Chapter 2

Study of thermo-elastic cruciform
crack with unequal arms in an

orthotropic elastic plane

2.1 Introduction

The applications of fracture mechanics have traditionally concentrated on crack
growth problems under an opening or mode-I mechanism. Damage tolerance is an
ability of the structure due to which it sustains the defects until repair. During de-
sign of engineering structures, the damage tolerance is always taken in account as it
is assumed that flaws can exist in any structure and such flaws propagate with usage.

In aerospace engineering structures, this approach is necessarily used in aerospace

The contents of this chapter have been published in ZAMM- Journal of Applied Mathe-
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engineering structures to avoid the extension of cracks. It is observed in fracture
mechanics that the crack growth is exponential in nature i.e., the crack growth
rate is a function of an exponent of crack size. Due to exponential crack growth,
the structural engineers may inspect invisible cracks occur in structures which may
grow slowly by using non-destructive testing methods. Due to non-destructive in-
spections the amounts of maintenance checks can be reduced. Crack propagation
and arrest have become important topics in a structure containing isolated region of
an unstable crack growth. The emergence of an unstable crack can be arrested from
bad region by using the surrounding of good materials, provided good materials have
sufficiently high fracture toughness i.e., materials have large resistance to protect the
structure from crack propagation. This clearly exhibits the importance of studying
propagation of cracks occur in structures and the arrest of crack propagation for the
sake of safety of the structure. Akoz and Tauchert (1972) have done a significant
work in this field. Mishra et al. (2016) have studied the interaction among the in-
terfacial cracks bonded between orthotropic elastic strips and half planes. Sneddon

(1946) had studied the distribution of stress and displacement in an isotropic media.

During last few years, the thermo-elastic crack problems are been attracted
by the scientists and engineers around the world. There has been increasing interest
for the solution of elasto-static and elasto-dynamic crack problems in an anisotropic
medium due to their important applications in space crafts, solar panels, racing
car bodies, storage tanks efc. Due to mathematical complexity, comparatively few
investigations of thermal stresses in anisotropic bodies have been appeared. Nowa-
days, macroscopic anisotropic constructions material like fiber reinforced composite
are widely used in thermal environment. In this case determination of the thermal
stress intensity around the crack become important, this occurs due to the distur-

bance in heat flux. Sometimes it is also seen that thermal stresses occur, due to
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a sudden change in temperature of the structure, and thus combined with the ef-
fect of existing mechanical loads. Meanwhile crack-like defect may cause fracture
under this thermo-mechanical stress. The investigation of thermo-elastic field and
thermal stress concentration around the crack help to understand the stability and
life of the cracked engineering materials and structures. According to linear elastic
fracture mechanics stress at the vicinity of the crack tip is singular. It is directly
proportional to the inverse of square root of distance from the crack tip. Many ob-
servations of thermo-elastic cracked surfaces show that the thermal stress singularity

at the vicinity of the crack tips are same as those with mechanical stresses.

Initially in fracture mechanics cruciform specimen would be used to cal-
culate the effect of biaxial load on stable crack growth during experimental tests
and due to low cost towards manufacturing process the thick reduction of the cracks
specimens was not been considered during modelling. During experiments, it is im-
portant to find the stress distribution and its intensity of cruciform specimen due
to its complicated shape. Thus during configuration handling of cruciform cracks
specimen, one should be careful about the facts that the specimen should be capa-
ble of taking compression load, the stress distribution across the specimen should be
uniform and for minimizing the machining cost the specimen configuration should
be simple. Different types of specimens and fatigue testing mechanics have been
developed by the scientists and engineers. The two different kinds of specimen one
as a large specimen at lower test level and another small specimen at a higher stress
level were used for biaxial fatigue test by Miller (1982). In the year 2000, Kalluri and
Bonacuse (2000) have used three different types of cruciform specimens on the DLR
biaxial testing for investigation of fatigue and deformation towards easy monitoring

and low manufacturing cost.

Stallybrass (1970), Rooke and Sneddon (1969), and Sneddon and Das
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(1971) have studied the elasto-static cruciform crack and star shaped crack in isotropic
elastic material by using different approaches, e.g., Integral transform technique,
Wiener-Hopf technique and Muskhelishivilli-Kolsov potential functions, etc. The
study of dynamic cruciform crack problem was done by Ong et al. (1985) and Brock
et al. (1985) in an isotropic elastic medium. The T-stress, which plays an impor-
tant role in determining crack growth direction and in changing apparent fracture
toughness, was analyzed near the tips of cruciform cracks embedded in an isotropic
elastic solid by Li (2006). But further research had been required to study the crack
problems in an anisotropic medium with cruciform specimen. Several investigators
have studied the cruciform crack problems by using different methods. In 1991,
Zhang (1991) gave the general solution of a cruciform crack in orthotropic infinite
plate under arbitrary longitudinal shear stress. The stability of the growth regime
of cruciform crack was studied by Keer et al. (1980). De and Patra (1992) and Das
et al. (2000) have solved the problem of a cruciform crack in an orthotropic elastic

plane by using integral transform technique.

But to the best of my knowledge, the problem related to cruciform cracks
under thermo-mechanical loading are not yet been solved by any researcher by using
orthogonal Chebyshev polynomials. The stress intensity factors at the tips of the
cracks and crack energies are found analytically. The numerical computations of the
stress magnification factors to find the possibilities of shielding and amplification
of cracks through the stress magnification factors and requirement of energy for

fracture toughness are the key features of the present chapter.

This chapter deals with elasto-static cruciform crack with prescribed thermo-
mechanical loading embedded in an orthotropic elastic plane. A steady state tem-
perature field induced by a line source is situated at the origin of the cruciform

crack. Integral transform technique has been used to reduce the pair of Fredholm



Chapter 2. Study of thermo-elastic cruciform... 33

type singular integral equations, which are finally been solved by using Chebyshev
polynomials. The analytical expressions of the stress intensity factors at the tips of
two arms and the crack energies towards finding the toughness of the material are
found. The numerical values of stress magnification factors and the dimensionless
quantities of crack energies are computed for Boron-Epoxy composite material for

different particular cases which are depicted through graphs.

2.2 Problem Formulation

Consider the elasto-static plane problem in an infinite orthotropic thermo-elastic
medium containing a cruciform crack on the segment |z|< a, y = 0 and |y|< b,
x = 0 when Cartesian co-ordinate axes coincide with the axes of symmetry of the
elastic material. When thermal conditions are applied to the surface of an arbitrary
two dimensional orthotropic media then temperature field only depends upon in-
plane co-ordinates under steady state condition. Thus, the temperature distribution
functions T'(z,y) are assumed to satisfy the following heat conduction equation in
the orthotropic media as
0*T , O*T

G TR 0 (2.1)

where K* = K,/K, with K,, K, are the thermal conductive coefficients of the

orthotropic material along y and x directions, respectively.

The general solution of T'(x,y) is (c.f., Akoz and Tauchert (1972))

T(x,y) = % /0OO {A(p)exp{p(ix — %)} + A(p)exp{p( —ir — %) }} dp, (2.2)
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where i = /=1, j = 1,2, and A(p) and A(p) are the arbitrary functions of p.
Taking
T(x,0) = hx), (2.3)

the Fourier integral form of temperature distribution becomes

w0 - o [ ) { / Z B() explp(ie)] explp(iz)

+ h(&) explp(i€)] explp(—ix)| dS | dp. (2.4)
From equations (2.2) and (2.4), we get
/ h(&)exp|—ip€]dé,  A(p / h(&)explipt] dE. (2.5)

From equations (2.2) and (2.5), the temperature distribution 7T'(z,y) can be ex-

pressed as

T(x,y) = l /OO g%)h(f de. (2.6)

If we consider

h(z) = é(x), (2.7)

where the prescribed temperature distribution, h(x) becomes line source along y-
axis as Dirac delta function §(z), the resultant temperature distribution is reduced

to
1 (%)
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The relations between plane stress induced by the distributions of temperature and

displacement components u and v are given by

ou

Taz (T, Y) Cna—JrCu — 0T, (2.9)

ou 8
Tyy (2, Y) 0128_ + 0228 — BT, (2.10)

ou v
Tay (2, Y) 066< + > (2.11)

Y or ' Oy
The elastic constants are given by Cy; = 171‘}5:0:%%7 Coy = 17—3%’ Cly = % —
%7 Css = I3y and stress-temperature coefficients are defined by 3, = Ciaay, +

Ci104s, By = Cro0us + Croyy, where F,,, E,, are the Young’s moduli, G, is
shear modulus, v, and vy, are Poisson’s ratios, ., and «, are linear expansion
coefficients. It is to be noted that the units of C’;Q’s are taken as GPa and units of
B, and 3, are considered as GPa/deg.

The displacement equations of equilibrium are given by

9*u 9*u 9%

CH@ 5 JFO66a 5+ (Cra + Ces )8 ay *595 (2.12)
9% 9% 9*u 8T

szm + O66a 5 + (Chg + 6'66)a ay =y oy’ (2.13)
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Figure 2.1: Geometry of the Problem

where v = u(x,y), v = v(x,y) are the displacement components along = and y
directions. In view of symmetry, the problem can be formulated in the quarter-

plane (x > 0, y > 0) associated with the boundary conditions given by

oyy(x,0) = — p1(), 0<z<a, (2.14)
022(0,y) = — p2(y), 0<z<b, (2.15)
u(0,y) =0, y > b, (2.16)
v(zx,0) =0, x> a, (2.17)
044(0,y) =0, y >0, (2.18)
Tuy(2,0) =0, x>0, (2.19)

where p(x) and p,(y) are internal tractions during opening of cracks and the overall

geometry of the concerned model is provided in Figure 2.1.
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2.3 Solution of the Problem

For solution of the problem, displacement potential functions ¢(x,y) and ¢;(x,y)

(j = 1,2) are taken as

Wz, y) —— / N A B()e R} 1 A() Bls)e (0} as, (2.20)

27
o1(z,y) :2 /OO [s’lBl(s)e’”mcos(sy) + <9*ZC'1(3)67VS_5_T cos(sx)} ds, (2.21)
0
a(2,y) % /OO [sleg(s)efsmMcos(sy) + 87202(8)67\/%% cos(sx)} ds. (2.22)
0

The displacement components © and v may be written as

O Od1 | D9y o ! i
78x+83:+8x and ”*"ay+Alay 8y'

The corresponding thermal stresses are

v ¢ ¢ O

z (E;; ) {(1 + M) 8y21 1+ A) 8y22 +(1+ n)a—yz} : (2.23)
0 o° o

—‘7@’14(8“:6 ) {(1 + Ak a(b; (1 Ao a;f -1+ ")a_;ﬂ’ (2.24)

ou(@,y) ¢>1 “’¢>z &Y

The displacement equations (2.12)-(2.13) are satisfied by equation (2.20) for non-

trivial ¢; if
By(Cos — K2C11) + B(Cra + Cos) K?

_ , 2.26
7 595(022 - K2066) - 5;;(012 + 066) ( )

_ Coy — K?Ceg) — 5,(C1z + Coe)
B =§'B = K* fa(Cz 8] 7y =k, 2.27
° ° (Coy — K2Cs5)(Cos — K2C11) + K(Chg + Ces)? ( )
Ces + /\(012 + 066) - AC (2.28)

Chy B ACs6 + Cra + Cis s
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where k, n are constant quantities. Equation (2.28) yields two quadratic equations,

one in A and the other in . Ay, Ay and 1, po are the roots of the quadratic equations

Cos(Cr2 + 066)/\2 + [(Cr2 + 066)2 + Cge® — C1109% A + Cs6(Cia + Cgs) = 0,

and O11C66,U2 + [(012 + 066)2 - C662 — C11C0%|p + Co9Ceg = 0.
Here, p;(i = 1,2) are associated with potential functions ¢;, which satisfy the fol-

lowing differential equations

o* o* . ‘
where y; = %,z =1,2.
Applying the boundary conditions (2.18) and (2.19), we get
\/E 1+ A k \/m 1479 >
C — _ C’ - Y 2.30
Vi (1 + /\2)
Bi(s) = —F= | ——— | Ba(s). 2.31

Applying the boundary conditions (2.16) and (2.17), we get

/ 571Cq(s) cos(sx)ds = 0,2 > a, (2.32)
0

/OO Bsy(s) cos(sy)ds =0,y > b. (2.33)

Boundary conditions (2.16) and (2.17) with the aid of equations (2.30) and (2.31)

give arise to

ViE [ bae) (vime T — g as (1= Y2

/OO Cy(s) cos(sx)ds = —p1 (),0 <z < a, (2.34)
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— @ h S S) COS{S S 1 h 67\/M_28y
(1-32) [ ssereotonas+ = [ (2
— €£y>oz(s)ds =2 (2),0 <y <b, (2.35)
where
. 1C) (Ltmk\ (1
n@) = ety ((1 T /\2)> (% N W_K>5(x)’

Setting,

Bas) — é /0 Fu(t) sin(st) d, (2.36)
and

Cols) — /0 Fol7) sin(s7) dr, (2.37)

so that the equations (2.32) and (2.33) are satisfied under the following conditions

/ " A(0)dt — 0 and / ’ fo(r)dr = 0. (2.38)

After lengthy process of mathematical calculations, the equations (2.34) and (2.35)
with the aid of equations (2.36) and (2.37) along with the compatibility conditions

(2.38) finally lead to the following singular integral equations:

5l/a fl(t;) dt+/0ak:1(x,r)f2(r)dr

a(t_

_ _066%(:%1) _ (8 i?j) (% - :—[1(>5(x), —a<w<a, (2.39)

52/b f2(7) d7'+/0bk’2(y,t)f1(t)dt

b (T =)
— _0661221(?/\1) - <8 j:?j) (% — 1>, —b<x<b (2.40)
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where

)2 )

k»l(x,f)m< JET T )

wx? + 712 ppx? 472

kz(l/ﬁ)\i—(é)( vt _ it )

Y+ mt® Y+ T
Putting the variables * = z/a, y* = y/b, t* = t/a, 7* = 7/b, the above integral

equations are reduced to

1 * 1
ﬁl/l%dw / k(e ) falr)de = —p) (@), ~1 <@t <1, (241)

6/ Alr et /k W O — —p ()~ <y <1, (2.42)

where
w =t () (5 - 5 0o
P () = Opu( {)M) " <<§1++AZ;§(> (i B 1)’
with

1 1
/ £(t)d =0 and / fo(7)dr" = 0. (2.43)
1 -1

Now expressing the unknown functions fi(t*) and fo(7*) in terms of Chebyshev

polynomials of first kind as

fl(t*) \/1—7#‘2 ZA T2n+1 7
2 T = ——— BnT2n+1 " , 2.44
fa(7) \/m; (") (2.44)
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and use the following orthogonal relations of Chebyshev polynomials

L o1 At 0, J=0
/Tj(t)(l—tz) =)
- 7TUj 1([17*), j>0
! * * *2 * O’ n/%éTn’
/ Un(y" WUnm(y" )L —y ")2dy" =
- 2, n=m

The equations (2.41) and (2.42) are reduced to the system of linear algebraic equa-

tions in terms of unknown coefficients A,, and B,, as

2 o0 1
A (ﬂ;l) + Z Bn/ Upn(x)V1 — x*2dz”
n=>0 -1

2 > 1
Bm<ﬂ2ﬁz> + ZA”/ Uany )V 1 —y2dy’
n=>0 -1
! 1
(/ kz(y*,t*)Tan(t*)dt*) = =3P, (246)
0

where Py, = fl (p1" (")) U (2*)V/1 — x*2da,
P = [11 (02 ) Uam(y) V1 — y2dy*, 0= Cas(1+ Ao).

The stress intensity factors at the cruciform crack tips © = a and y = b are calculated

as
K= lim /2(z — a)oy(x,0) = ~05; > Anl, (2.47)
T—a
n=0
Ky = lim v/2(y = 0)0,(0,y) = =052 | Y Bu|. (2.48)
y—bt p—
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Expressions of the crack energies for both the cracks are given as

W, = —2/ oyy(x, 0)v(z, 0)dz
0

(/\1 /\2) - 1T2n+1(t*)dt* i *
T 205(1 + ) ZAn 1 /(1= /1 <p1($ )

n—

w— 2 [ bamm,y)u(o, y)dy
EEAEDNE 1+A i /1 N /<p2
T e om

The stress magnification factors (SMF) and the ratios of crack energies for both the

arms of the crack are given by

Ka Kb

Wy Wy
M — *
K; ) b

M, = — and Wy = —=
K Wi L Wy

where K and K, are respectively the stress intensity factors at x = a due to
presence of horizontal crack (b/a — 0) and at & = b due to presence of vertical crack

(b/a — o0). Wi, and Wy, are respective crack energies.

2.4 Results and Discussion

In this section the stress intensity factors K, and Kj, the crack energies W and W,
have been calculated for a cruciform crack embedded in orthotropic medium viz.,

Boron-epoxy composite whose material constants are taken as
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Figure 2.5: Plots of Wy versus b/a.

Cp1 = 30.3 x 10°psi (208.91 GPa), Cjy = 3.78 x 10°psi (26.06 GPa), Cy; = 4.04 x
10%psi (27.85 GPa), Css = 1.13 x 10°psi (7.79GPa), K = 1.6, 8,/8. = 1.6 with

pi(x) = p, pa(y) = p-

During numerical computation of M,, the horizontal crack length is fixed
as a = 1 and vary the value of b as b = 0.1(0.1)0.5. During computation of My,
the vertical crack length is kept fixed as b = 1 and varying the value of ¢ as a =
0.1(0.1)0.5. It is seen from Figure 2.2 that as b/a increases M, decreases. The
decrease of M, with the increase of b/a shows the shielding phenomenon i.e., there
is no possibility of crack propagation. It is seen from Figure 2.3 that as b/a increases
M, decreases, it is due to increase of crack length 2a and M), increases with increase of
crack length 2b which shows the amplification phenomenon i.e., there is a possibility
of crack propagation and it will be started after attaining its critical value. It is also
observed from Figure 2.2 that as b/a approaches to zero, the concerned problem
seems to be a line crack along x-axis. Therefore, the stress magnification factor M,
at the crack tip = a of the horizontal crack approaches to unity. For Figure 2.3, as
b/a approaches to large value then the model will be reduced to a line crack along

y-axis and the stress magnification factor at the crack tip x = b of the vertical crack
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approaches to unity.

Figure 2.4 and Figure 2.5 represent the variations of ratios crack energies
W/ and Wy against b/a for different particular cases. It is seen from the Figures
that W, and W decrease with the increase of b/a and W," approaches to unity as
b/a approaches to zero while W, approaches to unity for large values of b/a. This
will resist the crack tips to propagate. This means with the increase in horizontal
crack arm compared vertical crack crack arm, there is a possibility of arrest of the

crack propagation.

2.5 Conclusion

Through the present study, the author has achieved three important goals. First
one is finding the expressions of SMF for cruciform crack under thermo-mechanical
loading in an infinite orthotropic elastic medium. Second one is exhibition of the
graphical presentations of possibilities of crack arrest and also crack propagation for
various values of the cruciform crack specimen. Third one is the extraction and the
graphical presentations of crack energy for different particular cases. The author is
optimist that the proposed model will be beneficial for the researchers and engineers

working in the field of composite medium with cruciform and star shaped cracks.
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