modulate $A\beta$ production.	
2.4	γ - secretase inhibitors and modulators. (A). NSAID derived	32
	carboxylic acid analogs (B) Non-NSAID GSMs. (C) Natural	
	products as potent GSMs. Structures of GSM-derived	
	photoaffinity probes containing (D) biotin (E) alkyne.	
2.5	Development of Non-NSAID GSMs.	37
2.6	Inhibitons and only one (A) Secondary inhibitons and	47
	inhibitors and enhancers (A) Secretase inhibitors and	
0.7	enhancers (B) SIR12 inhibitors (C) Caspases inhibitors.	50
2.7	Roles of SIRT in AD-related neurodegeneration	50
2.8		51
	Structure of SIR12; pink colored spheres show the atom	- -
2.9	(A) Tacrine derivatives (31-34); Donepezil, Rivastigmine	65
	derivatives (35-38), (B) Metal chelators used in AD.	
4.1	Design of multitarget-directed potential drug candidates for	110
	AD	
4.2	Michaelis-Menten plot at seven different concentrations of	116
	substrate (20-70 nM) on three different concentrations of	
	compound 46	
4.3	Lineweaver-Burk plot on three different concentrations of	116

	compound 46 for AChE	
4.4	Dixon plot of compound 46 showing Ki value as negative	117
	intercept on X-axis of the Dixon plot for AChE.	
4.5	Lineweaver-Burk plot on three different concentrations of	117
	compound 46 for MMP-2 enzyme	
4.6	Determination of Ki against MMP-2 of compound 46	118
4.7	The secondary plot of Km as a function of inhibitor	118
	concentration [I] for a competitive inhibitor (Compound 52)	
4.8	The Linear correlation between reported and observed Pe of	120
	the commercial drugs by PAMPA assay.	
4.9	MC65 neuroprotection with compound 46	122
4.10	Effect of DNP, compounds 52 and 46 on AChE induced $A\beta$	123
	aggregation	
4.11	Docking poses of compound 52 (a, c) and 46 (b,d) against	124
	A β (PDB: 2LMN).	
4.12	The metal chelating property of compound 46: The shift in	125
	UV spectra indicated the metal chelating property.	
4.13	(A) FTIR spectra of the metal complex and compound 46	126
	showing the shift in the bands. (B) UV-visible spectra of	
	metal alone (C) UV spectra of buffer.	
4.14	Effect of compounds 52, 46 and scopolamine on	130
	Spontaneous alternation score	
4.15	Effect of scopolamine induced alteration in the passive	131
	avoidance Test	
4.16	Effect of Scopolamine induced amnesia on mitochondrial	132
	membrane potential of brain isolated from animals used in	
	the experiment	
4.17	Neurochemical level estimation	133
5.1	Piperazinediones 52, 53 and 55 selected for anxiolytic	136
	activity	
5.2	Elevated plus-maze: two-way ANOVA applied to	141
	demonstrate the results.	
5.3	Evaluation of compounds 52, 53 and 55 on hole board	145

	experiment	
5.4	Flumazenil (FZ) antagonism on the activity of diazepam and	146
	compound 52	
5.5	Flumazenil (FZ) antagonism on the activity of diazepam and	147
	compound 52	
5.6	Effect of diazepam (6 mg/kg, p.o.) and compound 52 (6	149
	mg/kg; p.o.) on ambulation	
6.1	Paul von Ragué Schleyer method of adamantane synthesis	154
6.2	Conversion of adamantane to amantadine	155
6.3	1,2,3 and 1,2,4-triazoles in different tautomeric forms	155
6.4	Synthesis of 4-formyl-1-phenyl-v-triazole	155
6.5	Mechanism of copper catalyzed selective synthesis of 1,2,3-	156
	triazoles.	
6.6	Drug design strategy of NMDA series	157
6.7	Method of identification of activity against different	197
	subtypes of NMDA	
6.8	Pharmacophoric features of Ifenprodil used for screening	198
6.9	Ramachandran plot for modeled protein	201
6.10	Docking pose of compound 22	201
6.11	Docking pose of compound 24	202
6.12	Docking pose of compound 26	202
6.13	Inhibition assay of metal induced A β_{1-42} aggregation and its	206
	confocal imaging	
6.14	Effect of Compounds 22, 24, 26 on Glycine and glutamate	209
	evoked currents in GluN1/GluN2A containing receptor and	
	GluN1A/GluN2B containing receptor	
6.15	Inhibition of current induced by 100 µM glutamate and	210
	10µM glycine in presence of antagonists tested on GluN1A/	
	GluN2B containing receptor	
6.16	(A) and (B) Protein RMSD and Protein Ligand RMSD	210
	respectively. (C) Root Mean Square Fluctuation (RMSF) of	
	protein in presence of compound. (D) RMSF of ligand (E)	
	Interaction fraction of Protein-Ligand Contacts (F) Protein	

	ligand interaction.	
7.1	Doebner's reaction for the synthesis of quinoline-4-	213
	carboxylic acids	
7.2	Skraup method of synthesis for quinoline	214
7.3	Drug design strategy for the development of AChE and	214
	BACE inhibitor.	
7.4	Doking pose of compound 97 with (A) AChE (PDB id	265
	4EY7), (B) BuChE (PDB id 4BDS) and (C) BACE-1 (PDB	
	id 6EQM).	
7.5	Neuroprotection assay of compound 95 on MC 65 cell line	272

Preface

Alzheimer's Disease (AD) is most common neurodegenerative disorder, which accounts for more than 80% of dementia cases worldwide in older people. It is characterized by deposition of amyloid β and neuro-fibrillary tangles. The disease leads to progressive loss of memory, functional ability to learn and is primarily characterized by the progressive loss of memory associated with other cognitive deficits. The global burden on the population suffering from AD was assessed to 44 million in 2015. This number is expected to double by 2030 and triple by 2050, if no effective treatment is in place. In a country like India, where approximately 41 % of the population is in the age group of 25 to 55 years, this needs to be seriously acknowledged and addressed.

Over the last few years, several targets of the disease have been identified. This include, but not limited to, Amyloid- β , Acetylcholinesterase (AChE), Butyrylcholinesterase (BuChE), β -secretase, γ -secretase, β -site APP cleaving enzyme-1 (BACE-1), NMDA receptors, Matrix metalloproteinases (MMPs), Neurofibrillary tangles *etc*.

Despite decades of study on the etiology of disease and also significant efforts by pharmaceutical industry to develop therapies, there is no effective treatment available to cure AD or to inhibit significantly its progression. However, there are four drugs viz. donepezil, galantamine, and rivastigmine, approved by USFDA, acting on cholinergic pathway and recently (2003) approved drug Memantine acting on NMDA receptor. Considering the complex and multifactorial nature of disease, development of

multifunctional ligands was considered a better option.

The present study is being divided into eight chapters. Chapter 1 deals with different types of neurodegenerative disorders, pathophysiology of AD and available treatments.

Chapter 2 provides insight in the literature reports related to the work from scholarly articles which forms the basis of the study. The section summarizes drugable targets for the treatment of AD and agonists or antagonists developed in the recent times. The mechanism of action of inhibitors and the molecular features of the receptors are also discussed in detail. The structural requirements for the agonistic or antagonistic action are explained along with structure-activity relationship (SAR) of the molecules. Chapter 3 includes the hypothesis of the study, and rationale of the work. It also incorporates the plan of study that helped to accomplish the research envisaged.

Chapter 4 deals with the rationale for syntheses of novel piperazinediones, obtained from *in-silico* studies and data mining. The development of pharmacophore was based on the hybrid drug design considering donepezil and PQ912, a chemical moiety in phase II of clinical trial. The designed hybrid pharmacophore was used for extensive data mining by using zinc and asinex databank which yielded over thousand compounds having desired pharmacophoric pattern. These data were further subjected to different filters viz. docking, *in-silico* BBB permeability and finally toxicity filter. The fully optimized molecules thus obtained were promoted to synthesis, *in-vitro* enzyme assays and *in-vivo* studies.. The potent molecules obtained from *in-vitro* study were further investigated for neuroprotection ability in MC 65 cells and antioxidant assay. Most potent compounds were selected for *in-vivo* studies in AD animal models to evaluate the working memory and learning response.

A few, piperazinediones developed also showed anxiolytic property which was further assessed and constitute chapter 5 *i.e.* biological profiling of piperazinediones for the management of anxiety associated with AD. In this, behavioral study on animal model was performed which was followed by estimation of neurotransmitter level in brain.

xii

The detailed mode of action of compounds was also assessed by Flumazenil antagonism on anxiolytic activity of compound.

In the next chapter (Chapter 6), synthesis of adamantly analogous as NMDA antagonists is includes. Memantine, an approved NMDA antagonist, was retained in the final structure and further optimization was done using the fragments of hits obtained from virtual screening. Triazole moiety, reported to exhibit neuroprotective effect was incorporated in some of the compounds. The synthesized compounds were subjected to *in-vitro* MMP-2 inhibition assay, inhibition assay of metal-induced A β_{1-42} aggregation, confocal fluorescence imaging, antioxidant activity (DPPH assay), MC65 neuroprotection assay, and electrophysiology on different glutamate and glycine-mediated NMDA receptors and results were analyzed.

Another series of novel compounds synthesized, are presented in chapter 7. This includes quinoline analogues as potent inhibitors of AChE, BuChE, and BACE-1. Fragments from different bioactive molecules *viz* donepezil, LY2811376, MK-8631 were taken and docked against AChE, BACE1. These fragments were further developed by fragment-based techniques. Quinolines, found to be active against AChE and A β_{1-42} in our earlier study and piperazines, reported in many CNS active drugs were used as fragments. The later is also reported to improve the water solubility of small synthetic molecules without altering its BBB permeability. Linkers, substituted cyclohexane-1-amine or substituted benzyl-1-amine towards different amino acid residues were used to increase the approach of the tail group. The synthesized compounds were screened for *in-vitro* AChE, and BuChE inhibition, BACE1 inhibition, neuroprotection on MC65 cell lines, PAMPA assay, and pharmacokinetic studies on male Wistar rats.

xiii

The summary and conclusions of the study are included in chapter 8, which is followed

by appendix and references.