Chapter 5

A study of edge cracks in an
interfacial orthotropic composite

material under the normal load

5.1 Introduction

Due to the less possibility of crack formation and crack propagation in composite
materials, these materials are very much used in aero-space ships, wings and several
types of ships, structures, etc. Engineers and Scientists are very curious about the
composite structures. They have found several types of physical quantities like stress
intensity factors, energy release rate, thermal stress intensity factors which are used

in ship cruise, aerospace structures, and buildings to use these structures in a proper

The contents of this chapter have been communicated for the publication.
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way. Orthotropic composite materials are more beneficial and eco-friendly than the

other anisotropic materials.

The problem concerned with the two edge cracks in the finite orthotropic
strip under the normal point loading had been solved by Das et al. (2008) in which
they have found the expressions of stress intensity factors. The problem related
to the edge crack under the point loading, which is orthogonal to the surface of
an orthotropic strip of finite width whereas another face of this strip is bonded
to other orthotropic half plane had been solved by Das et al. (2011a). Das et al.
(2010) have found the stress intensity factor with the help of weight function, and
the solving method was the Hilbert transform method. The problem concerned
with edge crack under the normal point loading in the finite composite orthotropic
strip has been dealt by Das et al. (2011b), where the singular integral equations
have been solved using Hilbert transform technique. Banks-Sills (2018) has studied
the interface fracture mechanics problem with an asymptotic expression for the
stress and displacement fields in the vicinity of the interfacial crack tip between
two homogeneous isotropic, linear elastic materials. Qu et al. (2018) have studied
the interface cracks in anisotropic biomaterials in which the authors found stress
intensity factors and the energy release rate in terms of explicit expressions for the
crack tip field. Rice (1988) has studied a crack at the interface of dissimilar solids in
which the author finds complex stress intensity factors K; and Kj; for Mode-1 and
Mode-2 with a critical failure locus in the complex plane. The problem considered
with the edge crack in the infinite orthotropic strip which is solved by Wang et al.
(1996) with the aid of an integral transform technique. Mishra et al. (2017) have
studied the cruciform crack in infinite orthotropic elastic media under the thermal
loadings in which they have considered Boron-epoxy composite as the orthotropic

material.
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In the current chapter, the study is concerned about the elastostatic double
edge crack problem under the tensile loadings at the edges of two bounded semi-
infinite orthotropic strips, each having finite depth h. Steel-Mylar and Boron-Epoxy
composite materials have been used for numerical computations as a particular case.
The problem is reduced into the singular integral equations of the first kind with
Cauchy-type singularities, which have been solved using Chebyshev polynomials.

The expressions of the stress intensity factors (SIFs) are found at the cracks’ tips.

Matenal 1 Material 2

Figure 5.1: Geomerty of the Problem

5.2 Mathematical formulation

Let us consider an elastostatic problem of a composite material with two bonded
semi-infinite orthotropic strips each of depth b (—h < 2 <0, —co <y < o0; 0 < x <
h, —00 < y < 00) and two symmetrically located edge cracks defined by a <| z |< h
under the normal traction p(z) (Figure 5.1).

The equations of equilibrium in the absence of any type of force in the forms of

displacements are expressed through the equations (3.1) and (3.2),
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where v = u(x,y) and v = v(z,y) are displacement components in z and y di-

rections and Cj;,(’s are elastic constants of the orthotropic materials. Here the

superscripts ¢ = 1 and ¢ = 2 represent the material 1 and material 2 respectively.

The concerned boundary conditions are given as follows.

For material 1,

oy (z,0) = p(2), —h <z <-—a,
v<1)(3:, 0) =0, —a <z <0,
0y P (,0) = 0, —h<2x<0,
02D (—h,y) =0, —00 <y < 00,
Umy<1)(_hay) =Y —o0 <y < 00.
For material 2,

Oy P (,0) = p(), a<xz<h,
v @ (x,0) = 0, 0<z<a,
Ty P (,0) = 0, 0<z<h,
Oa D, y) = 0, —00 < Y < 00,
02y P(h,y) = 0, —00 < Y < 0.

At the interface of two materials i.e., at x = 0,

u(0,y) = u?(0,y), —00 < y < 00,
vD(0,y) = v®(0,y), —00 < y < 00,
am<1)(0,y) = am<2)(0,y), —00 <y < 00,

O—myﬂ)(oay) - Uﬂﬁy<2)(0ay>a —00 < Y < 0.

(5.10)

(5.11)
(5.12)
(5.13)

(5.14)
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All the components of stresses and displacements vanish at the remote distances

from the cracks.

5.3 Solution of the Problem

The displacements and stresses can be expressed in terms of two harmonic functions

as

S0 00”096,

oz 0w (5:19)
ol = /\1“)% + Aﬂ%ii), (5.16)
a2 o T (517)
N Y A CLNCATS
%6:) —(1+ Aﬁ”)% (L Aﬂ)%, (5.19)

where qﬁj@(x, y) satisfy the following partial differential equation as
(aa_; + (7j<i>)2;—;> o (w,y) = 0,0 =1,2,j = 1,2, (5.20)

where (v;1)2, (j = 1,2) are the positive real roots of the above equations
011@066@(7;)4+((012<i))2‘|‘2012<i)066<i)_011@022@)(7;)2+022<i)066<i) =0 (5-21)

and
Cn(i) (%(i))? _ 066(i)
066@ + 012@

A = j=1,2, (5.22)
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where C’;Q’s are the elastic constants of the orthotropic material 1 and material 2
represented by ¢ = 1 and ¢ = 2.

The Harmonic functions for material 1 and material 2 are given by

2 0
00w =2 [ a@le 4 s cos ay da
0
2 [ —— )
+; Bj(a)e %7 cos ax do, j=1,2, (5.23)
0
¢, P (x / Ci( le 570 4 5707 cos ay dov

2 [ —&
+ —/ Dji(a)e %7 cos ax do, j=1,2, (5.24)
T Jo

where Aj(a), Bi(a), Ax(a), Ba(a) and Ci(«), Cao(ar), Di(ar), Do(a) are undeter-
mined arbitrary functions of the material 1 and material 2 respectively.

Our aim is to reduce the materials’ constants by using continuity conditions (5.11)-
(5.14) and the conditions on the two strips (5.4)-(5.5) and (5.9)-(5.10), and then
use the materials’ constants to calculate our desired expressions of SIFs at the edge
cracks’ tips using conditions (5.1)-(5.3) and (5.6)-(5.8).

Applying the boundary conditions (5.3) and (5.8), we get

B 7 (1+/\ <1))

Bi(a) = — 7 )(1+/\1<1))B2( ), (5.25)
o ><1+A2<2>>

Di(a) = EXTERY (2))D2(a) (5.26)

Applying the boundary conditions (5.2) and (5.7), we get

/ By(a) a cos ax da=0,—a <z <0, (5.27)
0

/ Dy(a) a cos ax dav = 0,0 < x < a. (5.28)
0
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The boundary conditions (5.4) — (5.5) with the aid of equation (5.25) give rise to

1 & OO 1
/ {A(« <1) (ah) + Ag(a)a gl)(ozh)}oz2 cos (ay) doHr%/ { (1)6 ”71%
2 0

e W }Bz(a)az cos (ah) da =0, —0c0 <y < o0, (5.29)

oo (1 oo o
1
/ {A ()b (ah) + Az ()b (ah) Yo sin (ay) da + % / {_ e
0 Y2 0

1

ay

te }Bz( Yot sin (ah) do = 0, —o00 < y < o0, (5.30)
where

ol (ah) =(1 + AP 4 ¢ ion)

b (ah) = = (14 A et ot — i),

ai" (ah) =(1 + Ao 4 ¢ s oh)

B (ah) = (14 A g et ot — e,

The Boundary conditions (5.9) — (5.10) with the aid of equation (5.26) give rise to

oo 12Dy oo —=x
{C’l(a)(zgz)(ah) + C’z(a)aéz)(ah)}a2 cos () da+ (L) —e
; CI A BN
T2 TN
1 &

— ¢ R }Dz( Ya? cos (ah) da, —oo < y < oo, (5.31)
V2
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- (2 2 (LEA") [~
/ {C1(a)by” (ah) + Co(a)by”’(ah) }a? sin (ay) da + T)Z/ { —e M
0 T2 0

ay

e }Dz( Ya?sin (ah) do = 0, —00 < y < 00, (5.32)
where

o () =(1+ AP [t b 4 ey,
b (ah) = = (14 AP Pt — et
ah]
@,

1 (ah) = = (14 AP ot — e,

ai? (ah) =(1 + 2P [ 4 ¢ 8

Now from equations (5.29) and (5.30), A;(s) and Ay(s) are calculated in terms of

By(s) as
ah
D (a 0 P (a
P+ ) T a4
Al(a) _ (1) (1) (1) (1) 2 (1)2 Bz(Oé)a
ay (ah)by” (ah) — ay’ (ah)by’ (ah) 2
(5.33)
,(_ VN a(?) Y(a
i (b gl)h>+a§1)(ah)) e (b ((1)h)+a(11)(ah)) (1+/\g1>)
AQ(O[) _ (1) D ) (1) (1) BZ(a)a
a(ah)by (ah) — oy (ah)b}" (k) :

(5.34)
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Now from equations (5.31) and (5.32), C(s) and Cy(s) are calculated in terms of

Dy(s) as
W@ I W) b2 (ah)
—e <a2 (ah)+T) +e m <a2 (ah) + 245 ) 14®
Ci(e) = 2 D, OIPRVIE) = ( +<2>2 )D"’(O‘)’
ot (ah)b” (ah) — af? (ah)0? (ah) ¢
(5.35)
5 /4@ (a 5 @ (n
e W (Tbl (oh) | agz)(ah)) —e W (Tbl (oh) | agz)(ah)) )
Cofa) = REpE PG ( +<2>2 )Dz(a)’
ay” (ah)by” (ah) — ay” (ah)by™ (ah) T2
(5.36)
Setting,
By(a) = — / Fu(#2) sin ot dt, (5.37)
amJ n
1t
Dy(a) = E/ fo(t*)sin ot dt, (5.38)
the equations (5.27) and (5.28) are satisfied if
Ca h
/ f1(#*) dt =0 and / f2(t*) dt = 0. (5.39)
—h a

The boundary conditions (5.1) and (5.6), with the equations (5.37) and (5.38) yield

the following singular integral equations

/:mwmﬁ?ﬁ>ﬁ—/:mWMﬂﬁwﬁ2agux

h 2t h T
2 p— 2 pu— < < .
/a Ga(t )<t2 —x2> dt /a G2(t°) ko(x,t) dt 5 C,66]9(35),@ <z < h, (541)
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where

(1)
() —(of =)L) iﬁ )

@
ga(8) —(of? =) ;;Z U2 ), (5.42)

1 0
ki(z,t) = m/o
K_W) ()t (sh) + (6 a <1)(ozx)b<1)(ozh)> <77 K f;)
Db (ah) — aSD (ah)pP (ah) @ <

+< (01" 0l (ax)ay’ (ah) + (35) a <”<ax>a§”<ah>>
alP ()b (ah) — P (ah)biM (ah)

_ah
(e 4 e vé ))} sin at day,  (5.43)

1 0
et = (Y =) /0
ah

K—(vi”) ai? (aa)t? (ah) + (35) a <2><ax>b<2><ah>><e th ﬂ)

Dlanb (ah) — i (ah)b (ah) W A

+<—<vi”> o (om)a ah) + () a “)(ax)a&”(ah))
alP(ah)b? (ah) — o (ah)b'P (ah)

ah ah

(6777157 — e@)} sin at day,  (5.44)

The singular integral equation (5.40) finally reduces to the following equation for

the case of large h as

—a 2t —a
/ gl(t2)<m> dt — 3 /h t gi(t?) dt = 67;6 p(x),—h <z < —a, (5.45)

h
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where

228y 2008 204 2047)%88

br= i T e e T e s T (e g 2

(M) +D2 (v +D)? (o +10)?2 () + 1)
with

1 _ (v + A e 1 29"

11 1 1 ) 12 — 1 1 )

AT (17 =)
n 2751) 1 (75 ) ( )) 7(1)
21 — ) 22 T .
(1Y — 5Pz (V- 5”)

The singular integral equation (5.41) finally reduces to the following equation for

the case of large h as

h 9 2t h 9 7r
) G2(t%) 2 dt — /3 ) t o g(t) dt = C—%p(x),a < z < h, (5.46)

where
2 20 200 2007
= e T e e T i 0.® e @ e
(M) +D2 (" +D)?2 (T D)2 ((n7)P D
with
2 2
o P <”W> @ _ 2(7)?
11 — 9 - 2 2 3
(12 — )2 (1D — )2
2
@ 275 ) g) N (VE ) ( )) 752)
21 — 2 2 3 — —2 B .
(1 — )2 (R =y

After some manipulations and putting 2? = X and ¢ = T in the above equations

(5.45) and (5.46), we get

h?
_/aQ 2 gy 2 / BT dT = T /R < X< (547)
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2 B2
92(1) 52/ & 2 2
T _ ™A = —p(v/ X < X < h*. 4
/az T—Xd 2 J,e (1) d 066]?( ha' S X <h (5.48)

To normalize the above equations (5.47) and (5.48), let us make the following sub-

stitutions as
2T — (a* + h?) 2X — (a* + h?)

* X —
T (hZ _ CLZ) ? (hZ _ CLZ)

Defining,
g(T) = gi(T"), go(T) = g2(T"), and p(v'X) = p(vV'X*),

the equations (5.47) and (5.48) reduce to

' gl(T*) * Bl(hz — a?) ! * *
o e

= T (WX, -1 <X < 1, (5.49)
C’66

with

/1 (1) dT™ = 0 and / g(T") dT" = 0. (5.51)

Now expressing the unknown functions in terms of Chebyshev polynomials of the

first kind as

g(1") = (5.52)

\/W ZA T2n+1 7

1

N 2% By T a(T7), (5.53)

@(T") =
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and using the result

1 * 0
* *2\ —= dz ’
/ Tyn(e) (1 — 23—

1 (z* —y")

and the orthogonality relation

the equations (5.49) and (5.50) become

_Am<2)+ﬁ1h -

1 (/ WZ”?"“
(/1U2n mdx>

C’66

)

-1 <X"< 1,

Bm(%) e Zh_za (/ WZB nTon 2 (T dT)

(/1U2n mdx>

C’66

where

1
Pm/ P(VX o (X IV — X+2dX "
—1

-1 <X"< 1,

(5.55)

(5.56)

(5.57)

(5.58)
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The Stress intensity factors at the edge crack tip x = —a™ and the another edge

crack tip x = a~ are calculated as

_ h? — a2 i
KI(*(Z) - mEEItlﬁ‘ Y 2a (IE + CL) <1)([L’ O) - 066 |:ZA71:|7

h? — g2 i
Ko = hm V2a(la —x)o <2) (z,0) ¢ 066{2371}

5.4 Results and Discussion

In this section, numerical values of SIFs at both the cracks’ tips are calculated for
various depths of the strips and the sizes of the cracks, which are depicted though
Figures 5.2-5.5 for different particular cases. The orthotropic strips are considered
as Steel- Mylar and Boron-Epoxy composite materials, whose elastic constants are
given in Table 5.1 (Mishra et al. (2017) and Das et al. (2008)). The Boron-epoxy
materials have a wide range of applications in the aerospace, automotive and ma-
rine industries. Also its versatile characteristic and its diversity made it useful for
different industrial applications. The use of steel-mylar composite material in com-
mercial transport aircraft is attractive because its reduced airframe weight and low
operating cost. During computations, the loadings are considered as p(x) = p.

Table 5.1: Elastic Constants

Materials Ch Ciy Cag Ces
10" Pa | 10'° Pa | 10" Pa | 10" Pa

Steel-Mylar

(Material 1) 18.70 1.30 2.92 0.62
Boron-Epoxy
(Material 2) 208.91 26.06 27.85 7.79

In Figures 5.2 and 5.3, the normalized SIF Kj_.+)/py/a is calculated at

the crack tip a = —2.0, —1.8, —1.6, —1.4 varying the value of h = —3.0(—0.2) — 2.2.
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Figure 5.3: Normalized SIF at the point z = —a™ versus a/h

Figure 5.2 depicts K;(_q+)/py/a versus the width and it is seen that as the width is
increasing the SIFs is decreasing. Figure 5.3 shows that the normalized SIF increases

as sizes of the crack decreases.

In the Figures 5.4 and 5.5, the normalized SIFs K;,—)/py/a are calculated
at the crack tip a = 2.0, 1.8, 1.6, 1.4 varying the value of h = 2.2(0.2)3.0. The Figures
depict that the SIF decreases with the increases in h at different crack tip position

and also increases as the crack sizes decreases.
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Figure 5.5: Normalized SIF at the point = o~ versus a/h

5.5 Conclusion

The aim of the chapter is to determine the stress intensity factors at the edge cracks’
tips under prescribed tensile loads situated at the boundaries of two bonded or-
thotropic strips. the main contribution of the chapter is the graphical presentations
of the variations of natures of SIF's as and when the sizes of the cracks are increasing

or decreasing.
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