Chapter 3

Interaction three Interfacial
Cracks between an Orthotropic

Half-Plane Bonded to a Dissimilar

Orthotropic Layer with a Punch

3.1 Introduction

Mechanics of fracture broadly deals with the science of strength of materials relating
to the study of the load-bearing capacity of a body with or without the presence
of cracks and various principals governing the crack development. The development

of pre-existing cracks in a body may depend on the basic parameters like material,

The contents of this chapter have been published in Zeitschrift fiir Naturforschung A,
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shape and dimension of the body, the mode of applying an external load, time
and number of cycles of load, temperature, the degree of environmental reactivity,
strain rate and deformation history. The main objective of the chapter is to present
the method of analysis and their solutions, and also expressions of the quantities
of physical interest e.g., stress intensity factor (SIF), stress magnification factor,
etc. This discussion centres around the framework of the classical linear theory of
elasticity which takes account of small displacement and strains. Furthermore, the
parameters of the solid are considered to be independent of temperature and its

state of stress.

The study of fracture behaviour of materials is necessary to design the
critical structures of the material. The punch problem is not only restricted up to
the fields of Mechanical and Civil engineering but also it is an important branch
of Applied Mathematics. The punch, connected with fracture mechanics, at the
end of which an infinite tensile stress occurs to initiate a crack or pre-existed crack
is developed due to the action of the punch. As it is hard to get an analytical
solution to the problem of crack containing half-plane subjected to the punch, some
numerical methods or semi-analytical methods are required to solve such types of
punch problems. Study of crack problems is extremely important for the sake of
safety and security of structural components. Moving punch problems in an isotropic
elastic strip had been solved by Tait and Moodie (1981) using the complex variable
method to obtain closed form solution, and also solved by Singh and Dhaliwal (1984)
using integral transform method. Lobada and Tauchert (1985) have solved the
elastic contact problem for dissimilar orthotropic infinite and semi-infinite strips by
reducing the system to singular integral equations using Fourier Transform. The
new complex variable approach was proposed by Viola and Piva (1986-1988) to

solve elasto-dynamic crack problems in an orthotropic medium. Another significant
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contribution about the problem of three interfacial cracks in anisotropic media was
given by Sadowski et al. (2016) and Craciun et al. (2014). They considered Mode I
and Mode II loading conditions, respectively, and they showed some interesting facts
as evidence regarding the effects of the interactions between cracks according to their
relative distances and positions. Morini et al. (2013) have shown the Stroh formalism
in the analyses of skew-symmetric and symmetric weight functions for interfacial
cracks. Das and Debnath (2005) have found the stress intensity factors around a
Griffith crack in an orthotropic punched layer. In 2010, Choi and Paulino (2010) have
investigated the interfacial cracking in a graded coating/substrate system loaded by
a frictional sliding flat punch. Das and Patra (1999) have studied the crack between
an orthotropic half planes bonded to a dissimilar orthotropic layer with a punch.
In 2013, the transient deformations and stress intensity factors at the crack tip in
presence of a punch had been investigated by Periasamy and Tippur (2013) using
digital gradient sensing technique. In 2016, the interaction effect of Griffith cracks
was also studied by Mishra et al. (2016). But to the best of my knowledge study of

the combination of interfacial cracks and a punch is first of its kind.

The oscillatory behaviour of the in-plane linear elastic stress field near the
tip of an interfacial crack was first noticed by Williams (1959). England (1965)
noted that the oscillatory singularity of the interfacial fields leads to crack surface
overlapping and wrinkling, which are viewed as physically inadmissible although

those are confined in a very small region close to the crack tip.

Later, England (1965) mathematical justified that the oscillatory singular-
ity of the interfacial crack causes cracks to surface overlapping and wrinkling in a
small region close to the crack tip. The attempts towards removal of oscillations had
been taken by Comninou (1977) and Atkinson (1977) by considering contact between

crack surfaces and transition of material properties at the interface, respectively. In
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terms of removing stress oscillation and surface overlapping both the models work

through stress singularity remains at the crack tip.

In hybrid displacement element method proposed by Atluri and Nakagaki
(1975), the assumed displacement functions are independent of the stress functions.
To make the formulation more flexible, Chow et al. (1995) considered no crack face
overlap or non-zero traction on the crack face. Pazis et al. (1988) explained the
matter in other way, saying that to find physically acceptable solution, additional
conditions K; = 0 and K;; = 0 may be imposed, i.e. the singular stress field at the
crack tip should vanish. The overlapping phenomena in the different geometry of
the crack/cracks at the interface can be found in the works of Noda and Xu (2008),

Markides et al. (2011), Chadegani and Batra (2011), Zhang and Deng (2006).

In the present chapter, the stress magnification factors have been deter-
mined at the vicinity of the collinear Griffith cracks situated at the interface of an
orthotropic half-plane and a dissimilar orthotropic layer with a punch on another
face. The interaction effects of the interfacial cracks under constant loading due to

the presence of linear punch are presented graphically and discussed in section 3.4.

3.2 Problem Formulation

Consider the elasto-static problem of three collinear Griffith cracks of finite length
situated at the interface of an orthotropic strip 1 of thickness h with a punch and

half-plane 2. Under the assumption of plane strain in an orthotropic medium, the
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Figure 3.1: The geometry of the Problem
displacement equations of motion are given by
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where C’;?s are the elastic constants. Here, superscripts i=1,2 refer to the media 1

and 2, respectively. The stress-displacement relations are given by

where 1 = 1, 2.
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It is assumed that at the interface y = 0, the central crack is defined by | z |[< a

and the outer cracks are defined by b <| x |< 1 are opened by internal normal and

shearing tractions p;(z) and pa(x), respectively, the punch defined by | z |< a, y = h
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is subjected to normal pressure ps(z). The boundary conditions on y = 0 are given

by

oy (©,0) = —pi(2), |w|<a b<|z [,

ol)(x,0) = —pa(x), [z |<a, bz |< 1,

u(z,0) = u?(2,0), a<|z|<b |z|>1,

v (x,0) = v@(2,0), a <]z |<b, |z]|>1,
1 2

O—Z(ly)(x70) — O—Z([y)(xao)y -0 <xr < OO’

U%)(x,()) - Uif,)(:c,()), —00 < < 00.
The boundary conditions on y = h are

v (x, h) = ps(x), |z |< a,
Ui?(x,h) =0, |z |< oo,

Ué?(z,h) =0, |z |>a.

(3.12)
(3.13)

(3.14)

The appropriate integral solution of equations (3.1) and (3.2) can be taken as

Wz, y) = / A9 (s,y) sin sz ds,
0

U@(%ay)/ B9 (s, y) cos sz ds.
0

(3.15)

(3.16)
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For the strip 1, the solution of the above equation is given as

AW (s,y) = AP (s)ch(sy) + AL (s)ch(4 sy)
+ i (s)sh(nsy) + CSV(s)sh(4sy),

BY(s,y) = BiY(s)sh(1"sy) + By (s)sh(7ysy)

(3.17)

+ DV (s)eh(Vsy) + DY (s)eh(4  sy), (3.18)

and for the half-plane 2, the solution is given as

A<2)(s,y) A<2)( )e sy+A<2)( )e 7 sy (3.19)

A<2)(s,y) B(Z)( ) 5y+B(2)( ) " sy (3.20)

where 7 ) and 7 1:172 are the roots of the equation

CRCyy +(Cl) + C&)* — cylct) — (CRY 1 + ciloy = 0. (3.21)

The materials are chosen so that 7 ) and 7 (< 71 ) depend on the elastic constants,

are the positive roots of the above equation and Bj@(s)7 D;Z)(s) are related to the
arbitrary functions A;i)(s) and C’;i)(s) by

B(s) = =) A0 (5) 4, DP(s) = —alC0(s) /7)) (3:22)

with

af) = (Cf) = (O /(O + ), i =125 5= 1.2
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The expressions of stresses for the strip are

Wy =) [ [%M )sh(x\"sy) + %A“)( )sh(24sy)
0

%(ﬂ”( Yeh(v\Vsy) + ﬁfl)c“)( yeh(1{Vsy) | ssinszds,  (3.23)
M Y2

o), ) — / [((Ji?—c§§>a§”>{A§”<s>ch<v§”sy>
+ O (8)sh(1sy)} + (O — O ol AP (s)ch(+ sy)

+ C’él) (s)sh(vél)sy) }} s cos sz ds, (3.24)

and for the half-plane are

(2)
oD (a,y) = / {(09—cé?aﬁ”mﬁzks)e%

+ () —cPaPy AP (s )672 9 | s cos sz ds (3.26)

if,)(x y) = C<2)/0 {532)14(2)( Je g Sy+ 52 A<2)( )672 sy ssinsxds,  (3.25)

with 517 = ol 4 (412, 0,5 = 1,2.
The boundary conditions (3.8) and (3.9) with the help of (3.10) and (3.11) give rise

to

/ {llAgl)(s) + lgAgl)(s) — lgC’fl)(s) — 1402“)(3) sin sz ds = 0,
0

a<|z|<b|xz|>1, (3.27)

/ {mlAgl)(s) + mzAgl)(s) — mgCil)(s) — m402<1)(s) cossrds =0,
0

a<|z|<b|xz|>1. (3.28)
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The expressions of [; and m; (i = 1,2,3,4) are given in the Appendix.
The boundary condition (3.14) gives
/ P AP )5k Vsy) + 0l AL () s sy)
0
+ Ot (s)eh(sy) + myCLV (s)ch(n8 sy) | cos sy ds =0,
a<|z|<b|xz|>1. (3.29)
Now setting,
LAY () + 1AV (s) — LCW (s) — et (s) / £i(t) cos(st) &
+ —/ fi(t) cos(st) dt, (3.30)
S Jp
AL () 1+ ma AL (5) — maCP(s) — maCi(s) / folt) sin(st) d
+ g/ f2(t) sin(st) dt, (3.31)
b
A ()51 sy) + n” AL (s)shi55"sy) + i L (s)eh(3] sy)
+ 7751)051)( Yeh vmsy / f3(t) sin(st) dt, (3.32)
Equation (3.32) with the help of boundary conditions (3.13) yields
Wray — _ (1)
AT (s) = —[1 + 01(9)]C; / f3(t) sin st ds, (3.33)
Wy (s
Ay (s) [T+ 05(s)]Cy7( f3 t)sin st ds (3.34)
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with
—27Vs 1,y
26 2y, h ‘u< e "
Bi(s) = o by(s) = 2 , (3.35)
1 — e (s — gy (1 = e e
94D D
e 2y ' sh ( e 12 sh
Sa(s) = 0 Su(s) = e (3.36)

1 — ik’ (gt — iy (1 — ey

Equations (3.27)-(3.29) are identically satisfied if
a 1
/ F(t)dt =0, i —1,2,3 and / F()dt—0, i— 1,2, (3.37)
—a b
Equations (3.30) and (3.31), with the aid of (3.33) and (3.34), give

’U}H(S)Cil)(s) + wlz(S)Cél)(S) = —é |:/a fl(t) cos st dt

+ /blfl(t) cos st dt + wys(s) /Oa J3(t) sin st dt}, (3.38)

w21(3)051)(8) -+ w22(8)0§1)(8) = —é |:/a fz(t) sin st dt
+/b Ja(t) sin st dt + ’U)zg(S)/O J3(t) sin st dt} (3.39)

The expressions of w;;(s) are given in the Appendix.

Equations (3.38) and (3.39) give rise to

C’il)(s) = —MZT(S) /Oa f1(t) cos stdt — wzzT(S) /b1 f1(¢) cos st dt
a 1
+w%(s)/0 fa(t) sin stdt+w%(s)/b fat)sin stdt

+ w%(s) /Oa f3(t) sin stdt, (3.40)
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C’él)( )= wan (5 / f1(¢) cos stdt + 2205 / f1(t) cos stdt
—wL/ f2(t) sin stdt—wL/ fa(t) sin stdt
s 0 s b
w23

% /Oa f3(t)sin stdt, (3.41)

where w;;(s) = i (s) =1,2, 7=1,2,3;

(w11 (e wa(s)—wia()war(s)’

and

wii(00) = lim wi(s) and wl)) = wij(s) —wis(o0), i=1,2, j=1,2, (3.42)

5—00

with
o (2 1Y 4 D o o
7( ( 2 ) z (2) 7(2)
1 2
wli(oo) =1 + s
(2) (2)
{ ) (2) o }
5 (2) — (2)
(1)
0, { SO = b 1) + P P s - <2)u§2))}
wyi(00) = 11 5 = (3.43)
@a®  (2)af
122 _(2) q 7éz)

The boundary conditions (3.6), (3.7) and (3.12) with the aid of above equations
give rise to the following singular integral equations for the determinations of f;(¢),
i=1,2,3 as

L Awd 2 [
7Tb1 —a t—x 7Tb1 t—x

H@@ﬁﬁ@+Kﬂ@QﬁMﬁ+%AUﬁ@ﬁﬁ@
_ 2p1($)

wfil) + 2 [ K00

+ Kl?(xa t)fZ(t) + K13($, t)f?)(t)]dt

O<z<a b<z<l, (3.44)
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cutte) — o [ 2082 AOUL L[ 0

7Td1 _a t—x 7Td1 t—x a

+K22($,t)f2(t) +K23($,t)f3(t)]dt+ %/b [Kzl(x,t)fl(t)

Kl 020) + Kot 0 o0t — 22242

O<z<a b<zx<l1, (3.45)

+/ K31 LL‘ t f1 +K32($ t)fz( ) +K33($,t)f3(t)]dt

a t -
+/ 2 K31 LL‘ t f1 ) +K32($ t)fz( )]dt = 2]?3(21’)), D<ax< a, (346)
b
where
= na(o0) + i (oc)s 3 =1 wnaloe) — i wn(oc), (347
1
= 1M wnz(00) — M (00), I = 1w (00) — i i (00), (3.48)

where a1, b1, ¢; and d; are the material-dependent constants and

Kii(z,t) = /OO d;i(s) cos s(t — x)ds, i = 1,2,

0
Kij(z,t / di;(s)sins(t —x)ds, i # j, 1,5 = 1,2, (3.49)
Kij(x,t) = / d;;(s)sins(t — x)ds, i = =3and i=3,j=2,3,
Kij(zx,t / i

s)coss(t —x)ds, 1=1,j =3 and i =3,j = 1. (3.50)
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The expressions of d;;(s) are given in Appendix.

The pair of singular integral equations (3.44) and (3.45) can be reduced in the form

or() +

L [rodnd 2 [Pednde /“[K&(atm(t)

miarg f_, T —x miarg J, t—x

+ Kip(, )da (1) +K23($,t)f3(t)]dt+2/b (K (@, )01 (0) + Kz, 1) (1)

a

+ Kia(x, t) fs(O)]dt = ge(x), 0 <z <a, b<z <1, (3.51)

which can be rewritten as

L [ty 2 [Megunydr [t
o)+ —— [ G [ PO [ G, ()
1/a
+ Ko (X, T) 2 (T) +K23(X,T)f3(T)]dT+2/b (K (X, T)n (T)
+ K (X, T2 (T) + Kis (X, T) f5(T))dT = gi(X),
0<X <1, bla<X <1/a, (3.52)
where

(ZSk(X) = 4/ alblfl(aX) + iTk\/ Cldlfz(aX),CL =/ a1b101d1 and = 1,T2 - _1,
1 1

2r Ky, = <a_KH + TleC—Km) - afl(TmeCh + b K12), [,m = 1,2,
1 1

L[ /b d
Ky = — { =K1 — 14 —1K23} ; (3.53)
s an C1

(X)) = % {\/s:zlpl(aX) - \/i:ipz(aX)} k=12 (3.54)
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3.3 Solution of the Problem

The solutions of integral equations (3.52) and (3.46) may be assumed as

or(X) = wi(X) i Cin PP (X)) k= 1,2, (3.55)
f(X) = R(X))  CaTonir(X), (3.56)

where w(X) = (1 —X)ak(l <|>)()6k7 o — —% + dwr, Bp = —% — Wi,

wp = rw, k= 1,2 with w = -tln

1+a
27 l—a

, R(z) = (1 — X?) 3,

Equation (3.37) implies that
1/a

1
/ oo (DT =0, | u(T)aT =0 and Cro—0, k—1,2.  (3.57)
-1 b/a

Using the orthogonality relations of Jacobi’s and Chebyshev’s polynomials given by

Sadowski et al. (2016), the three singular integral equations are reduced to

1 — Cl2 o0 (o 9 o0 o0 2
- Chn Py (X Chnti Clran L
22@7% ; knt 1 ( ) + m'ark nz% k wkj + Z Z kmnj

n=1m=1

13 Coubpy = Frjj = 0,1,2. (3.58)

n=0
0 2 0
s
§C3j + Z Z Cangmnj + Z C?manj — PSj, (359)
n=1m=1 n=0

where

1
Lis = / L ()i () P20 (X)X,
1

1
hy = / 1 Yexwy H(X) p;*akvfﬁw(x)dx,
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with
/1/a wk(T)P<O‘k ﬁk)(T)dT
EX — 3
ba T —-X
1
Lin(X) = | K} (X, T)wm(T)Ploe5)(TYT
-1
1/a
+ Ko (X, T (T) P P(T)dT
b/a
1
Hionir(X) = / Ky (X, TYTyna(£)(1 — T2) 2T
-1
1/a
+ Kis(X, T) Ty (8)(1 — T%) 12T,
b/a
1
Dy — / Hign 1 (X)wy, H(X)PC ™ (X)dX,
—1
1
Fyj = / ge(X)w LX) P (X dX,
-1
gop 2T Aot DG BT
J i +a+B+DIG+a+F+1)
1
Layn(X) = / K (X, T (T) PLo=50) (T AT
-1
1/a

+ : K (X, Twy(T) PPN (TYAT, (m = 1,2,n = 0,1,2,3...)
Layn(X) = /11 Ko (X, T (T) PP (TYAT, (m = 3,n = 0,1,2,3...)
(pj = / 11 Hop 1 (X)Ugy (X)V1 — X2dX,
Py = / 11 p3( XUy (X)V1 — X2dX.
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The expressions for the stress intensity factors at x = a are given by

27T 1 — a?
K Crn PL%PR) (1), 3.60
\/ I T Z (1) (3.60)

The stress intensity factors at x = b and z = 1 are

b1 d1 /1 — b (0,3 )
KI KH o nZC o PLowPR) (1), (3.61)
ﬁK} +irgy/ @K}I _ i Clon PLO#BE (1), (3.62)
a €1 2ry =~ "
Now stress magniﬁcation factors (SMF) are defined by M{ = K“*’ M = KK—i7
1

Kl Kl
M} = ?}L and M7, = Ka*v Mp, = K"*’ M} = ?#7 where Kj* and Kj; are the

Mode-I and Mode-II stress intensity factors at £ = a due to the presence of a central
crack only situated at the interface of two half-planes. K%, K% and K}*, K} are
the stress intensity factors at x = b and x = 1, respectively, due to the presence of
outer cracks, only situated at the interface of two half-planes. The expressions of
SMF are found in the research articles of Mukherjee and Das (2007), Kobayashi and
Moss (1969), Rose (1986), Senddon and Lowengrub (1969), Nisitani and Murakami
(1974).

During the measurement of the distance between two surfaces of the central

crack in the presences of an outer crack, we have
Av(z,0) = vV (z,0) — v (x, 0) / ft)dt + = / fa(t)dt, 0 <x <a (3.63)

As the concern is to find the overlap of the central crack, therefore it is assumed

that (1 —b) — oc.
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Then,

NE

wo)(5)
() |

0<z<a, (3.64)

G a—x\"" /.

A’U(LE,O) — mlm 011 <T> |:<Zw 4
a—1\ <~ (=1 —1n fa—2\"

+< 2a>z;n(a1+1+n)< 2a> a

Il
[=)

NE

Il
[=)

T

where ()),, is Pocchammer symbol defined by
N =AA+1)..(A+n—1)

and (—A), = (=)™ (A —n + 1),.

It is observed that near the end of the crack, the sign changes infinitely
conform that the upper and lower surfaces will overlap with each other. Taking into
account that the contact first takes place at a distance a« —x = ¢, where § > 0 is a

small quantity, we get

cos <w lni> =0, (3.65)

2a

which gives the length of the overlap of two lips of the central crack as

fus

§ = 2ae 2. (3.66)

It should be noted that the quantity w depends on the materials’ constants
and the loading conditions. This shows that the region of oscillation is very small;
therefore, the irregularities of this solution are confined to a very small region near
the ends of the crack. Proceeding in the similar way, we can find the expressions of

the size of the overlap of two surfaces can be found at both the tips of outer cracks.
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3.4 Results and Discussion

In this section, numerical results are used to investigate the interactions among the
interfacial collinear cracks due to the presence of rigid punch for a pair of materials.
The orthotropic materials strip 1 and a half-plane 2 are considered as a-Uranium
and Beechwood, respectively, whose elastic constants are given in Table 3.1 (Mishra

et al. (2016)).

Table 3.1: Elastic Constants

Materials C’ﬁ) C’f? C’é? C’é?
10* Pa | 10'° Pa | 10 Pa | 10 Pa

a-Uranium

(i=1) 2147 | 19.86 | 4.65 7.43

Beech wood

(i =2) 0.17 1.58 0.15 0.103

The author has used the material composites while dealing with problems
of fracture in composite structure. a-uranium is used for its serious engineering
applications in aero-spaces and military industry. Beechwood is considered for com-
posite material due to its strong moisture-dependent and shrinking and high abrasion

resistance characteristic.

During computations, the loadings are considered as pi(x) = p, p2(x) =0
and the punch is considered as ps(x) = x. The effect of the presence of interfacial
cracks on the contact stress field due to the presence of a linear punch is examined
through stress magnification factor. The dimensionless stress magnification factors
versus the thickness of the strip (k) for both Mode-I and Mode-I1 types at the tip of
the central crack x = a are described through Figures 3.2 and 3.3, respectively, for
various values of dimensionless quantity b/a, once by keeping a = 0.5 and varying

b = 0.6(0.1)0.9. Then, by keeping the outer crack length fixed at b = 0.6 and
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varying a = 0.2(0.1)0.5, the stress magnification factors versus h at the outer crack
tips = b and x = 1 are depicted through Figures 3.4-3.5 and 3.6-3.7, respectively,

for various values of b/a.

15
—+—b/a=18
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512 { ¥ bja=12
=
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B
]
= 2 e o
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Figure 3.2: Plot of M} versus h at a = 0.5
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Figure 3.3: Plot of M}, versus h at a = 0.5

It is seen from Figures 3.2 and 3.3 that keeping the central crack fixed, if
the outer crack length is decreased, then the stress magnification factors at x = a
are decreased. Due to the shielding (M{, M{; < 1), there is the possibility of crack
arrest. Moreover, this effect is increased with the additional effect of punch on
the strip. Eventually, as the depth of the strip is increased, the effect of shielding is

immediately changed to amplification (M{, M{, > 1), which clearly exhibits the fact
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Figure 3.4: Plot of M}’ versus h at b = 0.6
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Figure 3.5: Plot of M}’I versus h at b = 0.6

that the effect of punch through a certain depth of strip may lead to the possibilities

of crack arrest.

Figures 3.4 and 3.5 show the variations of stress magnifications factors at
2 = b with that of the central crack size when the outer crack length is fixed at
b = 0.6. It is seen that as the size of the central crack is increased, both M} and
M$, are increased but as the depth of the strip increases, M? increases whereas M,

decreases.

Variations of stress magnification factors at x = 1 for fixed outer crack
length at b = 0.6 and different central crack lengths are shown through Figures 3.6

and 3.7. Tt is observed from the Figures 3.4-3.7 that nature of M} and M}, are
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Figure 3.6: Plot of M} versus h at b = 0.6
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Figure 3.7: Plot of M}I versus h at b = 0.6

similar to M? and M?; as and when the central crack lengths keep changing. As
the depth of the strip increases, the behaviour of M} is found to be similar to M}

whereas M}; behaves opposite to M?;.

Figures 3.5 and 3.6 reveal that the outer crack experiences shielding effect
due to the presence of a central crack. This effect is maximum when the central
crack size is minimum and crack separation distance between the outer crack and
the central crack is maximum. It is seen from Figure 3.5 that when a = 0.5,b = 0.4
i.e., when the outer crack size is two-fifth and crack separation distance is one-tenth
of the central crack size, then shielding is approximately 24% when h = 1. When the
sizes of the outer cracks are equal to the central crack length and crack separation

is also equal to the central crack (a = 0.2,b = 0.4), then shielding is approximately
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30% when h = 1. This effect decreases with the increase of the value of h. Figure 3.7
depicts that when the outer crack size is one-fourth and crack separation distance
is one-tenth to the central crack size, then shielding is approximately 84% at h = 1.
When the size of the outer crack is equal to the central crack and crack separation
distance, then shielding is approximately 84.5% for different values of h. The effect

increases with the increase of h.

It is also clear from Figures 3.5 and 3.7 that the overall values of stress
magnification factors of Mode-II type are found to be very small caused due to the

effect of the punch at the cracks’ faces under the compressive stress field.

3.5 Conclusion

In this chapter, four important goals have been achieved. The first one is the in-
vestigation of interaction among the three collinear cracks situated at the interface
of orthotropic strip bonded to the half-plane with the punch on its other face of
the strip. The second one is the finding the length of the overlap of the two lips of
crack faces near the crack tip. The third one is finding the analytical form of the
stress intensity factors in the vicinity of the crack tips. The last one is the graphical
presentations of amplification and shielding effect through the stress magnification
factors, which help to find the possibilities of the arrest of the central crack due
to the presence of outer cracks and vice-versa. The author is the optimist that the
proposed mathematical model will be beneficial for the engineers working in the field

of composite media.
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3.6 Appendix

di1(s) = = wy (5) — 781 (8)waa(s) + i wsy (s) + S o1 (s)wan(s),
dia(5) = = wiy) (5) — V81 (s)wia(s) + i iy (s) + S s (s)wn(s),

diz(s) = —mi"85(s) + 05" 04(s) + niVIL + 8(8)uwnals) — VL + Ga(s)]was(s),

dy1(5) = =0 wly (5) — niV 81 () was(s),
daa(5) = 05w (s) + 0581 (s)wa (s),

dya(s) = =1 wna(s) + m wns(s),

- a% (y%_
d31(8) = | — 55(8)’(1}22(8)_1 + 66(8)’(1}21(8)—1 s
L 71 Y2
- 041 041_
dsa(s) = | — 55(8)1012(8)% + 66(3)1011(8)_? )
L 7 72 |
I af 0
d33(8) = | — 55(8)’(1}13(8)—1 + 66(8)’(1}23(8)—1
L 71 Y2

1 1
— |62(5) L sh(7Vsh) + 6a(s) 2 sh(1{Vsh) |,
7 72
with

’U}H(S) = 11[1 -+ 61(8)] + 13, ’U)lz(S) = 12[1 + 63(8)] + 14,

’U)lg(S) — 1162(8) - 1264(8), ’U)zl(S) - m1[1 + 61(3)] + ms,

wzz(S) = mz[l + 61(8)] + My, ’U)zg(S) = m162(8) — m254(3),
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where
267279) ugl)€77£1)5h
di(s) = 0w 28 = s MO
1 —e2nsh (.Uz S LS ) )(1_5 M Sh)
2672751) uél)€77§1)5h
03(s) = o ) = s MO
1 —e 2 sh (g’ —my" =y 'my )L — e 22 shy
8s(s) = —(1 + 8u(s))sh(n " sh) + (" sh),
56(s) = —(1 + 63(s))sh(1Vsh) + ch(+"sh)
and
1 2 2 2 2
T 7 BTt
K 2 2 2 2)y 7t 7 2 2 2 257
(s — 0 (s — 0

2 2 2 2 2 2
) (@? s 4P — ol /47
? 2 2 2 2
(s — i)

1 2 2 2 2 2 2
ol b (@i /Y = ol P
v 2 2 2 2
(s — i)

m; =M )

Mmito = ’

W
with ) = 0 — CfJal) and 1y = C8 %50, = 1,2
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