Chapter 1

Introduction

1.1 Ancient History of Fracture Mechanics

Originally, research in the field of the fracture mechanics rarely found prior to World
War II. Cracks were thought to be a very small, not significant nuisances that
could never be a hazard to large structures like aero-ships, aircraft, aerospace and
aeroplane wings etc. Eventually, during the World War II, many ships, aerospaces
and aircrafts were failed suddenly in incomprehensible ways. Ultimately, it was
obtained that the failures were because of caused by cracks and notch in their aircraft

and aeroplane structures.

In 1950, the most famous case of crack related aircraft failure of the aviation
industry had been occurred in de Havilland DH 106 Comet of U. K. Three fatal
comet-1 were crashed one by one under a twelve months period which led to the
grounding of the entire Comet fleet. The crashes were found to be caused by crack

growth due to the square fuselage windows (Figure 1.1 [Ref. 103]). The square
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corners served as stress risers, accelerating the crack formation and growth in a

fuselage stressed under pressurization duration of the highest altitude flight.

Figure 1.1: Square corners of de Havilland Comet

One of the biggest brittle failures, also known as Titanic marine disaster
with the loss of 1,500 people, was happened on April 15, 1912 [Ref. 110]. According
to the literature review, scientists thought that the tragedy caused by long gash torn
with the ship’s hull by Atlantic’s iceberg. Although ship’s wreckage was discovered
in 1985 using undersea machines, robots, but there was no evidence found for such a
long deep slash. Meanwhile, the robots were able to return a specimen of the ship’s

steel material whose investigation has given a hike to modify explanation.

After the collision of Titanic ship with the Atlantic’s iceberg, the Titanic
breaks into two pieces due to the longitudinal force (Tensile load) after sinking
approximately 3/4-th part of it on the one side. This type of crack or fracture
is said to be Fracture Mode-I which is opening mode (Tensile load) and shown in

Figure 1.2 [Ref. 105] and Figure 1.3 [Ref. 104].

Fracture mechanics is based on the implicit form of assumption that there
exists a crack or notch in a work component. The crack is created because of man-

made mistakes like a notch, a slot, a hole, a re-entrant corner, ete.



Chapter 1. Introduction 3

After all, for practical purpose, the modern fracture mechanics was born in
1948, after the result of George Irwin (1948), who introduced remarkable parameters
like stress intensity factor and energy release rate. Thereafter, many investigators
start taking interest in fracture mechanics and it became an important topic of
discussion and research. Irwin’s derivation was basically for brittle or semi- ductile
materials. Other parameters as crack tip opening displacement derived by Wells
(1961) and J- integral derived by Rice (1968), were determined to account for the

large plastic zone at the tip of the crack for ductile materials.

Nowadays fracture mechanics is applied extensively to the important fields
viz., piping, spaceships, rockets, seaward structures, etc. Critical components in
nuclear power plants are made from very tough materials like cast iron, high carbon
steels, ceramics and some polymers; but those have failed catastrophically as well
once in a while. There are several types of failure of structures, which are shown in

the Table 1.1 [Ref. 109].

Figure 1.2: “Titanic” Marine disaster
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 GheQimes EIETEP Bigpolch
Titanic, Giant White Star Liner, Sinks After Collision
With Iceberg on Her Maiden Voyage, and 1,800 Lives
: J’\_r\c Reported LostinWorld's Greatest Marine Disaster

Figure 1.3: Titanic disaster

Table 1.1: Causes of Failures

| Failure of Structures |

| Yielding Dominant | Fracture Dominant |

e General plasticity e Highly localised plasticity
e Significant Defects are those | e Significant Defects are essen-
controlling resistance to plastic | tially microscopic, E. G.:

flow, E.G.:
-interstitials -weld flows
-grain boundaries -porosity
-precipitates -fatigue and stress
-dislocation networks -corrosion cracks

1.1.1 Mode of Fracture

Three types of linearly Independent cracking modes are used in fracture mechanics
viz., Mode-I, Mode-II and Mode-III. For Mode-I (opening mode), the cracked surface
is moving apart and acts normal to the plane of the crack. In Mode-II (sliding
mode) cracked surfaces slide to each other and parallel to the plane of the crack and
perpendicular to the crack front. Mode-I1I (tearing mode) acts parallel to the plane

of the crack and parallel to the crack front (see Figure 1.4) [Ref. 106].
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Figure 1.4: Mode of Fracture

1.1.2 Hook’s law

In 1676, the English physicist Robert Hooke’s presented a law of elasticity, known
as Hooke’s law. According to this law, for small deformations, the stress and strain
are proportional to each other. Thus, stress o< strain or stress = k X strain, where

k is the proportionality constant and is also known as modulus of elasticity.

1.1.3 Stress and Strain Curve

The relationship between stress and strain for any material under tensile loading can
be found experimentally. A standard test had been considered of tensile properties
taking a body which is stretched by an applied force. The applied force is gradually
increased whereas a change in the length of the body is shown in the Figure 1.5 [Ref.
108], which is the graphical representation of the stress and the produced strain for a
metal. The stress-strain curves vary from material to material. These curves aid us
to understand what is the relation between stress and stain for different materials.
According to the graph, we see that from region point O to point A, the curve is
linear. This region follows the Hooke’s law of elasticity if the applied force is removed

then body regain its original state. In the region, A to B, stress and strain are not
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proportional to each other. But, the body still regains its original state when force

is removed. The point B is a yield (also called elastic limit) and at this point, stress

is called yield strength (S,) of the material.

If increasing the small load after this point B the strain increases rapidly,

the portion of B to D which is shown through. At the point D even when put stress is

zero then strain never becomes zero at this point. This type of deformation is plastic

deformation and the point D is ultimate tensile strength (S,) of the material. If the

ultimate tensile strength D and fracture point E are very close then the material is

said to be brittle like glass, silica, diamond. If they are far apart then the material

is said to be ductile (steel, metal, brass). The phenomena are shown through the

Figure 1.6 [Ref. 107].
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1.2 Energy Based Theory

1.2.1 Energy Based Approach

At beginning of fracture mechanics Alan Arnold Griffith developed the energy-based
approach in the field of fracture mechanics, thereafter George Irwin modifies Grif-
fith’s energy-based approach, Nowadays researchers and scientists are using Irwin
modified energy-based approach [Ref. 88|. The energy approach is energy release
rate G which is defined as rate of change in potential energy with the crack area
for a linear elastic material. At the moment of fracture G = (., the critical energy
release rate which measures the fracture toughness. For a crack of finite crack length
2a in an infinite plate under the remote tensile load, the energy release rate is given

by

(1.1)

where F is Young’s modulus, ¢ is the remotely applied stress, and a is the half crack
length.
At fracture G = G, the above equation (1.1) obtains the critical combinations of
stress and crack size for the failure as

B ﬂa;ac

Ge=—L— (1.2)

For the constant value of G., the failure stress o; varies with 1/y/a. The energy
release rate G is the driving force for fracture, whereas GG, the material’s resistance

to fracture.
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1.2.2 Stress Concentration by Inglis (1913)

Stress concentration effect of flow by Charles Edward Inglis, who analysed elliptical
hole in flat plates. He analysed elliptic hole with 2a major axes and 2b minor axes
under applied stress perpendicular to the major axes of the ellipse. He assumed
elliptic hole which was not affected by plate boundary, i.e., the plate width much
greater than 2a and plate height much greater than 2b. The stress at the tip of the
major axis at the point A as shown in Figure 1.7 [Ref. 88| is given by

UA(7<1+2—ba). (1.3)

The ratio 04/0 is defined as stress concentration factor k,. When a = b, then the
hole is circular and in that case k; = 3.0, which a well-known result.

As major axis, a increases relatively to b, then elliptical hole becomes to a sharp
crack. For this case, C. E. Inglis found it in a more convenient way to express

equation (1.3) in terms of the radius of curvature p as
a
aAa<1+2\/%>, (1.4)

=7 (1.5)

where

When a >> b, the equation (1.4) becomes

o4 = 20\/% (1.6)

C. E. Inglis derived an approximate solution in equation (1.6) for stress concentra-

tion due to the notch except at the crack tip of the semi-infinite plate.
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Figure 1.7: Elliptic crack in infinite plate

The above approximation proves that if p — 0 then ¢4 — oo. This theory
is not reality-based because no material exists in this world which is bearable for

infinite stress or residual load without any failure.

1.2.3 Energy Release Rate

In 1920, Alan Arnold Griffith introduced energy-based approach of cracks in the
field of fracture mechanics. He was highly motivated by C. E. Inglis’s linear elastic
solution for stresses and residual load around an elliptical hole in which he found

that the stress level tends to infinity whereas the ellipse becomes flat from the crack.

Inglis’s work did not support Griffith’s energy-based approach because
there does not exist any material which supports an applied infinite stress or any
residual load without yielding and failing. Therefore, the material or structure im-
mediately gets failure under the smallest load if any crack is present (but practically

this does not happen). Further, Griffith’s energy-based approach was failed and
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after the Inglis’s infinite-stress prediction, nevertheless, there exists the direct use of

the solution of Griffith’s theory of linear elastic.

Energy release per unit area increases during crack growth is said to be

energy release rate. This formula can be deduced as follows [Ref. 63].

Consider an incremental increase in the area AA for the crack growth, an
incremental external work AW,,; is done under the external load and strain energy
within the body of the component increases by AU, the available energy is GAA,

then energy balance as given by

GAA = GAW,py — AU (1.7)

Dividing the above equation by AA and taking the limit AA — 0, we get

AU — W)

ARV R

(1.8)

the negative sign was intentionally taken out the differential term because (U — Wy )

is commonly used as a potential function 1. Therefore, the equation is written as

dIl

(1.9)

The above equation evaluates the energy release rate of a system. The energy release
rate is always positive for a crack studied for its probable growth. The dimension

and unit of energy release rate are [M7T 2], energy per unit area
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1.2.4 Crack Resistance

The energy requirement for a crack to grow per unit area extension is called crack
resistance and denoted by R. Crack resistance is required in the sum of the energies

to form two new surfaces and to cause an elastic deformation [Ref. 63].

Parameters viz., energy release rate (G) and crack resistance (R) are very
important to study the possibility of a crack becoming critical. It is obvious that
if the crack has to have a chance to grow due to load, there must be energy release
rate is greater than the crack resistance. If the energy release rate exceeds the crack
resistance, then crack acquires kinetic energy and it may grow at a faster rate than
the speed of a supersonic aeroplane.

Thus, for a crack to grow and becomes critical, there are two conditions necessary

given as follows:

G >R, (1.10)
dG _ dR
—_— > 1.11
da — da’ (L.11)

where @ is the half crack length.

1.3 Linear Elastic Fracture Mechanics

1.3.1 Stress Intensity Factor

In 1957, George Irwin, the man nowadays noticed to be the father of fracture me-
chanics had introduced Stress intensity factor. The abbreviation of stress intensity
factor is SIF and symbolized by K. It is the most useful and considerable fundamen-

tal parameter of all the fields of fracture mechanics. Basically, stress intensity factor
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is concerned with the stress state at the crack tip which is considered as the rate
of crack growth and it is used to calculate the failure criteria due to the fracture.
Irwin derived the definition of K at the vicinity of crack tip under the remote load

or residual stresses.

The stress intensity factor depends on the geometry of the problem, size and
shape of the crack, magnitude, distribution and direction of the load. Stress intensity
factor is the single parameter characterization of the crack tip of any material under
the stress field. Stress intensity factor can be determined by an integral transform

method, Finite element method and Weight function method.

~1/2

Embedded crack produces r singularity at the crack tip whereas inter-

1/24iw

facial crack produces r— singularity at the crack tip, where w is real.

In all the equations of stress and displacement, ¢ and a coexist as ov/a.

Now with several decades of research work, it is found that it is advantageous to do

so. This credit goes to George Irwin, who defined the new parameter stress intensity

factor, and used the symbol K after the name of his collaborator Kies. He defined
K as

K; = o(ma)"?. (1.12)

There is no reason to have 7 in the above definition. It was included in the expression
because of some historical reasons. However, the stress intensity factor K7y is formally
defined as

Kr = (27r)Y2099(r,0 = 0) as r — 0. (1.13)

Stress can be measured at every point of the body except at the tip of the crack of

the body.
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The stress intensity factors for Mode-I, Mode-II and Mode-III are formally

defined as [Ref. 111]

Ky =Lim,_.oV2rroy,(r,0),
K[[ :Limrﬁo\/ 271'7”0'95@/(7”, O),

K[[[ :Ll‘mrﬁo\/ 27TTUyZ(T, O)

1.3.2 Relation between SIF and Energy Release Rate

(1.14)

The strain energy release rate (G) for a crack under Mode-I loading is related to the

stress intensity factor as |[Ref. 111]

GK%<1;V>’

(1.15)

where I is the Young’s modulus and v is the Poission’s ratio of the material. the

material supposed to be an isotropic, homogeneous, and linear elastic.

For Mode-II loading, we have

1— 1
G = K}I<Ty> or G= K}I<E>,

and for pure fracture Mode-III loading, we have

1
G = K} (—)
111 2’u

where 1 is the shearing modulus.

In plane strain, the relationship between the strain energy and the stress intensity
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factors for the three modes is given as
1—v 1—v 1

1.3.3 Punch

Punch is a tool or machine for impressing a design or stamping a die on a material.
In other words, A device or machine for making holes in materials such as paper,

leather or metal.

1.4 Mathematical Methods, Terms and Definitions

1.4.1 Integral Transform and its Properties
A general integral transform is defined as fallows
b
gl = [ FOka (117

where k(a, t) is called the integral kernel of the transform.

1.4.1.1 Laplace Transform

If the kernel k(a, t) in equation (1.17) is defined as

0, for t <0,
Ko 1) = (119
e P fort>0,
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then F(p) = [;"e * f(t)dt. The function F(p) defined by the integral (1.18) is
called the Laplace transform of the function f(¢) and is also denoted by L{F(¢)} or
F(p). thus, Laplace transform is a function of a new variable (or parameter) p given
by (1.18).

The Inverse Laplace transform is given by

£t — 1{F}():i im [ et E(p)dp (1.19)

278 h—oo c—ih

where ¢ is greater than the real part of all singularities of F'(p).

1.4.2 Hilbert Transform

Let, z(t)eLP(R) be a function for 1 < p < oo, then H(z(t)) is the Hilbert transform

of z(t) given by

Hx(t)) %PV / T g

Lo (E—9)
where “PV” is the Cauchy principal value of the integral.

1.4.3 Fourier Transform and Inverse Fourier Transform

The Fourier transform of a function f(z) is

00 == [ e,

the Inverse transform is given by

f(x) ST P(€)de.

NI
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1.4.4 Dirac Delta Function

In many crack problems the boundary conditions are concerned with point load-
ing conditions with Dirac Delta function, which are usually defined through the

functional relation

/ RO — e — (). (1.20)

Laplace transformation of 6(z) gives

/OO S(x)e dr = H(t), (1.21)

where H(t) is the Heaviside unit step function and it is used to solve the problems

related to the impact loading.

1.4.5 Singular Integral Equations

When one or both limits of integration become infinite or when the kernel becomes
infinite at one or more points within the range of integration, the integral equation
is known as singular integral equation. There are two types of singular integral

equations:

e Fredholm singular Integral Equations

e Volterra singular Integral Equations
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1.4.5.1 Fredholm Singular Integral Equations

A linear singular integral equation of the form

a(z)o(x) +%/]J%dt+/14k(x,t)¢(t)dt = f(x), (1.22)

where f(x), a(x), b(x) and k(x,t) are known functions whereas ¢(z) is unknown func-
tion, is called Fredholm singular integral equation and . is contour. The function

K(z,t) is known as the kernel of the singular integral equation.

e Fredholm singular integral equation of the first kind:

A linear singular integral equation of the form (if a(x) = 0 in equation (1.22))

bix) dt+/kz 2, )(t)dt = f(x), (1.23)

m t -z
is known as Fredholm singular integral equation of the first kind.

e Fredholm singular integral equation of the second kind:

A linear singular integral equation of the form (if a(x) = 1 in equation (1.22))

)+ 2 [0y [ hw oo — s, (2

is known as Fredholm Singular integral equation of the second kind.

e Homogeneous Singular Fredholm integral equation of the second kind:

A linear integral equation of the form (if f(z) = 0 in equation (1.24))

o(x) + biw) dt+/k: (x,t)¢ (1.25)

¥ t—x

is known as Homogeneous singular Fredholm integral equation.
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1.5 Orthogonal Polynomials

The origin of orthogonal polynomial is considered from the study of continued frac-
tions by P. L. Chebyshev in 19-th century, which was later pursued by A. A. Markov
and T. J. Stieltjes. Some of the mathematicians who have worked on orthogonal
polynomials include Gabor Szegd, Sergei Bernstein, Naum Akhiezer, Arthur Erdélyi,
Yakov Geronimus, Dave Gwyn, Wolfgang Hahn, Theodore Seio Chihara, Mourad Is-
mail, Waleed Al-Salam, and Richard Askey [Ref. 112-113].

An orthogonal polynomial sequence is a family of polynomials such that
any two different polynomials in the sequence are orthogonal to each other under

some inner product.

In Mathematical form, a sequence of polynomials { P, (z)}>°, with degree
[pn ()] = n for each n is called orthogonal with respect to the weight function w(x)

on the interval (a,b) with a < b if
b
/ w(x) P () P () dx = 0y With 0y == (1.26)

The weight function should be continuous and positive on (a, b) such that
b
Cp 1= / w(x)x"dr, n=0,1,2, ...

exists. Then the integral < f, g >:= fabw(x)f(x)g(x)dx denotes an inner product of
the polynomials f and g. The interval (a,b) is called the interval of orthogonality.
If ¢, = 1 for each ne{0, 1,2, ...}, the sequence of polynomials is called orthogonal,
and if

P.(z) = k,z"™ + lower order terms with k,, = 1,
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for each ne{0, 1,2, ...}, the polynomials are called monic.

The most widely used orthogonal polynomials are the classical orthogonal
polynomials consisting of the Hermite polynomials, the Laguerre polynomials, the
Jacobi polynomials together with their special cases the Gegenbauer polynomials,

the Chebyshev polynomials, and the Legendre polynomials.

These are formulated in the Table 1.2.

1.5.1 Jacobi Polynomial and its Conditions

In mathematics, Jacobi polynomials (also called the hypergeometric polynomials)
plep) (x) are a class of classical orthogonal polynomials. They are orthogonal with
respect to the weight function (1—z)*(1+x)” on the interval [—1, 1]. The Gegenbauer
polynomials, and thus also the Legendre, Zernike and Chebyshev polynomials are
special cases of the Jacobi polynomials [Ref. 114|. The Jacobi polynomials were
introduced by Carl Gustav Jacob Jacobi . Jacobi Polynomial is defined as

(=1 . Ly dr
ST (1 — 2)°(1 + =) 5@[(1

— )™+ )], (1.27)

where o, 5 > —1 and —1 <z < 1.

There are some cases as follows

when o = 3 = 0, this implies the Lagendre Polynomial.

when o = § = %7 this implies the Chebyshev Polynomial of the first kind.

when oo = 3 = —%7 this implies the Chebyshev Polynomial of the second kind.

when o = 3, we have the Gegenbauer Polynomial.
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Table 1.2: Orthogonal Polynomials

Chapter 1. Introduction

Name | fi{z) | Interval | W(x) _ Cn
Jacobi PP [ =L (=20t o) (08> ) [ g2are Crarn s
B o1 , for n=10
Chebyshev T (x) [—1,1] (1 —x°) 1j2r. otherwise
(First kind)
Chebyshev U, () [—1,1] (1 —z*)l/2 /2
(Second kind)
Legendre P.(x) [—1,1] 1 2/(2n+1)
Laguerre Ln(x) 10, 00) e 1
Hermite H,(z) | (—o0,00) e /72"
. . 2wl (n+2a) for a=0
Gegenbauer Polynomial | CV(z) [—1,1] (1 —zhH)o s nin+a)(I{e))*? ’
2 /n?, for a=0
Generalized Laguerre L (2) 10, 00) zhe™® ?M\%
Polynomial 4
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The Jacobi polynomial satisfies the orthogonality conditions

1 8 p(of) (0.5) 2a+5+1
1 —2)*(1+x)” Py (x) Py (x)de =
/1( )" (1 +2) (=) () 2n+a+p+1

'n+ta+l)(n+p+1)
n+a+p+1)n!

Opm, 05 > —1.

Symmetry Relation:

P (=z) = (-1 PP (z),
R0 = (0m(),
Differential equation:

The Jacobi polynomial Pl is a solution of the second order linear homogeneous

differential equation|[1]
(1—2)y' +(B—a—(a+B+2a)y +nntat+1ly=0. (1.28)

Recurrence relation: the recurrence relation for the Jacobi polynomial of fixed

o, (3 is

mnt+at+Bntatf—2)PP2)=2nt+at+f—1)
{@n+a+B)2n+a+p—2)z+0’ =P () —2(n+a—1)

(n+ 5 —-12n+a+ BP(2), (1.29)

forn=2,3, ...
Generating function: The generating function of the Jacobi polynomial is given

by

D OBt =22 PR (1 —t+ Ry (1 +t+R)”,

n=0

where R = R(z,t) = (1 — 22t + t*)1/2,
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1.5.2 Chebyshev Polynomial and its Conditions

These polynomials are also used in the theory of approximation of functions. Cheby-
shev polynomials 7;,(z) of the first kind of degree n over the interval [—1, 1] is defined

by the relation [Ref. 115

T, = cos (n cos™ ! x) = cosnf, where x = cos?.

From this, we have

To(x) =cos0” =1 and Ti(z) = cosf = x

Recurrence relation: 7,,.,(x) = 227, (x) — T,,_1(x) is satisfied by Chebyshev
polynomials.

Properties of Chebyshev Polynomial 7,,(z):
o 1. (—x) = (—1)"(x), which is shows that 7, (z) is an odd function of x if n is
odd and even unction of x if n is even.

e T,.(x) has n simple zeros.

xx = cos[{(2A — 1)/2n}x|, A = 1,2,3,...,n on the interval [—1,1].
o |T.(z)|< 1, we|—1,1].

e 7, (x) assumes extreme values at (n + 1) points

T = cos(nm/n),m =0,1,2, .., n;

m

and the extreme value at x,, is (—1)™.
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0, if m+£n
o [ Tn@)Tu@)de =S 7/2, ifm=n=0

, ifm=n=20,

which can be proved easily by putting x = cosé.
Also T,(x) is orthogonal on the interval [—1,1] with respect to the weight

function w(z) = (1 — 2?) /2

e Minimax property of T, (z): Of all monic polynomials P,(x) of degree n, the
polynomial 2'~"T,,(z) has the smallest least upper bound for the absolute value
in the range —1 < x < 1. Since T,(x) < 1, the upper bound refered to above

is 217,

1.6 Literature Review

Noda and Jin (1993) have considered a crack problem in an infinite non-homogeneous
elastic solid material under the steady state heat flux for the crack surface in which
the authors found expressions of stress intensity factors for Mode-1 and they found
the effect of nonhomogeneities of materials on the Stress intensity factors (SIFs) by
using Fourier transform method. Jin and Paulino (2001) have studied an edge crack
under the transient thermal loading in the functionally graded material, in which
authors used Young’s modulus, Poisson’s ratio, considering the thermal properties
of the material vary along the direction of the thickness of strip and found thermal
stress intensity factors for TiC/SiC FGM with different volume fraction profiles of
the constituent materials solved with Laplace transform and an asymptotic analysis.
Hongmin et al. (2008) have obtained dynamic stress intensity factors for Mode-I

and Mode-II under the uniform impact loading at the tip of the semi- infinite cracks



Chapter 1. Introduction 24

in an infinite functionally graded orthotropic material using Laplace and Fourier
transforms with the aid of Winner—Hopf technique. Sladek and Sladek (1997) have
found T-stresses and stress intensity factors in two-dimensional stationary thermo
elastic medium using conservation integral method and stress intensity factors are
calculated using the path independent J-integral technique. Movchan and Jones
(2006) have studied analytical expressions and numerical computations of a model
problem for the thermo-elastic half space, which contains a surface breaking crack
(crack surface is free from traction) under the oscillatory thermal loading in which
the authors have found the amplitude as a function of the stress intensity factor at

the crack vertex.

Gaikwad and Ghadle (2011) have considered a thick rectangular plate un-
der an internal heat and found displacement and thermal stresses, in which the
boundary surfaces are kept at zero temperature. The governing heat conduction
equation have been solved by using integral transform method. Sih et al. (1962)
have studied stress intensity factors for plane extension and plate bending and calcu-
lated the strengthens of stress singularities using the complex variable method. The
problem considered with fractal geometry having many finite elements are created
around the crack surface which are solved with the help of finite element method.
The authors have found SIFs for Mode-I and Mode-I1I for thin plate under the loads
like bending, twisting and shear loads (see Su and Sun (2002)). Xia and Hutchinson
(2000) have studied a two-dimensional problem in thin film bonded to the elastic
medium in which the authors have found the crack propagation path in this thin
film. Ding and Liu (2018) have solved the multi-layered problem with Griffith crack
under the energy flux loading in which they have found heat conduction analysis in
the strip of thermo-electric material and found the effects of electric flux intensity

factor and the thermal flux intensity factor on the width strip.



Chapter 1. Introduction 25

Jin (2011) has studied transient of heat conduction at edge crack in a
functionally graded material plate under the gradual heating and cooling on its
boundaries in which author found thermal stress intensity factor at the edge crack in
the functionally graded plate with the asymptotic temperature. Nabavi and Shahani
(2009) have obtained thermal stress intensity factors at the depth and surface points
of semi-elliptical crack in a solid cylinder under thermal shock loading with the aid
of weight function. Fdelinski et al. (1994) have solved stationary cracks in a linear
elastic material with the aid of dual boundary element method and dual reciprocity
approach. The problem considered for a Griffith crack in thermal electric material
strip (TEM) under energy flux load had been solved by Ding and Liu (2018). Cai
and Chen (2007) have determined the dynamic stress intensity factors of the Griffith
crack at the interface of viscoelastic layer bonded to an infinite elastic body under the
shearing load and the problem was solved with the aid of integral transform method.
Song and Paulino (2006) have solved the dynamic stress intensity factor of a cracked
solid body for homogeneous and heterogeneous materials using the integral method
and the finite element method. Smith et al. (1967) have obtained an expression of a
penny-shaped crack in an infinite elastic solid under the non-axisymmetric normal
loading in which the authors have done numerical computation of a crack in a penny-
shaped in an infinite or finite solid plane material under the symmetric loading.
Ognjanovic et al. (2013) have considered a circular crack with respect to radial
crack in a thin plate under the thermal loading in which SIFs have been found with
the aid of finite element method and other approaches like J- integral approach and
the displacement method. Meyer and Schmauder (1992) have determined thermal
stress intensity factors for a shearing mode of the interface cracks under the applied
loads in composite materials. Itou (2014) has considered two collinear cracks parallel
to one central crack situated in an infinite in a orthotropic composite media under

the uniform heat flux in which stress intensity factors at the tips of the cracks have
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been found by using the Fourier transform technique.

Liu and Kardomateas (2005) have studied a line crack problem in anisotropic
thermo-elastic half plane under the uniform heat flux in which stress intensity fac-
tors for Mode-I, Mode-IT and Mode-III are found. The problem concerned with the
methodology for finding the interface crack propagation isotropic and anisotropic
materials had been studied by Banks-Sills (2015) in which the author has found the
interfacial energy release rate at the different fractured confidence interval. Basically,
this article is regarding the literature survey of other authors” articles. Agarawal and
Kartson (2007) have investigated properties for interfacial crack within the frame-
work of linear elastic fracture mechanics including interfacial fracture toughness,
mode mixity, and the associated reference length, in which the expression of mode
mixity with respect to crack tip in bimaterial system has been deduced. The prob-
lem associated with a two-dimensional analysis of the stress field around a crack
on the plane interface between two bonded dissimilar anisotropic elastic half-spaces
had been studied by Willis (1971). Shuicheng et al. (2008) have studied the stress
intensity factors of specimen per unit load with different combinations of K; and
K3 with the help of the mixed hybrid finite element method, in which the authors

have considered a single edge crack in the different fracture Modes.

Cui et al. (2017) have considered one horizontal straight and slanted cracks
under the uniaxial tension in which stress intensity factor has been calculated with
the aid of contour integral method at infinity. Singh et al. (2018) have found thermal
stress intensity factors at the edge crack of an orthotropic composite media under
the thermo-mechanical loading in which authors obtained the analytical expressions
of SIF for concentrated point loading. The problem concerned as 3D planar cracks
and Semi-elliptical cracks in functionally graded and homogeneous materials under

several thermal- mechanical loadings had been solved by Memari et al. (2019) in
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which stress intensity factors have been found using co-ordinate transform method
with the aid of linear weight function. Huanga et al. (2018) have found the stress
intensity factors and T- stress at the crack tip along the circumference of the circular
core under the static and transient dynamic loads, which have been solved by using

the Laplace transformation method and the Durbin’s inversion method.

Lenwari and Ma (2019) have found stress intensity factor for a two-tips
web crack in wide-flange steel member under the linear distributive loading. The
problem concerned with the V- notch have been solved by Yao et al. (2018) with the
help of finite element method using the asymptotic expansion technique. Yue et al.
(2017) have found the static stress intensity factors for a cracked orthotropic strip
bonded to functionally graded material under the static and dynamic loads with the
help of the finite element method. The problem concerned with crack propagation in
the human’s bone have been solved by Craciun et al. (2018). Sadowski et al. (2017)
have used the multi-scale approach during the solution of a non-linear and complex
two-phase ceramics under the uniaxial compression deformation. Wu et al. (2018)
have obtained stress intensity factor and crack opening displacement solutions under

the different loads.
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