Acknowledgement

Table of Contents

List of Figures

List of Tables

Nomenclature

Preface

CHAPTER 1	INTRODUCTION	1-8
CHAPTER 2	LITERATURE REVIEW AND OBJECTIVES	9-36
	2.1 Literature Review	9
	2.1.1 Raw Materials	9
	2.1.1.1 Feedstock waste plastics	9
	2.1.1.2 Catalyst Material	13
	2.1.2 Catalyst characterization	17
	2.1.3 Pyrolysis product characterizations	18
	2.1.4 Reactor type/design	19
	2.1.5 Types of chemical process involved	21
	2.1.5.1 Pyrolysis process	21
	2.1.5.1.1 Thermal pyrolysis	22
	2.1.5.1.2 Catalytic pyrolysis	23
	2.1.5.2 Pyrolysis with Aromatization	25
	2.1.6 Reaction mechanism of plastic degradation	25
	2.1.6.1 Reaction mechanism	27
	2.1.6.1.1 Initiation	27

	2.1.6.1.2 Formation of secondary unstable	28
	compounds	28
	2.1.6.1.3 Termination with recombination or	29
	disproportionation	
	2.1.7 Pyrolysis for BTEX production	30
	2.1.7.1 Product yield for thermal pyrolysis	30
	2.1.7.2 Product yield for catalytic pyrolysis	33
	2.2 Objectives	35
CHAPTER 3	EXPERIMENTAL	37-50
	3.1 Material	37
	3.2 Experimental set-up	39
	3.3 Method	41
	3.3.1 Feed preparation	41
	3.3.2 Catalyst synthesis from fly ash	42
	3.3.3 Catalyst characterization	43
	3.3.3.1 Fourier-transform infrared spectroscopy	43
	3.3.3.2 Brunauer-Emmett-Teller (BET)	43
	3.3.3 Scanning Electron Microscope/Energy	44
	dispersive X-ray spectroscopy (SEM-EDX)	
	3.3.4 BTEX production using pyrolysis of waste plastics	44
	3.3.5 Catalyst regeneration	45
	3.4 Pyrolysis product analysis	46
	3.4.1 FTIR of the pyrolysis oil	46
	3.4.2 Gas chromatography (GC) analysis	46
	3.4.3 BTEX evaluation of the pyrolysis oil	47
	3.4.4 ASTM distillation	48
	3.4.5 Flash and Fire Point	48
	3.4.6 Carbon Residue	49

3.4.7 American Petroleum Institute (API) Gravity	49
3.4.8 Gross Calorific Value (GCV)	50
CHAPTER 4 RESULT AND DISCUSSION	51-150
4.1 Thermal Pyrolysis of Waste Plastics: Phase I	51
4.1.1 Effect of parameters on pyrolysis yield	52
4.1.1.1 Effect of reaction time	52
4.1.1.2 Effect of reaction temperature	53
4.1.2 Characterization of pyrolysis oil	58
4.1.2.1 Gas chromatography (GC) of pyrolysis oil	58
4.1.2.2 ASTM Distillation of pyrolysis oil	61
4.1.2.3 FTIR analysis	64
4.1.2.4 Physicochemical properties of pyrolysis oil	66
4.2 Catalytic Pyrolysis of Waste Plastics: Phase II	68
4.2.1 Pyrolysis of waste plastics on ZSM-5 catalyst	68
4.2.1.1 Effect of parameters on pyrolysis yield	68
4.2.1.1.1 Effect of feed to catalyst ratio	68
4.2.1.1.2 Effect of reaction time	70
4.2.1.1.3 Effect of reaction temperature	72
4.2.1.1.3.1 Polyethylene as feed	72
4.2.1.1.3.2 Polypropylene as feed	78
4.2.1.1.3.3 Polystyrene as feed	83
4.2.1.2 Characterization of pyrolysis oil	87
4.2.1.2.1 Gas chromatography (GC) analysis of pyrolysis oil	87
4.2.1.2.2 ASTM Distillation of pyrolysis oil	90
4.2.1.2.3 FTIR Analysis of pyrolysis oil	93
4.2.1.2.4 Physicochemical properties of pyrolysis	96
4.2.2 Pyrolysis of Waste Plastics on Fly ash Derived	99

4.2.2.1 Characterization of fly ash derived catalyst	99
4.2.2.1.1 SEM-EDX Analysis	99
4.2.2.1.2 BET surface area analysis	103
4.2.2.1.3 FTIR Analysis	103
4.2.2.2 Effect of parameters on pyrolysis yield	106
4.2.2.2.1 Effect of feed to catalyst ratio	106
4.2.2.2.2 Effect of reaction time	108
4.2.2.2.3 Effect of calcination temperature	110
4.2.2.2.4 Effect of reaction temperature	114
4.2.2.2.4.1 Polyethylene as feed	115
4.2.2.2.4.2 Polypropylene as feed	119
4.2.2.2.4.3 Polystyrene as feed	123
4.2.2.3 Characterization of pyrolysis oil	126
4.2.2.3.1 Gas chromatography (GC) analysis of pyrolysis oil	126
4.2.2.3.2 ASTM Distillation of pyrolysis oil	129
4.2.2.3.3 FTIR Analysis of pyrolysis oil	132
4.2.1.2.4 Physicochemical properties of pyrolysis	135
4.2.3 Catalyst regeneration for pyrolysis process	137
4.2.3.1 Regenerated catalyst ZSM-5	138
4.2.3.1.1 Characterization of regenerated catalyst ZSM-5	138
4.2.3.1.1.1 SEM Analysis	138
4.2.3.1.1.2 BET Analysis	139
4.2.3.1.2 Product yield on regenerated catalyst ZSM-5	140
4.2.3.1 Regenerated fly ash synthesized catalyst FA-	142
4.2.3.1.1 Characterization of regenerated catalyst FA-800	142

142
144
145
147
151-156
151
152
153
154
157-180
181-208
181
182
184
187
190
193
196
201
207

=

Figure 1.1	Plastic generation and recovery	3
Figure 3.1	Pentasil unit of commercial ZSM-5 catalyst	38
Figure 3.2	Schematic of experimental set-up	40
Figure 3.3	Reactor set-up (a) Pure thermal pyrolysis, (b) A-catalyst in	40
	vapor phase, (c) B-catalyst in liquid phase and (d) C-catalyst in	
	both liquid and vapor phase	
Figure 3.4	Catalyst bed (a) top view (b) side view	41
Figure 3.5	Pictorial view of feed materials (a) polyethylene, (b)	41
	polypropylene and (c) polystyrene	
Figure 3.6	Block diagram of synthesis method of catalyst from fly ash	42
Figure 3.7	Pictorial view of fresh, used and regenerated ZSM-5 catalyst	46
Figure 3.8	Pictorial view of fresh, used and regenerated FA-800 catalyst	46
Figure 3.9	Calibration characteristics for benzene, toluene, ethyl benzene	47
	and xylene	
Figure 4.1a	Time vs. percentage conversion of liquid and solid residue for	52
	thermal pyrolysis of polyethylene at the temperature of 700 $^{\circ}$ C	
Figure 4.1b	Time vs. percentage conversion of liquid and solid residue for	53
	thermal pyrolysis of polypropylene at the temperature of 700 $^{\circ}$ C	
Figure 4.1c	Time vs. percentage conversion of liquid and solid residue for	53
	thermal pyrolysis of polystyrene at the temperature of 700 $^{\circ}$ C	

xiii

- Figure 4.2aTemperature vs. % yield of pyrolysis product obtained from55thermal pyrolysis of polyethylene
- **Figure 4.2b** Temperature vs. % yield of pyrolysis product obtained from 56 thermal pyrolysis of polypropylene
- Figure 4.2cTemperature vs. % yield of pyrolysis product obtained from56thermal pyrolysis of polystyrene
- Figure 4.3aGC-FID of pyrolysis oil obtained at a temperature 700 °C for60polyethylene, kerosene oil and diesel oil
- **Figure 4.3b** GC-FID of pyrolysis oil obtained at a temperature 700 °C for 60 polypropylene, kerosene oil and diesel oil
- **Figure 4.3c** GC-FID of pyrolysis oil obtained at a temperature 700 °C for 61 polystyrene, kerosene oil and diesel oil
- Figure 4.4a Volume percent vaporized vs. ASTM temperature 63 characteristics of standard fuel and pyrolysis oil obtained from polyethylene
- Figure 4.4b Volume percent vaporized vs. ASTM temperature 63 characteristics of standard fuel and pyrolysis oil obtained from polypropylene
- Figure 4.4c Volume percent vaporized vs. ASTM temperature 64 characteristics of standard fuel and pyrolysis oil obtained from polystyrene

- **Figure 4.5** FT-IR spectrometry of liquid fuel obtained at optimized 65 condition (700 °C) by thermal pyrolysis of waste polyethylene, polypropylene and polystyrene
- Figure 4.6aComparison of liquid yield, gaseous yield and solid residue at69700 °C for A-type (Vapor phase) arrangement using ZSM-5 for50 g of polyethylene
- Figure 4.6b Comparison of liquid yield, gaseous yield and solid residue at 70 700 °C for A-type (Vapor phase) arrangement using ZSM-5 for 50 g of polypropylene
- Figure 4.6cComparison of liquid yield, gaseous yield and solid residue at70700 °C for A-type (Vapor phase) arrangement using ZSM-5 for50 g of polystyrene
- **Figure 4.7a** Time vs. percentage conversion of liquid and solid residue for 71 catalytic pyrolysis of polyethylene using ZSM-5 catalyst at the temperature of 700 °C in A-type reactor arrangement (Vapor phase).
- **Figure 4.7b** Time vs. percentage conversion of liquid and solid residue for 71 catalytic pyrolysis of polypropylene using ZSM-5 catalyst at the temperature of 700 °C in A-type reactor arrangement (Vapor phase).
- Figure 4.7cTime vs. percentage conversion of liquid and solid residue for72catalytic pyrolysis of polystyrene using ZSM-5 catalyst at the

temperature of 700 °C in A-type reactor arrangement (Vapor phase).

- **Figure 4.8a** Temperature vs. % liquid yield obtained from the catalytic 73 pyrolysis of polyethylene using A-type, B-type and C-type reactor arrangements
- **Figure 4.8b** Temperature vs. % gas yield obtained from the catalytic 74 pyrolysis of polyethylene using A-type, B-type and C-type reactor arrangements
- **Figure 4.8c** Temperature vs. % solid residue obtained from the catalytic 74 pyrolysis of polyethylene using A-type, B-type and C-type reactor arrangements
- Figure 4.9Comparison between liquid, gaseous and solid residue obtained75at optimum temperature of 700 °C for polyethylene

Figure 4.10Reaction scheme of aromatization78

- **Figure 4.11a** Temperature vs. % liquid yield obtained from the catalytic 79 pyrolysis of polypropylene using A-type, B-type and C-type reactor arrangements
- **Figure 4.11b** Temperature vs. % gas yield obtained from the catalytic 80 pyrolysis of polypropylene using A-type, B-type and C-type reactor arrangements
- **Figure 4.11c** Temperature vs. % solid residue obtained from the catalytic 80 pyrolysis of polypropylene using A-type, B-type and C-type reactor arrangements

xvi

- Figure 4.12Comparison between liquid, gaseous and solid residue obtained81at optimum temperature of 700 °C for polypropylene
- **Figure 4.13a** Temperature vs. % liquid yield obtained from the catalytic 84 pyrolysis of polystyrene using A-type, B-type and C-type reactor arrangements
- **Figure 4.13b** Temperature vs. % gas yield obtained from the catalytic 85 pyrolysis of polystyrene using A-type, B-type and C-type reactor arrangements
- **Figure 4.13c** Temperature vs. % solid residue obtained from the catalytic 85 pyrolysis of polystyrene using A-type, B-type and C-type reactor arrangements
- Figure 4.14Comparison between liquid, gaseous and solid residue obtained86at optimum temperature of 700 °C for polystyrene
- Figure 4.15a Gas chromatography characteristic of kerosene oil 88 (commercial), diesel oil (commercial) and pyrolysis oil obtained from the catalytic pyrolysis of polyethylene at a temperature of 700 °C for A-type (vapor phase), B-type (liquid phase) and C-type (both liquid and vapor phase) reactor arrangements.
- Figure 4.15b Gas chromatography characteristic of kerosene oil 89 (commercial), diesel oil (commercial) and pyrolysis oil obtained from the catalytic pyrolysis of polypropylene at a temperature of 700 °C for A-type (vapor phase), B-type (liquid phase) and C-type (both liquid and vapor phase) reactor arrangements.

- Figure 4.15c Gas chromatography characteristic of kerosene oil 90 (commercial), diesel oil (commercial) and pyrolysis oil obtained from the catalytic pyrolysis of polystyrene at a temperature of 700 °C for A-type (vapor phase), B-type (liquid phase) and C-type (both liquid and vapor phase) reactor arrangements.
- Figure 4.16a Volume percent vaporized vs. ASTM temperature 92 characteristics of standard fuel and pyrolysis oil obtained from polyethylene
- Figure 4.16b Volume percent vaporized vs. ASTM temperature 92 characteristics of standard fuel and pyrolysis oil obtained from polypropylene
- Figure 4.16c Volume percent vaporized vs. ASTM temperature 93 characteristics of standard fuel and pyrolysis oil obtained from polystyrene
- **Figure 4.17a** FT-IR spectrometry of liquid fuel obtained at optimized 94 condition (700 °C) by catalytic pyrolysis of waste polyethylene for A-type, B-type and C-type reactor arrangements
- Figure 4.17b FT-IR spectrometry of liquid fuel obtained at optimized 95 condition (700 °C) by catalytic pyrolysis of waste polypropylene for A-type, B-type and C-type reactor arrangements
- **Figure 4.17c** FT-IR spectrometry of liquid fuel obtained at optimized 96 condition (700 °C) by catalytic pyrolysis of waste polystyrene for A-type, B-type and C-type reactor arrangements

Figure 4.18a	SEM-EDX images of Fly ash in natural form (FAN)	100

- **Figure 4.18b** SEM-EDX images of FA synthesized catalyst FA-600 (fly ash 101 calcined at 600 °C)
- **Figure 4.18c** SEM-EDX images of FA synthesized catalyst FA-700 (fly ash 101 calcined at 700 °C)
- **Figure 4.18d** SEM-EDX images of FA synthesized catalyst FA-800 (fly ash 102 calcined at 800 °C)
- Figure 4.18e
 SEM-EDX images of FA synthesized catalyst FA-900 (fly ash 102 calcined at 900 °C)
- **Figure 4.19** FT-IR spectrometry of synthesized fly ash catalyst; FAN, FA- 105 600, FA-700, FA-800 and FA-900.
- Figure 4.20a Comparison of liquid yield, gaseous yield and solid residue at 107
 700 °C for A-type (Vapor phase) arrangement using FA-800 for
 50 g of polyethylene
- Figure 4.20bComparison of liquid yield, gaseous yield and solid residue at108700 °C for A-type (Vapor phase) arrangement using FA-800 for50 g of polypropylene
- Figure 4.20c Comparison of liquid yield, gaseous yield and solid residue at 108 700 °C for A-type (Vapor phase) arrangement using FA-800 for 50 g of polystyrene
- Figure 4.21aTime vs. percentage conversion of liquid and solid residue for109catalytic pyrolysis of polyethylene using FA-800 catalyst at the

temperature of 700 °C in A-type reactor arrangement (vapor phase).

- **Figure 4.21b** Time vs. percentage conversion of liquid and solid residue for 110 catalytic pyrolysis of polypropylene using FA-800 catalyst at the temperature of 700 °C in A-type reactor arrangement (vapor phase).
- **Figure 4.21c** Time vs. percentage conversion of liquid and solid residue for 110 catalytic pyrolysis of polystyrene using FA-800 catalyst at the temperature of 700 °C in A-type reactor arrangement (vapor phase).
- **Figure 4.22a** Product yield obtained from catalytic pyrolysis of polyethylene 111 using A-type, B-type and C-type reactor arrangements at the temperature of 700 °C.
- **Figure 4.22b** Product yield obtained from catalytic pyrolysis of 112 polypropylene using A-type, B-type and C-type reactor arrangements at the temperature of 700 °C.
- **Figure 4.22c** Product yield obtained from catalytic pyrolysis of polystyrene 113 using A-type, B-type and C-type reactor arrangements at the temperature of 700 °C.
- Figure 4.23 Comparison of liquid, gas and solid yield obtained from 116 catalytic pyrolysis of polyethylene for reactor arrangements A-type, B-type and C-type using catalyst FA-800.

- Figure 4.24 Comparison of liquid, gas and solid yield obtained from 120 catalytic pyrolysis of polypropylene for reactor arrangements A-type, B-type and C-type using catalyst FA-800.
- **Figure 4.25** Comparison of liquid, gas and solid yield obtained from 124 catalytic pyrolysis of polystyrene for reactor arrangements A-type, B-type and C-type using catalyst FA-800.
- Figure 4.26a Gas chromatography characteristic of kerosene oil 127 (commercial), diesel oil (commercial) and pyrolysis oil obtained from the catalytic pyrolysis of polyethylene at a temperature of 700 °C using fly ash synthesized catalyst FA-800 for A-type (vapor phase), B-type (liquid phase) and C-type (both liquid and vapor phase) reactor arrangements.
- Figure 4.26b Gas chromatography characteristic of kerosene oil 128 (commercial), diesel oil (commercial) and pyrolysis oil obtained from the catalytic pyrolysis of polypropylene at a temperature of 700 °C using fly ash synthesized catalyst FA-800 for A-type (vapor phase), B-type (liquid phase) and C-type (both liquid and vapor phase) reactor arrangements
- Figure 4.26c Gas chromatography characteristic of kerosene oil 128 (commercial), diesel oil (commercial) and pyrolysis oil obtained from the catalytic pyrolysis of polystyrene at a temperature of 700 °C using fly ash synthesized catalyst FA-800 for A-type

xxi

(vapor phase), B-type (liquid phase) and C-type (both liquid and vapor phase) reactor arrangements

- Figure 4.27a Volume percent vaporized vs. ASTM temperature 130 characteristics of standard fuel and pyrolysis oil obtained from polyethylene using FA-800 catalyst
- Figure 4.27b Volume percent vaporized vs. ASTM temperature 131 characteristics of standard fuel and pyrolysis oil obtained from polypropylene using FA-800 catalyst
- Figure 4.27c Volume percent vaporized vs. ASTM temperature 131 characteristics of standard fuel and pyrolysis oil obtained from polystyrene using FA-800 catalyst
- **Figure 4.28a** FT-IR spectrometry of liquid fuel obtained at optimized 133 condition (700 °C) by catalytic pyrolysis of waste polyethylene for A-type, B-type and C-type reactor arrangements
- **Figure 4.28b** FT-IR spectrometry of liquid fuel obtained at optimized 133 condition (700 °C) by catalytic pyrolysis of waste polypropylene for A-type, B-type and C-type reactor arrangements
- **Figure 4.28c** FT-IR spectrometry of liquid fuel obtained at optimized 134 condition (700 °C) by catalytic pyrolysis of waste polystyrene for A-type, B-type and C-type reactor arrangements

Figure 4.29a	SEM images of fresh ZSM-5 catalyst	138
Figure 4.29b	SEM images of used ZSM-5 catalyst	139

Figure 4.29cSEM images of regenerated ZSM-5 catalyst139

Figure 4.30 Comparison of liquid and BTEX yield for catalytic pyrolysis of 141 PE, PP and PS using C-type reactor arrangement at the temperature of 700 °C for ZSM-5 upto 3rd run and regenerated catalyst

- Figure 4.31b SEM images of used Fly ash derived FA-800 catalyst 143
- Figure 4.31c SEM images of regenerated Fly ash derived FA-800 catalyst 144
- Figure 4.32 Comparison of liquid and BTEX yield for catalytic pyrolysis of 145 PE, PP and PS using C-type reactor arrangement at the temperature of 700 °C for FA-800 upto 3rd run and regenerated catalyst
- **Figure 4.33** Comparison of liquid, gas, solid and BTEX yield obtained from 147 pyrolysis of polyethylene, polypropylene and polystyrene for different type of catalyst and reactor arrangements at the optimum temperature of 700 °C.

-

Table 1.1	World plastic demand by different types of polymers in 2016	2
Table 2.1	Types of plastic waste and its suitability for pyrolysis process	10
Table 2.2	Country wise fly ash production and utilization	15
Table 2.3	Fly ash utilization in India 2015-16	16
Table 2.4	Product yield of thermal pyrolysis using different types of	31
	waste plastics	
Table 2.5	The aromatic content (BTEX) in pyrolysis oil obtained by the	32
	thermal pyrolysis of waste plastics	
Table 2.6	Product yield of catalytic pyrolysis of waste plastics on	33
	various catalyst	
Table 2.7	The aromatic content (BTEX) in pyrolysis oil obtained by the	34
	catalytic pyrolysis of waste plastics	
Table 3.1	Plastic waste scenario in Varanasi, India	37
Table 3.2	Chemical composition of fly ash	38
Table 4.1	The aromatic content (BTEX) of commercial diesel, kerosene	57
	and gasoline oil	
Table 4.2a	The aromatic content (BTEX) in pyrolysis oil obtained from	57
	thermal pyrolysis of polyethylene at different temperature.	
Table 4.2b	The aromatic content (BTEX) in pyrolysis oil obtained from	58
	thermal pyrolysis of polypropylene at different temperature.	
Table 4.2c	The aromatic content (BTEX) in pyrolysis oil obtained from	58
	thermal pyrolysis of polystyrene at different temperature.	

Indifferent temperatures for polyethyleneTable 4.3bPhysicochemical properties of pyrolysis oil obtained at different temperatures for polypropyleneTable 4.3cPhysicochemical properties of pyrolysis oil obtained at different temperatures for polystyreneTable 4.3cPhysicochemical properties of pyrolysis oil obtained at offerent temperatures for polystyreneTable 4.4The aromatic content (BTEX) in pyrolysis oil obtained from polyethylene at different temperaturesTable 4.5The Aromatic content (BTEX) in pyrolysis oil obtained from polystyrene at different temperaturesTable 4.6The Aromatic content (BTEX) in pyrolysis oil obtained from polystyrene at different temperaturesTable 4.6Physicochemical properties of pyrolysis oil obtained at 700 °C for polyethylene using ZSM-5 catalystTable 4.7aPhysicochemical properties of pyrolysis oil obtained at 700 °C for polystyrene using ZSM-5 catalystTable 4.7bSurface area, pore volume and (Si/Al) ratio of FA catalystTable 4.8Surface area, pore volume and (Si/Al) ratio of FA catalystTable 4.9Comparison and shifting of bands data for FAN, FA-600, FA- 700, FA-800 and FA-900 in FTIR spectroscopyTable 4.10The aromatic content (BTEX) in pyrolysis oil obtained from 700, FA-800 and FA-900 in FTIR spectroscopy	Table 4.3a	Physicochemical properties of pyrolysis oil obtained at	66
Table 4.3cPhysicochemical properties of pyrolysis oil obtained at different temperatures for polystyreneTable 4.4The aromatic content (BTEX) in pyrolysis oil obtained from polyethylene at different temperaturesTable 4.4The aromatic content (BTEX) in pyrolysis oil obtained from polyethylene at different temperaturesTable 4.5The Aromatic content (BTEX) in pyrolysis oil obtained from polypropylene at different temperaturesTable 4.6The Aromatic content (BTEX) in pyrolysis oil obtained from polystyrene at different temperaturesTable 4.6The Aromatic content (BTEX) in pyrolysis oil obtained from polystyrene at different temperaturesTable 4.7aPhysicochemical properties of pyrolysis oil obtained at 700 °C for polyethylene using ZSM-5 catalystTable 4.7bPhysicochemical properties of pyrolysis oil obtained at 700 °C for polypropylene using ZSM-5 catalystTable 4.7cPhysicochemical properties of pyrolysis oil obtained at 700 °C for polystyrene using ZSM-5 catalystTable 4.8Surface area, pore volume and (Si/Al) ratio of FA catalyst 700, FA-800 and FA-900 in FTIR spectroscopyTable 4.10The aromatic content (BTEX) in pyrolysis oil obtained from 118		different temperatures for polyethylene	
 Table 4.3c Physicochemical properties of pyrolysis oil obtained at different temperatures for polystyrene Table 4.4 The aromatic content (BTEX) in pyrolysis oil obtained from polyethylene at different temperatures Table 4.5 The Aromatic content (BTEX) in pyrolysis oil obtained from 82 polypropylene at different temperatures Table 4.6 The Aromatic content (BTEX) in pyrolysis oil obtained from 87 polystyrene at different temperatures Table 4.6 The Aromatic content (BTEX) in pyrolysis oil obtained from 97 c^C for polyethylene using ZSM-5 catalyst Table 4.7a Physicochemical properties of pyrolysis oil obtained at 700 98 c^C for polypropylene using ZSM-5 catalyst Table 4.7c Physicochemical properties of pyrolysis oil obtained at 700 98 c^C for polystyrene using ZSM-5 catalyst Table 4.8 Surface area, pore volume and (Si/Al) ratio of FA catalyst 103 700, FA-800 and FA-900 in FTIR spectroscopy Table 4.10 The aromatic content (BTEX) in pyrolysis oil obtained from 118 	Table 4.3b	Physicochemical properties of pyrolysis oil obtained at	67
Table 4.4The aromatic content (BTEX) in pyrolysis oil obtained from polyethylene at different temperaturesTable 4.4The aromatic content (BTEX) in pyrolysis oil obtained from polypropylene at different temperaturesTable 4.5The Aromatic content (BTEX) in pyrolysis oil obtained from polypropylene at different temperaturesTable 4.6The Aromatic content (BTEX) in pyrolysis oil obtained from polystyrene at different temperaturesTable 4.6The Aromatic content (BTEX) in pyrolysis oil obtained from polystyrene at different temperaturesTable 4.7aPhysicochemical properties of pyrolysis oil obtained at 700 °C for polyethylene using ZSM-5 catalystTable 4.7bPhysicochemical properties of pyrolysis oil obtained at 700 °C for polypropylene using ZSM-5 catalystTable 4.7cPhysicochemical properties of pyrolysis oil obtained at 700 °C for polystyrene using ZSM-5 catalystTable 4.8Surface area, pore volume and (Si/AI) ratio of FA catalyst103Table 4.9Comparison and shifting of bands data for FAN, FA-600, FA- 700, FA-800 and FA-900 in FTIR spectroscopy118		different temperatures for polypropylene	
Table 4.4The aromatic content (BTEX) in pyrolysis oil obtained from polyethylene at different temperatures76Table 4.5The Aromatic content (BTEX) in pyrolysis oil obtained from polypropylene at different temperatures82Table 4.6The Aromatic content (BTEX) in pyrolysis oil obtained from polystyrene at different temperatures87Table 4.6The Aromatic content (BTEX) in pyrolysis oil obtained from polystyrene at different temperatures87Table 4.7aPhysicochemical properties of pyrolysis oil obtained at 700 °C for polyethylene using ZSM-5 catalyst98Table 4.7bPhysicochemical properties of pyrolysis oil obtained at 700 °C for polypropylene using ZSM-5 catalyst98Table 4.7cPhysicochemical properties of pyrolysis oil obtained at 700 °C for polystyrene using ZSM-5 catalyst98Table 4.7cPhysicochemical properties of pyrolysis oil obtained at 700 °C for polystyrene using ZSM-5 catalyst98Table 4.7bComparison and shifting of bands data for FAN, FA-600, FA- 700, FA-800 and FA-900 in FTIR spectroscopy103Table 4.10The aromatic content (BTEX) in pyrolysis oil obtained from 118118	Table 4.3c	Physicochemical properties of pyrolysis oil obtained at	67
polyethylene at different temperaturesTable 4.5The Aromatic content (BTEX) in pyrolysis oil obtained from golypropylene at different temperaturesTable 4.6The Aromatic content (BTEX) in pyrolysis oil obtained from golystyrene at different temperaturesTable 4.6The Aromatic content (BTEX) in pyrolysis oil obtained from golystyrene at different temperaturesTable 4.7aPhysicochemical properties of pyrolysis oil obtained at 700 golystyrene using ZSM-5 catalystTable 4.7bPhysicochemical properties of pyrolysis oil obtained at 700 golystyrene using ZSM-5 catalystTable 4.7cPhysicochemical properties of pyrolysis oil obtained at 700 golystyrene using ZSM-5 catalystTable 4.7cPhysicochemical properties of pyrolysis oil obtained at 700 golystyrene using ZSM-5 catalystTable 4.7cPhysicochemical properties of pyrolysis oil obtained at 700 golystyrene using ZSM-5 catalystTable 4.8Surface area, pore volume and (Si/Al) ratio of FA catalyst 103Table 4.9Comparison and shifting of bands data for FAN, FA-600, FA- 106 700, FA-800 and FA-900 in FTIR spectroscopyTable 4.10The aromatic content (BTEX) in pyrolysis oil obtained from 118		different temperatures for polystyrene	
Table 4.5The Aromatic content (BTEX) in pyrolysis oil obtained from polypropylene at different temperatures82Table 4.6The Aromatic content (BTEX) in pyrolysis oil obtained from polystyrene at different temperatures87Table 4.6The Aromatic content (BTEX) in pyrolysis oil obtained from polystyrene at different temperatures87Table 4.7aPhysicochemical properties of pyrolysis oil obtained at 700 °C for polyethylene using ZSM-5 catalyst98Table 4.7bPhysicochemical properties of pyrolysis oil obtained at 700 °C for polypropylene using ZSM-5 catalyst98Table 4.7cPhysicochemical properties of pyrolysis oil obtained at 700 °C for polystyrene using ZSM-5 catalyst98Table 4.7cComparison and shifting of bands data for FAN, FA-600, FA- 700, FA-800 and FA-900 in FTIR spectroscopy103Table 4.10The aromatic content (BTEX) in pyrolysis oil obtained from 118118	Table 4.4	The aromatic content (BTEX) in pyrolysis oil obtained from	76
polypropylene at different temperaturesTable 4.6The Aromatic content (BTEX) in pyrolysis oil obtained from polystyrene at different temperaturesTable 4.7aPhysicochemical properties of pyrolysis oil obtained at 700 °C for polyethylene using ZSM-5 catalystTable 4.7bPhysicochemical properties of pyrolysis oil obtained at 700 °C for polypropylene using ZSM-5 catalystTable 4.7bPhysicochemical properties of pyrolysis oil obtained at 700 °C for polypropylene using ZSM-5 catalystTable 4.7cPhysicochemical properties of pyrolysis oil obtained at 700 °C for polystyrene using ZSM-5 catalystTable 4.8Surface area, pore volume and (Si/Al) ratio of FA catalystTable 4.9Comparison and shifting of bands data for FAN, FA-600, FA- 106 700, FA-800 and FA-900 in FTIR spectroscopyTable 4.10The aromatic content (BTEX) in pyrolysis oil obtained from		polyethylene at different temperatures	
 Table 4.6 The Aromatic content (BTEX) in pyrolysis oil obtained from 87 polystyrene at different temperatures Table 4.7a Physicochemical properties of pyrolysis oil obtained at 700 97 °C for polyethylene using ZSM-5 catalyst Table 4.7b Physicochemical properties of pyrolysis oil obtained at 700 98 °C for polypropylene using ZSM-5 catalyst Table 4.7c Physicochemical properties of pyrolysis oil obtained at 700 98 °C for polystyrene using ZSM-5 catalyst Table 4.8 Surface area, pore volume and (Si/AI) ratio of FA catalyst 103 Table 4.9 Comparison and shifting of bands data for FAN, FA-600, FA-106 700, FA-800 and FA-900 in FTIR spectroscopy Table 4.10 The aromatic content (BTEX) in pyrolysis oil obtained from 118 	Table 4.5	The Aromatic content (BTEX) in pyrolysis oil obtained from	82
Table 4.7aPhysicochemical properties of pyrolysis oil obtained at 70097°C for polyethylene using ZSM-5 catalyst97Table 4.7bPhysicochemical properties of pyrolysis oil obtained at 70098°C for polypropylene using ZSM-5 catalyst98°C for polystyrene using ZSM-5 catalyst98°C for polystyrene using ZSM-5 catalyst103Table 4.8Surface area, pore volume and (Si/Al) ratio of FA catalyst103Table 4.9Comparison and shifting of bands data for FAN, FA-600, FA-106700, FA-800 and FA-900 in FTIR spectroscopy118		polypropylene at different temperatures	
Table 4.7aPhysicochemical properties of pyrolysis oil obtained at 700 °C for polyethylene using ZSM-5 catalyst97 °C for polyethylene using ZSM-5 catalystTable 4.7bPhysicochemical properties of pyrolysis oil obtained at 700 °C for polypropylene using ZSM-5 catalyst98 °C for polypropylene using ZSM-5 catalystTable 4.7cPhysicochemical properties of pyrolysis oil obtained at 700 °C for polystyrene using ZSM-5 catalyst98 °C for polystyrene using ZSM-5 catalystTable 4.8Surface area, pore volume and (Si/Al) ratio of FA catalyst103 106 700, FA-800 and FA-900 in FTIR spectroscopyTable 4.10The aromatic content (BTEX) in pyrolysis oil obtained from118	Table 4.6	The Aromatic content (BTEX) in pyrolysis oil obtained from	87
C for polyethylene using ZSM-5 catalystTable 4.7bPhysicochemical properties of pyrolysis oil obtained at 70098 °C for polypropylene using ZSM-5 catalystTable 4.7cPhysicochemical properties of pyrolysis oil obtained at 70098 °C for polystyrene using ZSM-5 catalystTable 4.7cPhysicochemical properties of pyrolysis oil obtained at 70098 °C for polystyrene using ZSM-5 catalystTable 4.8Surface area, pore volume and (Si/Al) ratio of FA catalyst103Table 4.9Comparison and shifting of bands data for FAN, FA-600, FA- 700, FA-800 and FA-900 in FTIR spectroscopy118Table 4.10The aromatic content (BTEX) in pyrolysis oil obtained from118		polystyrene at different temperatures	
Table 4.7bPhysicochemical properties of pyrolysis oil obtained at 70098 °C for polypropylene using ZSM-5 catalystTable 4.7cPhysicochemical properties of pyrolysis oil obtained at 70098 °C for polystyrene using ZSM-5 catalystTable 4.7cSurface area, pore volume and (Si/Al) ratio of FA catalyst103Table 4.8Surface area, pore volume and (Si/Al) ratio of FA catalyst103Table 4.9Comparison and shifting of bands data for FAN, FA-600, FA- 700, FA-800 and FA-900 in FTIR spectroscopy118	Table 4.7a	Physicochemical properties of pyrolysis oil obtained at 700	97
 ^oC for polypropylene using ZSM-5 catalyst Table 4.7c Physicochemical properties of pyrolysis oil obtained at 700 98 ^oC for polystyrene using ZSM-5 catalyst Table 4.8 Surface area, pore volume and (Si/Al) ratio of FA catalyst 103 Table 4.9 Comparison and shifting of bands data for FAN, FA-600, FA-106 700, FA-800 and FA-900 in FTIR spectroscopy Table 4.10 The aromatic content (BTEX) in pyrolysis oil obtained from 118 		°C for polyethylene using ZSM-5 catalyst	
Table 4.7cPhysicochemical properties of pyrolysis oil obtained at 70098 °C for polystyrene using ZSM-5 catalystTable 4.8Surface area, pore volume and (Si/Al) ratio of FA catalyst103Table 4.9Comparison and shifting of bands data for FAN, FA-600, FA- 700, FA-800 and FA-900 in FTIR spectroscopy106Table 4.10The aromatic content (BTEX) in pyrolysis oil obtained from118	Table 4.7b	Physicochemical properties of pyrolysis oil obtained at 700	98
°C for polystyrene using ZSM-5 catalystTable 4.8Surface area, pore volume and (Si/Al) ratio of FA catalyst103Table 4.9Comparison and shifting of bands data for FAN, FA-600, FA-106700, FA-800 and FA-900 in FTIR spectroscopy118		°C for polypropylene using ZSM-5 catalyst	
Table 4.8Surface area, pore volume and (Si/Al) ratio of FA catalyst103Table 4.9Comparison and shifting of bands data for FAN, FA-600, FA-106700, FA-800 and FA-900 in FTIR spectroscopy118	Table 4.7c	Physicochemical properties of pyrolysis oil obtained at 700	98
Table 4.9Comparison and shifting of bands data for FAN, FA-600, FA-106700, FA-800 and FA-900 in FTIR spectroscopy106Table 4.10The aromatic content (BTEX) in pyrolysis oil obtained from118		°C for polystyrene using ZSM-5 catalyst	
700, FA-800 and FA-900 in FTIR spectroscopyTable 4.10 The aromatic content (BTEX) in pyrolysis oil obtained from 118	Table 4.8	Surface area, pore volume and (Si/Al) ratio of FA catalyst	103
Table 4.10 The aromatic content (BTEX) in pyrolysis oil obtained from118	Table 4.9	Comparison and shifting of bands data for FAN, FA-600, FA-	106
		700, FA-800 and FA-900 in FTIR spectroscopy	
polyethylene at different temperatures using FA-800 catalyst	Table 4.10	The aromatic content (BTEX) in pyrolysis oil obtained from	118
porjourgione at arrestorie temperatures using 111 000 eataryst		polyethylene at different temperatures using FA-800 catalyst	

- Table 4.11The aromatic content (BTEX) in pyrolysis oil obtained from122polypropylene at different temperatures using FA-800catalyst
- **Table 4.12**The aromatic content (BTEX) in pyrolysis oil obtained from125polystyrene at different temperatures using FA-800 catalyst
- Table 4.13aPhysicochemical properties of pyrolysis oil obtained from 136catalytic pyrolysis of polyethylene using FA-800 in C-typereactor arrangement at 700 °C
- Table 4.13bPhysicochemical properties of pyrolysis oil obtained from137catalytic pyrolysis of polypropylene using FA-800 in C-typereactor arrangement at 700 °C
- Table 4.13cPhysicochemical properties of pyrolysis oil obtained from137catalytic pyrolysis of polystyrene using FA-800 in C-typereactor arrangement at 700 °C
- **Table 4.14**Surface area and pore volume of fresh, used and regenerated140catalyst ZSM-5

Table 4.15Comparison of liquid, gaseous, solid residue and BTEX yield142for catalytic pyrolysis of PE, PP and PS using C-type reactor
arrangement for ZSM-5 upto 3rd run and regenerated catalyst

Table 4.16Surface area and pore volume of fresh, used and regenerated144catalyst FA-800

- Table 4.17Comparison of liquid, gaseous, solid residue and BTEX yield146for catalytic pyrolysis of PE, PP and PS using C-type reactor
arrangement for FA-800 upto 3rd run and regenerated catalyst
- **Table 4.18**Comparison of liquid, gas, solid and BTEX yield obtained149from pyrolysis of polyethylene, polypropylene and
polystyrene for different type of catalyst and reactor
arrangements at the optimum temperature of 700 °C.

NOMENCLATURE

Symbol	:	Meaning
ρ	:	Specific gravity
API	:	American petroleum institute
ASTM	:	American society for testing and materials
BET	:	Brunauer-Emmett-Teller
BJH	:	Barrett-Joyner-Halenda
BTEX	:	Benzene, Toluene, Ethylbenzene and Xylene
CSBR	:	Conical spouted bed reactor
DHA	:	Detailed hydrocarbon analyzer
EDX	:	Energy dispersive X-ray spectroscopy
EPS	:	Expandable polystyrene
FA	:	Fly ash
FA-600	:	Fly ash calcined at 600 °C
FA-700	:	Fly ash calcined at 700 °C
FA-800	:	Fly ash calcined at 800 °C
FA-900	:	Fly ash calcined at 900 °C
FAN	:	Untreated or uncalcined fly ash
FBP	:	Final boiling point
FTIR	:	Fourier Transformed Infrared Spectroscopy
GC	:	Gas chromatography
GC-FID	:	Gas chromatography coupled with flame ionization detector
GC-MS	:	Gas chromatography coupled with mass spectrophotometry

GCV	:	Gross calorific value
GOI	:	Government of India
HDPE	:	High-density polyethylene
HPLC	:	High performance liquid chromatography
HR-SEM	:	High resolution scanning Electron Microscope
HR-TEM	:	High resolution transmission electron microscopy
IBP	:	Initial boiling point
LDPE	:	Low-density polyethylene
LLDPE	:	Linear low-density polyethylene
MSW	:	Municipal solid waste
MTPA	:	Million tonnes per annum
NMR	:	Nuclear magnetic resonance spectroscopy
NOx	:	Nitrogen oxides
PE	:	Polyethylene
PET	:	Polyethylene terephthalate
PLA	:	Poly lactic acid
PP	:	Polypropylene
PS	:	Polystyrene
PUR	:	Polyutherane
PVC	:	Polyvinyl chloride
SEM	:	Scanning Electron Microscope
SOx	:	Sulphur oxides
Т	:	Temperature
TEM	:	Transmission electron microscopy
TG-DTA	:	Thermogravimetry/differential thermal analysis

- TPD
 :
 Temperature programmed desorption
- XRD : X-Ray Diffraction
- XRF : X-ray fluorescence
- ZSM-5 : Zeolite Socony mobile-5