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In the present scientific work, an operational matrix scheme with Laguerre poly-
nomials is applied to solve a space-time fractional order non-linear Cahn-Hil-
liard equation, which is used to calculate chemical potential and free energy for a 
non-homogeneous mixture. Constructing operational matrix for fractional differ-
entiation, the collocation method is applied to convert Cahn-Hilliard equation into 
an algebraic system of equations, which have been solved using Newton method. 
The prominent features of the manuscript is to providing the stability analysis of 
the proposed scheme and the pictorial presentations of numerical solution of the 
concerned equation for different particular cases and showcasing of the effect of 
advection and reaction terms on the nature of solute concentration of the consid-
ered mathematical model for different particular cases.
Key words: fractional calculus, Cahn-Hilliard еquation, Laguerre polynomials, 

porous мedia, convergence аnalysis

Introduction

Some numerical methods based upon Laplace transform [1] and operational matrices 
of fractional differentiation and integration with B-spline [2], Legendre wavelets [3], etc. have 
been developed for finding the numerical solutions of fractional order differential equations. 
The functions which are commonly used include Legendre polynomial [4], Laguerre poly-
nomial [5], etc. Bhrawy et al. [6] proposed a suitable way with the help of shifted Legendre 
approximation using tau method to find the approximate numerical solution of given fractional 
differential equation (FDE) with variable coefficient approximating the weighted inner product 
in tau method with the use of the shifted-Gauss-Lobatto quadrature formula. In [7], the authors 
have proposed spectral tau approach for obtaining the solution of some given FDE numerically. 
Pedas [8] have developed a suitable spline collocation method to solve FDE. For finding the 
spectral solution for a special collection of fractional order initial value problem, a direct tech-
nique was introduced by Esmaeili et al. [9] with the help of pseudo-spectral method. Moreover, 
for finding the solution of fractional order differential equation, a technique on computational 
process which depends on the Muntz polynomials and collocation was presented by Esmaeili 
et al. [10]. In the present work, the basic idea of algorithms is something linked to the ideas 
used by Bhrawy et al. [6] in developing the accurate algorithms for several purposes. During 
finding the solution of linear FPDE, the authors in [11] have developed an operational matrix 
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of Laguerre polynomials for fractional order integration and modified the generalized Laguerre 
polynomial on semi-infinite intervals. 

If ground-water is contaminated overall, then the rehabilitation is deemed to be too 
difficult and expensive. Careful recognition is very much necessary for recount the problem 
dominion, boundary conditions and model parameters for creating the numerical groundwater 
model of field problem. Solute transport through the groundwater is topic encountered in the 
interdisciplinary branch of science and engineering, called hydrology. The following equation 
represent solute transport in aquifiers:

2

2

( , ) =u x t u ud v
t xx

∂ ∂ ∂
−
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(1)

where u(x, t) is solute concentration, v > 0, represents the advection coefficient and d represents 
dispersion coefficient. The aforementioned equation is also called advection dispersion equa-
tion. This equation also describes probability density function for location of particles in a 
continuum. The equation can be used in the groundwater hydrology in which the transport of 
the passive tracers is carried by the flow of the fluid in the porous media.

The general solute transport model is the reaction-advection-dispersion equation 
(RADE) since it has the combined effects of advection, dispersion and reaction process due 
to which solutes are transported down with the stream along the flow also get dispersed and 
sometimes react with the medium through which it moves. Mathematically it is represented:	

= ( ) ( )u d u vu R
t

∂
∇ ∇ −∇ +

∂
(2)

where R is the reaction term for the species.
The first term on the right-hand side of the eq. (2) is accounting for dispersion phe-

nomena, the second term accounting for the advection process and the last one is the reaction 
kinetics. When the solute does not react with the medium through which it moves and does not 
show any type of radioactive decay then it is called conservative system otherwise non-conser-
vative for which reaction term has been encountered in the previous model. If only diffusion 
process is responsible for the movement of solute, then it is known as diffusion equation.

Elementary tools 
Definition: The fractional order derivative operator Dα of the given order α > 0 in the 

Caputo form is discussed [12]:
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Proposed Cahn-Hilliard model 

Due to the property of diverse phenomena of the equation of continuity and Fick’s 
first law in phase transition and its application in soft matter to complex areas the scientiests 
are applying the equation in Navier-Stokes equation of fluid-flow [13, 14]. This has motivated 
the authors to study the physical behaviour of the model (4) in fractional order system, which 
being non-morkovian in nature will generate Brownion motion and will have long term mem-
ory. Thus the non-local fractional order C-H equation for system with the presence of reaction 
and advection terms:
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where 0 ≤ x ≤ 1, 0 ≤ α ≤ 1, and 0 ≤ t ≤ 1, with boundary conditions u(x, 0) = (–x + 1)x,  
u(1, t) = 0, u(0, t) = 0. In the aforementioned expressions, D is the diffusion coefficient,  
v – the advection coefficient, and k – the reaction coefficient.

Basic properties of Laguerre polynomials 

Consider an interval T and corrosponding weight function as z(x) = e–x in usual way. 
Further, Construct a set L2

z(T) = {R|R is a measurable function on T and PRPz < ∞} and equipped 
it with the considered operation of inner product and its norm:

1/2( , ) = ( ) ( ) ( ) , PSP ( , )z z z
T

R S R x S x z x dx R S=∫
Moreover, the Laguerre polynomials of degree q is defined and denoted:

1( ) = e ( e ), = 0,1,...;
!

x q q x
q xL x x q

q
−∂ (5)

Further, analytical outlines of the nth degree Laguerre polynomials the semi-half in-
terval T = (0, ∞):
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From eq. (6), we can be found a special term in the following manner, which can be 
of used further:
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where α is a natural number. 

Laguerre operational matrix for fractional differentiation 

Consider R(x) ∈ L2
z(T) and expressed it in the terms of famous Laguerre polynomials:
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 In customary, we use mainly the initial (N + 1)-terms of Laguerre polynomials:
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The coefficient of Laguerre vector C and the mentioned Laguerre vector in the afore-
mentioned equation:

0 1 0 1= [ , ,....., ], ( ) = [ ( ), ( ),....., ( )]T T
N NC c c c S x L x L x L x (10)

Similarly, any arbitrary function u(x, t) from L2
z(T) × L2

z(T) of two variables can be 
approximated in the form of Laguerre polynomials:
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where V = [uim] and uim = {Ll(x), [u(x, t), Lm(t)]}. Now, the derivative of the Laguerre vector S(x) 
can be written:

(1)d ( ) = ( )
d
S x G S x

x (12)

In eq. (12) G(1) is an operational matrix of Laguerre polynomials of (N + 1) × (N + 1) 
order for the derivative. Further, by the use of eq. (12):

(1)d ( ) = ( )
d

n n

n

S x G S x
x

   (13)

where n is a natural value and the superscript in G(1) denotes the powers of matrix. Thus  
G(m) = [G(1)]m, m = 1, 2...;

Lemma 1. Suppose that Lm(x) be the Laguerre polynomial of order m:

( ) = 0, = 0,1,..., 1, > 0mG L x mα α α  − (14)

where ⌈α⌉ be the ceiling function. We are going to generalize the operational matrix for fraction-
al order differentian in view of eq. (12) in the following theorems. 

Theorem 1. Suppose that S(x) be the Laguerre vector which is given in eq. (10) and  
α > 0:

( )( ) = ( )G S x G S xα α (15)
where G(α) is the operational matrix of (N + 1) × (N + 1) order for differentiation of order α in the 
Caputo definition:	
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In previous expression, it is observed that in G(α), the initial ⌈α⌉ rows vanishes [15]. 

Application of proposed scheme on concerned model

 In this whole section of the manuscript, our primary motive is to provide the collo-
cation scheme in an atttractive way, using operational matrix of Laguerre polynomials, such 
that propsed scheme can be applied effectively to find the solution of our considered problem. 
Further, we can approximate u(x, t) in form of Laguerre polynomials:

=0 =0
( , ) = ( ) ( )

N N
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a b
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where cab is unknowns which will be calculated latter. The eq. (18):
( , ) = ( ). . ( )Tu x t R x C R t (19)

where C = [cab] is (N + 1) × (N + 1) order matrix of unknown coefficients which is calculated 
later and R(t) = [L0(t), L1(t)...LN(t)]T is a column vector. Now, taking the fractional derivatives of 
order β with respect to x on previous equation and applying Theorem 1:

= ( , ) = ( ). . ( )Tu G u x t G R x C R t
x

β
β β

β

∂
∂

(20)

Similarly:
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t

α
α α

α

∂
∂
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Thus the boundary conditions can also be written as RT(x).C.R(0) = x(1 – x),  
RT(1).C.R(t) = 0, RT(0).C.R(t) = 0. Now collocating eq. (4) using the aforementioned trans-
formed boundary conditions at points xp = p/N for p = 0, 1, 2,..., N and tp = p/N for p = 0, 1, 
2,...,N. Thus using the previous collcoations, we find a system of non-linear algebraic equa-
tions. On solving this algebraic systems, we get the matrix C, and numerical solution can be 
calculated by substituting C in eq. (19). 

Convergence analysis 

 The notable attention given here is to calculate upper bound of the error occurs in the 
proposed approximation. 

Theorem 2. For generalized Laguerre polynomial L(ω)
h (t), the global uniform bounds 

is estimated:
/ 2
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where (f)h : = f (f + 1)(f + 2)...(f + h – 1), h = 1, 2, 3...
Proof. Szego provided these global uniform bounds in [16], also these estimates were 

discussed in [17].
Remark. The ordinary Laguerre polynomial is a particular case of the generalized 

Laguerre polynomial, and can be found by using ω = 0, i. e.:
(0) ( ) ( )hhL t L t= (23)

Thus the global uniform bounds (22), for the Laguerre polynomial takes the form:
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Theorem 3. Let u(x, t) be the sufficiently smooth function on the region P, (∂αu/∂tα)N be the 
approximation of (∂αu/∂tα). Then the error in approximating (∂αu/∂tα) by (∂αu/∂tα)N is bounded:
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Proof. In the sight of eq. (18):
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truncating it upto (N + 1) term:
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 Now, the partial derivative of u(x, t) and uN(x, t) of order α w.r.t. t:
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from the previous equation, we can write:	
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Using derivative of Laguerre polynomials, previous equation reduces:
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Applying eq. (24):
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Which is the required proof. 

Error analysis of proposed scheme 

In this section of the article, we will apply Laguerre polynomial operational matrix 
method for the fractional order differentiation solve fractional order 1-D non-linear PDE to il-
lustrate the accuracy and applicability of the proposed scheme and compared the obtained result 
with the exact solution of the given example. 

Example. The 1-D non-linear PDE:
2

2= (1 )u u u u
t x

∂ ∂
+ −
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(34)

with the initial and boundary conditions as:
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has the exact solution as

	  

2
1 1 5( , ) = 1 tanh
4 2 6 6

tu x t x
    − −   

    

The absolute error between solutions is depict-
ed through fig. 1.

Results and discussion

The variations of the solute concentra-
tion u(x, t) vs. the column length x at t = 1 for 
various values of the fractional order time 
parameter for conservative case (k = 0) and 
non-conservative case (k ≠ 0) in the absence/
presence of the advection term are found nu-
merically taking γ = 1 and the obtained results 
are displayed through figs. 2-5. 
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Figure 2. Plots of field variable u(x, t) vs. x at t = 1 
for k = 0, v = 0 and different values of α 

Figure 3. Plots of field variable u(x, t) vs. x at t = 1 
for k = –1,v = 0 and different values of α
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Figure 4. Plots of field variable u(x, t) vs. x at t = 1 
for k = 0, v = –1 and different values of α 

Figure 5. Plots of field variable u(x, t) vs. x at t = 1 
for k = –1, v = –1 and different values of α

The effect of reaction term on the solution profile during the absences of advection 
term for different values of the fractional order time derivative and also those during the pres-
ence of advection term can be found by comparing the numerical results shown in fig. 3 with 
figs. 2 and 5 with fig. 4, respectively. It is seen that the overshoots of sub-diffusion are decreased 
as the system approaches from standard order to fractional order. It is also seen from the figures 
that damping are found in both cases due to the presence of sink term. Again the overshoots 
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Figure 1. Plots of the absolute error between the 
numerical and exact solutions vs. x and t
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of the probability density function u(x, t) increases due to the presence of advection term. It is 
also seen that as γ decreases the overshoots of sub-diffusion increases for various α. This can be 
physically interpreted as the concentration increases with the increase decrease of the separa-
tion of the transition regions between the domains. 

Conclusion

The present scientific contribution has achieved three important goals. First one is 
finding the numerical solution of the solute concentration u(x, t) of famous Cahn-Hilliard equa-
tion of integer order as well as fractional order by the use of powerful and efficient technique 
Laguerre operational matrix. Second one is the pictorial conferrals of the nature of overshoots 
during sub-diffusion due to existence of advection and reaction terms. The third one is the picto-
rial conferrals of the damping nature of the solute concentration when the system go close from 
standard order to fractional order in the presence of sink term. 
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