Chapter 4

A study of the double edge cracks
and a central crack in an
orthotropic strip under the tensile

loads

4.1 Introduction

Edge crack or any type of crack occurs in railway track, aerospace, aeroplane wings
etc. and this type of failure occurs due to either the thermal load or any other

type of external load or stress. Edge crack problem analysis is much easier to study

The contents of this chapter have been published in Journal of Physics Conference Series
1141:012109, (2018).
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in isotropic materials than the anisotropic materials because mathematical calcula-
tions become difficult to solve for the anisotropic material. Nowadays, engineering
structures are designed with the aid of the composite materials. There is less prob-
ability to grow a crack in edge crack which is occurring in the orthotropic material
compared to the isotropic material which is very considerable and useful. Every
metal possesses some thermal, mechanical and chemical properties. A material is
said to be isotropic if its mechanical and thermal properties are the same in all
directions. For anisotropic materials, they are different in each and every direction.
The orthotropic material is the special case of the anisotropic material which has
three mutually perpendicular planes of symmetry and their characteristics remain
unchanged along their axes. Orthotropic materials’ properties are the same whether

a material is homogeneous or non-homogeneous.

The problems of edge crack are found few in numbers during the literature
survey. The problem of symmetrical edge cracks of finite length in an orthotropic
infinite strip under normal point loading is solved using Hilbert transform technique
by Das et al. (2008). The problem of an orthotropic infinite strip with double sym-
metrically located edge cracks bonded to another orthotropic half plane had been
solved by Das et al. (2011a). The problem was solved with the aid of Hilbert trans-
form technique and weight function. The problem of single edge crack located in
an orthotropic infinite strip with the finite length had been solved by Das (2010).
Das et al. (2011b) have studied the edge crack problem in an orthotropic composite
material. Gupta and Erdogan (1974) have solved the two symmetrically situated
internal cracks orthogonal to the boundary by converting the boundary conditions
in the form of two simultaneous singular integral equations, which are solved with
the aid of numerical technique. Wang et al. (1996) have used the integral transform

technique to solve the edge crack and internal cracks. The three-dimensional elastic
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problem in an orthotropic fracture specimen with an edge crack had been studied by
Cruse and Vanburen (1971). Know and Lee (2000) have solved a centre crack in the
finite length and width in a piezoelectric body under anti-plane shear loading, using
the Fourier integral equation. The problem of a finite central crack in an infinite
functionally graded piezoelectric strip under in-plane mechanical and electrical load-
ings had been studied by Ueda (2005). The problem in a unit circular elastic disc
with internal edge crack which is applicable and considerable for circular, rotating
and infinite long cylinder under thermal shock had been studied by Schneider and
Danzer (1989). The problem concerned with the elastostatic axisymmetric for a long
hollow cylinder possess a ring-shaped internal and edge cracks, had been solved by

Erdol and Erdogan (1978) using the standard transform technique.

In the current work, the study is concerned with the elastostatic double
edge cracks problem with a centre crack under tensile loadings in an infinite or-
thotropic elastic strip of width 2h. The problem is reduced into the singular integral
equations of the first kind with Cauchy-type singularities, which are solved using
Chebyshev polynomials. The expressions of the stress intensity factors (SIFs) are
found at the cracks’ tips. The variations of SIF at the central crack tip keeping its
length fixed and varying the edge crack for Steel-Mylar are found. Similarly, SIF
at the tip of the edge cracks keeping its length fixed and varying the length of the
central crack is found for the same material. The computed results are displayed

graphically for different particular cases.

4.2 Problem Formulation

Let us consider an elastostatic problem of an orthotropic strip of length 2h with a

central crack defined by | z |< b and two symmetrically situated edge cracks defined
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Figure 4.1: Geometry of the Problem

by @ <| z |< h under the normal tractions p;(x) and pa(z) respectively (Figure 4.1).

The equations of equilibrium in the forms of displacements are expressed as

d*u d*u 9%

011@ + 0668_1/2 + (Crz + 066)axay =0, (4.1)
9% 9% d*u

0228_y2 + 066@ + (Cia + 066)axay =0, (4.2)

where u and v are displacements in « and y directions and C;;’s are elastic constants

of the orthotropic material.

Here the mathematical model is considered under symmetry with respect to y-axis

and here it is sufficient to discuss the problem in the half strip 0 <z < h.
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Thus the concerned boundary conditions are given by

oyy(2,0) = p1(z),

oyy(2,0) = pa(),

02z(hyy) = 0,
Tay(h,y) = 0,
Ouy(2,0) =0,

v(z,0) =0,

All the components of stresses and displacements vanish at the remote distances

from the cracks.

4.3 Solution of the Problem

The displacement fields and components of stress are represented in the form of

harmonic functions as
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where ¢;(z,y) satisfy the following partial differential equation as
o? o? ,
<@ + .uia_yz>¢i(xay) =0,0=1,2, (4.14)
where 11 and pg are the positive real roots of the above equation
011066,U2 + (Cu2 +2C15Ce + C11Co2) i + CaaCgs = 0, (4.15)
and
Cripri — Ces .
N = O 9, 4.16
Ces + Chra ( )
The harmonic functions for an orthotropic elastic strip are given by
2 >
b1, y) = _/ Ap(s)[e VFIST 4 eV cos sy ds
T Jo
2 [~ _ s
+ —/ By(s)e VAT cos sx ds, (4.17)
T Jo
2 >
ba(m,y) = _/ Ag(s)[eVF2® Vi cos sy ds
T Ja
2 [~ _ s
+ —/ Bay(s)e T cos sx ds, (4.18)
T Jo
where A;(s) and B;(s) (i = 1,2) are undetermined arbitrary functions.
Applying the Boundary condition (4.7), we get
12 (1 + /\1)
By(s) = —Y—=-—"=DB1(s), 4.19
) = T Bi) (4.19)
Applying the Boundary condition (4.8), we get
/ Bi(s) s cos sx ds =0,b <z <a. (4.20)
0
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The Boundary conditions (4.5) and (4.6) with the aid of equation (4.19) give rise to

/OOO{Al(s)(al(sh)) + Ay(s)(as(sh))}(s%) cos sy ds = e /OOO {

v H1
1 _ sy 1 s
e Vi ———¢ V= Bi(s)(s*) cos shds,0<y<oo, (421
. () (421)

o0 2 . (1 + Al) - 7_5‘%
/0 {A1(s)(b1(sh)) + Aa(s)(bz(sh))}(s”) sin sy ds+7 /0 {6 o

— ¢ i }Bl(s)(sz) sin sh ds=0,0<y < o0, (4.22)
where

al(Sh) :(1 -+ Al)[e\/“_wh + 6*\/;T1$h]’
bi(sh) = — (1 + Ap)y/in|eVPrsh — e VFTsh],
(lz(Sh) :(1 + Az)[e\//TQSh + e*\/p«_zsh]’

ba(sh) = — (1 + Ag)/liz[eVF2! — e VIRl

Now from equations (4.21) and (4.22), A;(s) and Ay(s) are calculated in terms of

Bi(s) as
sk s b o(s
Ay(s) = e T (aa(sh) + 2R — e T (aa(sh) + 22D (14 )

a1(sh)by(sh) — ag(sh)bi(sh) N/

Bi(s), (4.23)
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e (bulsh) —= bi(sh)
Ay(s) = e (o Fa(sh)) +e VR (U a(sh) ] (14 Ay
ay(sh)by(sh) — az(sh)bi(sh) N/
Bi(s). (4.24)
Setting,

h b
Bi(s) = 3_12/ f1(#*)sin st dt + é/ f2(t?) sin st dt, (4.25)
a 0
the equation (4.20) is satisfied if
h b
/ [t dt +/ f2(t%) dt = 0. (4.26)
a 0

The boundary conditions (4.3) and (4.4) with the aid of equation (4.25) yield the

following singular integral equations as

/ahm(tz)(tzi—txz) dt+/0bgz(t2)<t23—t$2> dt+/ah k(. 1) — k(z, —t)]

dt + / b k(. t) — k(w, —t)] dt = Ci%pl(x), a<w<h, (4.27)

/ahgl(tz)<t2 322) dt*/obgz(tz)@ iz) dt+/ah (. t) — k(, )]

dt + / b k(x, t) — k(w, —t)] dt = Ci%pg(x),() <z <b (4.28)

where

(1+Xp)

N/
(1+Xp)

N

g1(t*) =(Vm = Vi) hi(t%),

92(t*) =(Vix = /1i2) h(t*). (4.29)
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by = [ [FAAlObN L ilob(n)

(
ar(sh)ba(sh) —az(sh)bi(sh) (/1 — /12)
(? ~ ?) —par(s2)az(sh) + pas(sw)ar(sh) 1
NI Vit ar(sh)by(sh) — az(sh)bi(sh)  (\/B1 — /12)

(efw}:_l — ej__)} sin st ds, (4.30)

The singular integral equations (4.27) and (4.28) finally reduce to the following

equations for the case of large h as

/ahgl(tz)<t2 322) dt+/bgz(t2)< > dt+5/ t it

+5/0 L) dt = Zopi(a)a <o <h (431)

h b h
[ (52 ) o [ae (G20 ) ds [ oo a

b
+ ﬁ/ Lgo(t?) dt = ——py(2),0 <z < b, (4.32)
0 C’66

where
5= 2p 1 1 2101 P12 1 243521 1 2419 522
Gt D2 (Vi + 02 (Vg D2 (ua + )2
with
fi = — (\/_Jr\/_) L1, 512:L
(Vi1 — /h2)? (Vi — /1i2)*
P/ ()
2 T T = = Poy = = ————5\/Ik2-

(Vi — Vi)
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Putting 22 = X and ¢ = T', the above equations (4.31) and (4.32) become

K2 b2 2
9.(7) / 92(7T) 6/
/(12 T_ X d + ; T _ XdT+ 91 T

b2
+ é/ G(T) dT = 2 p (VX),a? < X < h?, (4.33)
2 0 C’66

ﬂ
><
1o

h2 b2 h2
/ () dT+/ gz(T) dT+B/ g (T)dT
a? T_X 0 a?

b2
5/ 9T dT—C—%pg(\/_)Ongbz. (4.34)

To normalize the above equations (4.33) and (4.34), let us make the following sub-

stitutions as

(a2 B2 (o2 P2 _p2 _p
2T — (a +h),X*:2X (a +h),T**:2T b,X**:2X b.
(h* —a?) b2

T =
(h? — a?) b2

Defining,
g1(T) = gi(T"), g2(T) = o(T"), p1(VX) = ;m(VX"), pp(VX) = pa(VX ),

the equations (4.33) and (4.34) reduce to
1 . 2 _ 2y gl
dT ar- + ———= T dT
| s [ A G

2
Bb / goT™) dT* = Cipl(\/X*) 1< XU < 1, (4.35)
1 66
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1 * 2 2 1
ar-+ —-——— THYdr
/ (T* ( X**) 4 . gl( )
B b2 ' ** *k & / *k
—1 66
with
1 1
/ G (T") dT* + / ga(T*) dT** = 0. (4.37)
1 1

Now expressing the unknown functions in terms of Chebyshev polynomials of the

first kind as

g(T) = Z Ay To (T, (4.38)
W
Kk 1 Hok
Gg(I) = JioTh ZB Ty (T, (4.39)
using the result
1 * 0 =0
* %2y 1 dZ ) J )
[ T -2 e = (4.40)
N ™ U2j(y*)a J >0,
and the orthogonality relation
! * * *2\ % * O’ " /i m,
Un(y" ) Unm(y ) (1 =y ")2dy" = (4.41)
-1
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the equations (4.35) and (4.36) become

4

(/ WZA T (T dT*) (/1 Uzn(X*)de*>

2
+ &</ \/1 T**2 ZB T2n+1 dTM)

(/ Ugn(X)V'1 X*de> o Pims (4.42)
_ 66

9
% +7TZB / Ugn (XYW (X V1 — XX+ —a)

2 2 _ 2

4

(/1 WZA T2n+1(T*)dT*> (/1 Uzn(X**)de**>
(] S

</ Uzn(X**) /1 _X**ZdX**> _ - — Pom, (443)
1 66
where
1
Py, / (VX Uz V1 — XX, (4.44)
1

1
Py = / p2(VX Yoy V1 = X2dX ™ (4.45)
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The Stress intensity factors at the edge crack tip £ = a and the central crack tip

x = b are calculated as

X

>4,
n=0

>,

n=0

h?2 — g2
K]a = lim \ (CL2 - $2)0yy($, O) - ¢ P 066

3
T—ra 2

b
K]b = lim LV, (272 - bz)O'yy(LE,O) - —E P 066 .

bt

4.4 Results and Discussion

In this section, orthotropic material is considered as Steel-Mylar composite material

whose elastic constants are given in Table 4.1 (Das et al. (2008).

Table 4.1: Elastic Constants

Cll C’12 022 C’66
1019Pa | 10'°Pa | 10 Pa | 10'° Pa
18.70 1.30 2.92 0.62

The computed normalized SIFs Kp,/py/a and K,/ p\/@ at the cracks’ tips
x = a and x = b are found for the above considered material are displayed through
Figure 4.2 and Figure 4.3 respectively as and when p; (v X*) = po(vVX**) = p and
h = 4.0 unit. In Figure 4.2, it is seen that the Kj,/py/a increases when the edge
crack position is kept fixed at @ = 3.0 unit and varying the central crack length as
b = 2.50(0.05)2.95. That is as the central crack approaches to the edge crack, the

normalized SIF at the crack tip x = ¢ increases.

Again if the central crack length is kept fixed at b = 2.8 and varying the
edge crack location 3.8(0.1)3.1, it is seen that the SIF K7, increases (Figure 4.3).
In this case also the normalized SIF at x = b K7, increases when the edge crack

location will be approaching close to the central crack tip.
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Thus, in both cases there are possibilities of cracks’ propagations.

3978
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a

Figure 4.3: Normalized SIF at the point b+ versus b/a

4.5 Conclusion

In the present chapter, an endeavour has been made to find the SIFs at the cracks’
tips when the orthotropic material consists of one central crack and two edge cracks.
The important feature of the chapter is the graphical presentations of the increasing

tendency of SIFs when the position of one crack approaches to another one.
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